1
|
Moeini B, Pinder JW, Avval TG, Jacobsen C, Brongersma HH, Průša S, Bábík P, Vaníčková E, Argyle MD, Strohmeier BR, Jones B, Shollenberger D, Bell DS, Linford MR. Controlling the surface silanol density in capillary columns and planar silicon via the self-limiting, gas-phase deposition of tris(dimethylamino)methylsilane, and quantification of surface silanols after silanization by low energy ion scattering. J Chromatogr A 2023; 1707:464248. [PMID: 37598532 DOI: 10.1016/j.chroma.2023.464248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023]
Abstract
Surface silanols (Si-OH) play a vital role on fused silica surfaces in chromatography. Here, we used an atmospheric-pressure, gas-phase reactor to modify the inner surface of a gas chromatography, fused silica capillary column (0.53 mm ID) with a small, reactive silane (tris(dimethylamino)methylsilane, TDMAMS). The deposition of TDMAMS on planar witness samples around the capillary was confirmed with X-ray photoelectron spectroscopy (XPS), ex situ spectroscopic ellipsometry (SE), and wetting. The number of surface silanols on unmodified and TDMAMS-modified native oxide-terminated silicon were quantified by tagging with dimethylzinc (DMZ) via atomic layer deposition (ALD) and counting the resulting zinc atoms with high sensitivity-low energy ion scattering (HS-LEIS). A bare, clean native oxide - terminated silicon wafer has 3.66 OH/nm2, which agrees with density functional theory (DFT) calculations from the literature. After TDMAMS modification of native oxide-terminated silicon, the number of surface silanols decreases by a factor of ca. 10 (to 0.31 OH/nm2). Intermediate surface testing (IST) was used to characterize the surface activities of functionalized capillaries. It suggested a significant deactivation/passivation of the capillary with some surface silanols remaining; the modified capillary shows significant deactivation compared to the native/unmodified fused silica tubing. We believe that this methodology for determining the number of residual silanols on silanized fused silica will be enabling for chromatography.
Collapse
Affiliation(s)
- Behnam Moeini
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Joshua W Pinder
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Tahereh G Avval
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Collin Jacobsen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Hidde H Brongersma
- Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands
| | - Stanislav Průša
- Institute of Physical Engineering, Brno University of Technology, Technická 2, Brno 616 69, Czech Republic; CEITEC BUT, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
| | - Pavel Bábík
- Institute of Physical Engineering, Brno University of Technology, Technická 2, Brno 616 69, Czech Republic; CEITEC BUT, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
| | - Elena Vaníčková
- Institute of Physical Engineering, Brno University of Technology, Technická 2, Brno 616 69, Czech Republic; CEITEC BUT, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
| | - Morris D Argyle
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Brian R Strohmeier
- Materials Group, Avery Dennison Corp., 8080 Norton Parkway, Mentor, OH 44060, USA
| | - Brian Jones
- Restek Corporation, 110 Benner Circle, Bellefonte, PA 16823, USA
| | | | - David S Bell
- Restek Corporation, 110 Benner Circle, Bellefonte, PA 16823, USA
| | - Matthew R Linford
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
2
|
Sypabekova M, Hagemann A, Rho D, Kim S. Review: 3-Aminopropyltriethoxysilane (APTES) Deposition Methods on Oxide Surfaces in Solution and Vapor Phases for Biosensing Applications. BIOSENSORS 2022; 13:bios13010036. [PMID: 36671871 PMCID: PMC9856095 DOI: 10.3390/bios13010036] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 05/31/2023]
Abstract
Surface functionalization and bioreceptor immobilization are critical processes in developing a highly sensitive and selective biosensor. The silanization process with 3-aminopropyltriethoxysilane (APTES) on oxide surfaces is frequently used for surface functionalization because of beneficial characteristics such as its bifunctional nature and low cost. Optimizing the deposition process of the APTES layer to obtain a monolayer is crucial to having a stable surface and effectively immobilizing the bioreceptors, which leads to the improved repeatability and sensitivity of the biosensor. This review provides an overview of APTES deposition methods, categorized into the solution-phase and vapor-phase, and a comprehensive summary and guide for creating stable APTES monolayers on oxide surfaces for biosensing applications. A brief explanation of APTES is introduced, and the APTES deposition methods with their pre/post-treatments and characterization results are discussed. Lastly, APTES deposition methods on nanoparticles used for biosensors are briefly described.
Collapse
Affiliation(s)
- Marzhan Sypabekova
- Department of Electrical & Computer Engineering, Baylor University, Waco, TX 76798, USA
| | - Aidan Hagemann
- Department of Electrical & Computer Engineering, Baylor University, Waco, TX 76798, USA
| | - Donggee Rho
- Center for Nano Bio Development, National NanoFab Center (NNFC), Daejeon 34141, Republic of Korea
| | - Seunghyun Kim
- Department of Electrical & Computer Engineering, Baylor University, Waco, TX 76798, USA
| |
Collapse
|
3
|
Ashraf K, Roy K, Higgins DA, Collinson MM. On the Importance of Silane Infusion Order on the Microscopic and Macroscopic Properties of Multifunctional Charge Gradients. ACS OMEGA 2020; 5:21897-21905. [PMID: 32905528 PMCID: PMC7469646 DOI: 10.1021/acsomega.0c03068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Four multicomponent charge gradients containing acidic and basic functionalities were prepared via sol-gel processes and the controlled-rate infusion (CRI) method to more clearly understand how preparation conditions influence macroscopic properties. CRI is used to form gradients by infusing reactive alkoxysilanes into a glass vial housing a vertically oriented modified silicon wafer. The concentration and time of infusion of the silane solutions were kept constant. Only the sequence of infusion of the silane solutions was changed. The first set of samples was prepared by initially infusing a solution containing 3-aminopropyltriethoxysilane (APTES) followed by a mercaptopropyltrimethoxysilane (MPTMS) solution. The individual gradients were formed either in an aligned or opposed fashion with respect to the initial gradient. The second set of samples was prepared by infusing the MPTMS solution first followed by the APTES solution, again in either an aligned or opposed fashion. To create charge gradients (NH3 +, SO3 -), the samples were immersed into H2O2. The extent of modification, the degree of protonation of the amine, and the thicknesses of the individual layers were examined by X-ray photoelectron spectroscopy (XPS) and spectroscopic ellipsometry. The wettability of the individual gradients was assessed via static contact angle measurements. The results demonstrate the importance of infusion order and how it influences the macroscopic and microscopic properties of gradient surfaces including the surface concentration, packing density, degree of protonation, and ultimately wettability. When the gradient materials are prepared via infusion of the APTES sol first, it results in increased deposition of both the amine and thiol groups as evidenced by XPS. Interestingly, the total thickness evaluated from ellipsometry was independent of the infusion order for the aligned gradients, indicative of significant differences in the film density. For the opposed gradients, however, the infusion of APTES first leads to a significantly thicker composite film. Furthermore, it also leads to a more pronounced gradient in the protonation of the amine, which introduces a very different surface wettability. The use of aminosilanes provides a viable approach to create gradient surfaces with different functional group distributions. These studies demonstrate that the controlled placement of functional groups on a surface can provide a new route to prepare gradient materials with improved performance.
Collapse
Affiliation(s)
- Kayesh
M. Ashraf
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| | - Kallol Roy
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| | - Daniel A. Higgins
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506-0401, United States
| | - Maryanne M. Collinson
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| |
Collapse
|