1
|
Saito K, Morita M, Okada T, Wijitwongwan RP, Ogawa M. Designed functions of oxide/hydroxide nanosheets via elemental replacement/doping. Chem Soc Rev 2024; 53:10523-10574. [PMID: 39371019 DOI: 10.1039/d4cs00339j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Partial replacement of one structural element in a solid with another of a similar size was conducted to impart functionality to the solids and modify their properties. This phenomenon is found in nature in coloured gemstones and clay minerals and is used in materials chemistry and physics, endowing materials with useful properties that can be controlled by incorporated heteroelements and their amounts. Depending on the area of research (or expected functions), the replacement is referred to as "isomorphous substitution", "doping", etc. Herein, elemental replacement in two-dimensional (2D) oxides and hydroxides (nanosheets or layered materials) is summarised with emphasis on the uniqueness of their preparation, characterisation and application compared with those of the corresponding bulk materials. Among the 2D materials (graphene, metallenes, transition metal chalcogenides, metal phosphate/phosphonates, MXenes, etc.), 2D oxides and hydroxides are characterised by their presence in nature, facile synthesis and storage under ambient conditions, and possible structural variation from atomic-level nanosheets to thicker nanosheets composed of multilayered structures. The heteroelements to be doped were selected depending on the target application objectively; however, there are structural and synthetic limitations in the doping of heteroelements. In the case of layered double hydroxides (single layer) and layered alkali silicates (from single layer to multiple layers), including layered clay minerals (2 : 1 layer), the replacement (commonly called isomorphous substitution) is discussed to understand/design characteristics such as catalytic, adsorptive (including ion exchange), and swelling properties. Due to the variation in their main components, the design of layered transition metal oxide/hydroxide materials via isomorphous substitution is more versatile; in this case, tuning their band structure, doping both holes and electrons, and creating impurity levels are examined by the elemental replacement of the main components. As typical examples, material design for the photocatalytic function of an ion-exchangeable layered titanate (lepidocrocite-type titanate) and a perovskite niobate (KCa2Nb3O10) is discussed, where elemental replacement is effective in designing their multiple functions.
Collapse
Affiliation(s)
- Kanji Saito
- Department of Materials Science, Graduate School of Engineering Science, Akita University, 1-1 Tegatagakuen-machi, Akita-shi, Akita 010-8502, Japan
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo 169-0054, Japan
| | - Masashi Morita
- Department of Applied Chemistry, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Tomohiko Okada
- Department of Materials Chemistry, and Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano, Nagano-shi 380-8553, Japan
| | - Rattanawadee Ploy Wijitwongwan
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, Payupnai, Wangchan, Rayong 21210, Thailand.
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, Payupnai, Wangchan, Rayong 21210, Thailand.
| |
Collapse
|
2
|
Yu S, Hou R, Sun J, Deng C, Tan D, Shi H. In Situ Growth of Nitrogen-Doped Fluorescent Carbon Dots on Sisal Fibers: Investigating Their Selective and Enhanced Adsorption Capabilities for Methyl Blue Dye. J Fluoresc 2024:10.1007/s10895-024-03884-6. [PMID: 39180573 DOI: 10.1007/s10895-024-03884-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/29/2024] [Indexed: 08/26/2024]
Abstract
Preparing a biomass adsorbent material with high-absorption performance but low cost plays a vital role in wastewater treatment. In this study, a novel nitrogen-doped sisal fiber-based carbon dots (SF-N-CDs) composite was prepared by directly growing carbon dots (CDs) on sisal fiber (SF) using a microwave method with polyethyleneimine (PEI) as a raw material. The prepared SF-N-CDs were characterized using FTIR, XRD, Contact angle(CA), TGA, XPS, and SEM. The results revealed that the CDs were successfully grown on SF. The adsorption properties of SF-N-CDs were significantly enhanced when they adsorbed methyl blue (MeB) dye. Specifically, the adsorption of MeB by SF-N-CDs was up to 619.7 mg/g, which was about 2.6 times higher than that of raw SF. This implied that the introduction of CDs increases the adsorption site, thus enhancing the adsorption capacity. Analysis on kinetics and thermodynamics of MeB adsorption by SF-N-CDs revealed that the adsorption process followed the Langmuir isotherm model and were consistent with both kinetic models. It signifies that the adsorption involves both physical and chemical adsorption processes. Further, the SF-N-CDs maintained a removal rate of 70.9% after six adsorption-regeneration cycles, demonstrating good regeneration performance. Moreover, the SF-N-CDs could selectively separate MeB from a mixture of rhodamine B and saffron T. Consequently, the findings of this study suggest that SF-N-CDs are promising adsorbents for anionic dyes.
Collapse
Affiliation(s)
- Shujuan Yu
- Department of Materials Science and Engineering, Suqian University, Suqian, 223800, People's Republic of China.
| | - Ruiliang Hou
- Department of Materials Science and Engineering, Suqian University, Suqian, 223800, People's Republic of China
| | - Jiaxiang Sun
- Department of Materials Science and Engineering, Suqian University, Suqian, 223800, People's Republic of China
| | - Cailong Deng
- Department of Materials Science and Engineering, Suqian University, Suqian, 223800, People's Republic of China
| | - Dengfeng Tan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, People's Republic of China
| | - Hongqi Shi
- Department of Materials Science and Engineering, Suqian University, Suqian, 223800, People's Republic of China
| |
Collapse
|
3
|
Tahara Y, Hirade Y, Arakawa K, Shimada T, Ishida T, Tachibana H, Takagi S. Effects of Clay Nanosheets on the Photostability of Cationic Porphyrin. Molecules 2024; 29:3738. [PMID: 39202818 PMCID: PMC11357654 DOI: 10.3390/molecules29163738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
The photodecomposition behavior of cationic porphyrin ZnTMAP4+ (zinc tetrakis-(N,N,N-trimethylanilinium-4-yl) porphyrin) in water and complexed with clay nanosheets was investigated by light irradiation to the Soret band of ZnTMAP4+. The decomposition of ZnTMAP4+ was observed by UV-visible absorption spectroscopy. While the decomposition quantum yield (ϕdec) was 3.4 × 10-4 in water, that was 9.4 × 10-7 on the exfoliated clay nanosheets. It was revealed that the photostability of ZnTMAP4+ was stabilized by the complex formation with clay. When ZnTMAP4+ was intercalated between the stacked clay nanosheets, ϕdec was further decreased to 4.9 × 10-7. The photostability increased by 361 times and 693 times for the exfoliated and stacked state, respectively. These results indicate that the flat clay surface has the potential to control intra- and intermolecular photochemical reactions.
Collapse
Affiliation(s)
- Yoshinori Tahara
- Department of Applied Chemistry, Faculty of Urban Environmental Sciences, Tokyo Metropolitan University, Hachiohji, Tokyo 192-0397, Japan
| | - Yugo Hirade
- Advanced Collaborative Research Organization for Smart Society (ACROSS), Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Kyosuke Arakawa
- Department of Applied and Pure Chemistry, Faculty of Science and Technology, Tokyo University of Science, Noda-City 278-8510, Chiba, Japan
| | - Tetsuya Shimada
- Department of Applied Chemistry, Faculty of Urban Environmental Sciences, Tokyo Metropolitan University, Hachiohji, Tokyo 192-0397, Japan
| | - Tamao Ishida
- Department of Applied Chemistry, Faculty of Urban Environmental Sciences, Tokyo Metropolitan University, Hachiohji, Tokyo 192-0397, Japan
- Research Center for Hydrogen Energy-Based Society (ReHES), Tokyo Metropolitan University, Hachiohji, Tokyo 192-0397, Japan
| | - Hiroshi Tachibana
- Department of Applied Chemistry, Faculty of Urban Environmental Sciences, Tokyo Metropolitan University, Hachiohji, Tokyo 192-0397, Japan
| | - Shinsuke Takagi
- Department of Applied Chemistry, Faculty of Urban Environmental Sciences, Tokyo Metropolitan University, Hachiohji, Tokyo 192-0397, Japan
- Research Center for Hydrogen Energy-Based Society (ReHES), Tokyo Metropolitan University, Hachiohji, Tokyo 192-0397, Japan
| |
Collapse
|
4
|
Wang R, Zhang S, Zhang X, Liu Q. Preparation of hydrophobic layered double hydroxide-based composite pigments via octyltriethoxysilane surface modification for cosmetic applications. Dalton Trans 2024; 53:9406-9415. [PMID: 38757980 DOI: 10.1039/d4dt00531g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Pigments play a pivotal role in the cosmetic industry, in which the development of pigments with concurrent color diversity, hydrophobicity, biocompatibility and photostability remains a great challenge. Herein, we report organic-inorganic composite pigments synthesized via a combination of organic dye anions (Ponceau SX and acid green (AG)), layered double hydroxides (LDHs) and octyltriethoxysilane (OTEOS) (denoted as O/Dye-LDHs: O/SX-LDHs and O/AG-LDHs).The prepared composite pigments were characterized via a comprehensive investigation based on X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS-mapping), Fourier transform infrared (FT-IR) spectroscopy, CIE 1976 L*a*b* color scales, static contact angle measurement and HET-CAM assay. The results confirm the successful intercalation of organic dye anions into the interlayer region of LDHs via host-guest interactions and the surface modification of OTEOS on the layer surface, forming a new kind of hydrophobic organic-inorganic composite pigment with a sandwich structure. LDH layer protection and OTEOS coating play crucial roles in the high photostability, good hydrophobicity and satisfactory biocompatibility of pigments. In addition, O/Dye-LDHs exhibit rich color and color adjustability. Impressively, we applied mixture composite pigments with different O/SX-LDH-to-O/AG-LDH ratios to formulate an eye shadow cream, which present a series of popular and natural colours with water resistance to enhance one's attractiveness and appearance. This work provides a promising strategy for the design of safe and efficient composite pigments, demonstrating their potential application in the field of makeup.
Collapse
Affiliation(s)
- Ruiying Wang
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China.
| | - Shuang Zhang
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China.
| | - Xi Zhang
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China.
| | - Qi Liu
- Beijing EWISH Testing Technology Co., Ltd, Beijing, China
| |
Collapse
|
5
|
Saothayanun TK, Wijitwongwan RP, Ogawa M. Efficient p–n Heterojunction Photocatalyst Composed of Bismuth Oxyiodide and Layered Titanate. Inorg Chem 2022; 61:20268-20276. [DOI: 10.1021/acs.inorgchem.2c02198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Taya Ko Saothayanun
- School of Energy Science and Engineering (ESE), Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, Payupnai, Wangchan, Rayong21210, Thailand
| | - Rattanawadee Ploy Wijitwongwan
- School of Energy Science and Engineering (ESE), Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, Payupnai, Wangchan, Rayong21210, Thailand
| | - Makoto Ogawa
- School of Energy Science and Engineering (ESE), Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, Payupnai, Wangchan, Rayong21210, Thailand
| |
Collapse
|
6
|
Hou YJ, Fang S, Zhang XY, Wang J, Ruan Q, Xiang Z, Wang Z, Zhu XJ. Tetrazolyl Porphyrin-Based Hydrogen-Bonded Organic Frameworks: Active Sites-Mediated Host-Guest Synergy for Advanced Antimicrobial Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49875-49885. [PMID: 36288457 DOI: 10.1021/acsami.2c15869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hydrogen-bonded organic frameworks (HOFs) with multiple functions and permanent pores have received widespread attention due to their potential applications in gas adsorption/separation, drug delivery, photocatalysis, proton conduction, and other fields. Herein, we constructed a three-dimensional (3D) HOF with 1D square channels by utilizing a dual-functional tetrazolyl porphyrin ligand bearing an active center of the porphyrin core and open sites of nitrogen atoms through π-π stacking and hydrogen-bonding interaction self-assembly. The structure exhibits both solvent resistance and thermal stability, and especially, maintains these after being transformed into nanoparticles. Meanwhile, the active sites exposed on the inner wall of the pores can interact well with the photoactive cationic dye molecules to form an effective host-guest (H-G) system, which can realize boosted photosensitized singlet oxygen (1O2) production under red light irradiation and synergistic sterilization toward Staphylococcus aureus (S. aureus) with an inhibition ratio as high as 99.9%. This work provides a valuable design concept for HOF-related systems in pursuit of promoted photoactivity.
Collapse
Affiliation(s)
- Ya-Jun Hou
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou510070, China
| | - Shuting Fang
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou510070, China
| | - Xiao-Yu Zhang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an710021, China
| | - Juan Wang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an710021, China
| | - Qijun Ruan
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou510070, China
| | - Zhangmin Xiang
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou510070, China
| | - Zheng Wang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an710021, China
| | - Xun-Jin Zhu
- Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR999077, China
| |
Collapse
|
7
|
Gao Y, Wang Y, Chen C, Zhou J, Cheng Y, Shi L. Preparation of Montmorillonite Nanosheets with a High Aspect Ratio through Heating/Rehydrating and Gas-Pushing Exfoliation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10520-10529. [PMID: 35981283 DOI: 10.1021/acs.langmuir.2c01320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Montmorillonite (MMT) is an abundant silicate mineral with ultrahigh stability. The exfoliation of stacked MMT into high-aspect-ratio nanosheets is of crucial importance for various applications such as toxic gas suppression, barrier property enhancement, flame retardancy, and ion conduction. In this work, we develop a new heating/rehydrating and gas-pushing method that can successfully exfoliate MMT into nanosheets with aspect ratios (600-5000) far higher than the currently reported values (1-120). The MMT first goes through a "starvation pretreatment" under different heating temperatures to improve its hydrophilicity and is then rehydrated in a hydrogen peroxide solution. The hydrogen peroxide in the MMT interlayer space can decompose into water and oxygen bubbles, thus finally leading to the exfoliation via gas-pushing while preserving the large lateral size (mainly in the range of 1-6 μm) of the nanosheets. By changing the pretreatment temperature and pH value of the hydrogen peroxide solution, the exfoliation performance can be tuned. This simple and low-cost exfoliation method is promising to achieve the mass production of MMT nanosheets with a high aspect ratio and may promote its application in various fields such as energy conversion, drug delivery, and photocatalysis.
Collapse
Affiliation(s)
- Yushuan Gao
- Center of Nanomaterials for Renewable Energy (CNRE), State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China
| | - Yindong Wang
- Center of Nanomaterials for Renewable Energy (CNRE), State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China
| | - Chengxiang Chen
- Center of Nanomaterials for Renewable Energy (CNRE), State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China
| | - Jun Zhou
- Center of Nanomaterials for Renewable Energy (CNRE), State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China
| | - Yonghong Cheng
- Center of Nanomaterials for Renewable Energy (CNRE), State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China
| | - Le Shi
- Center of Nanomaterials for Renewable Energy (CNRE), State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China
| |
Collapse
|
8
|
Nag A, Hayakawa T, Minase M, Ogawa M. Organophilic Clay with Useful Whiteness. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2979-2985. [PMID: 35196014 DOI: 10.1021/acs.langmuir.1c03467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An organophilic clay was obtained by the intercalation of dioctadecyldimethylammonium ions into the interlayer space of a purified bentonite. The organophilic clay was characterized by its excellent whiteness, which originated from the used purified bentonite with a low content of colored impurities, suitable for its practical application in paints, cosmetics, polymer additives, etc. The dioctadecyldimethylammonium-bentonite clay was applied as a support to accommodate polyaromatic molecules to afford luminescent hybrids with high luminescence efficiency, showing its usefulness as a component of photofunctional hybrid materials.
Collapse
Affiliation(s)
- Aniruddha Nag
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| | - Takayuki Hayakawa
- Laboratory of Applied Clay Technology, Hojun Co., Ltd., An-naka, Gunma 379-0133, Japan
| | - Makoto Minase
- Laboratory of Applied Clay Technology, Hojun Co., Ltd., An-naka, Gunma 379-0133, Japan
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| |
Collapse
|
9
|
Hirade Y, Ishida T, Shimada T, Takagi S. Adsorption and absorption behavior of cationic porphyrin on titania and clay nanosheets. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Imwiset KJ, Ogawa M. Highly Luminescent Inorganic-Organic Hybrids with Molecularly Dispersed Perylene. Inorg Chem 2021; 60:9563-9570. [PMID: 33950687 DOI: 10.1021/acs.inorgchem.1c00701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A highly photoluminescent material was obtained by the incorporation of perylene into an inorganic-organic hybrid film. Octosilicate, a layered alkali silicate, was modified with a cationic surfactant, dioleyldimethylammonium ion, to accommodate perylene molecularly and uniformly. The perylene-doped dioleyldimethylammonium octosilicate films were fabricated by simply casting the toluene solution of perylene with dispersed dioleyldimethylammonium octosilicate on substrates. Near-unity photoluminescence quantum efficiency was achieved for hybrids containing a high concentration of perylene.
Collapse
Affiliation(s)
- Kamonnart Jaa Imwiset
- School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Payupnai, Wangchan Valley, Rayong 21210, Thailand
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Payupnai, Wangchan Valley, Rayong 21210, Thailand
| |
Collapse
|
11
|
Eguchi M, Nugraha AS, Rowan AE, Shapter J, Yamauchi Y. Adsorchromism: Molecular Nanoarchitectonics at 2D Nanosheets-Old Chemistry for Advanced Chromism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100539. [PMID: 34306979 PMCID: PMC8292911 DOI: 10.1002/advs.202100539] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Indexed: 05/11/2023]
Abstract
Chromism induced by changes in the electronic states of dye molecules due to surface adsorption is termed "adsorchromism" in this article. These changes of molecular electronic states are induced by protonation, aggregation, intramolecular structural changes, and other processes, depending on the surface environment. Intramolecular structural changes, such as co-planarization and decreased molecular motion are the most characteristic and interesting behavior of dye molecules at the surfaces, resulting in spectral shift and/or emission enhancement. In this review, adsorchromism at the surfaces of layered materials are summarized since their flexibility of interlayer distance, surface flatness, and transparency is suitable for a detailed observation. By understanding the relationship between adsorchromism and the electronic states of molecules on the surfaces, it will be possible to induce some desired functions which can be realized simply by adsorption, instead of complicated organic syntheses. Thus, adsorchromism has potential applications such as effective solar energy harvesting systems, or biological/chemical sensors to visualize environmental changes.
Collapse
Affiliation(s)
- Miharu Eguchi
- International Center for Materials Nanoarchitectonics (WPI‐MANA)National Institute for Materials Science1‐1 NamikiTsukubaIbaraki305‐0044Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQLD4072Australia
- JST‐ERATO Yamauchi Materials Space‐Tectonics ProjectNational Institute for Materials Science (NIMS)1‐1 NamikiTsukubaIbaraki305‐0044Japan
| | - Asep Sugih Nugraha
- Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQLD4072Australia
| | - Alan E. Rowan
- Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQLD4072Australia
| | - Joe Shapter
- Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQLD4072Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQLD4072Australia
- JST‐ERATO Yamauchi Materials Space‐Tectonics ProjectNational Institute for Materials Science (NIMS)1‐1 NamikiTsukubaIbaraki305‐0044Japan
| |
Collapse
|
12
|
Jurić S, Jurić M, Król-Kilińska Ż, Vlahoviček-Kahlina K, Vinceković M, Dragović-Uzelac V, Donsì F. Sources, stability, encapsulation and application of natural pigments in foods. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1837862] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Slaven Jurić
- Faculty of Agriculture, Department of Chemistry, University of Zagreb, Zagreb, Croatia
| | - Marina Jurić
- Faculty of Pharmacy and Biochemistry, Department of Pharmacognosy, University of Zagreb, Zagreb, Croatia
| | - Żaneta Król-Kilińska
- Department of Functional Food Products Development, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | | | - Marko Vinceković
- Faculty of Agriculture, Department of Chemistry, University of Zagreb, Zagreb, Croatia
| | - Verica Dragović-Uzelac
- Faculty of Food Technology and Biotechnology, Department of Food Engineering, University of Zagreb, Zagreb, Croatia
| | - Francesco Donsì
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
| |
Collapse
|
13
|
Dias M, Valério A, de Oliveira D, Ulson de Souza AA, de Souza SMGU. Adsorption of natural annatto dye by kaolin: kinetic and equilibrium. ENVIRONMENTAL TECHNOLOGY 2020; 41:2648-2656. [PMID: 30712503 DOI: 10.1080/09593330.2019.1578418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/26/2019] [Indexed: 06/09/2023]
Abstract
The adsorption of annatto dye was analysed using kaolin clay as the adsorbent. In this work, the influence of the adsorbent particle size, agitation (0 and 100 rpm), temperature (25, 40, and 60°C), and salt presence (sodium chloride and sodium sulphate at 1, 2 and 3 wt%) on the adsorption process was studied. The adsorption increased 14.21% for particles smaller than 45 µm and the agitation (100 rpm) led to an increase of 22.41% compared to the system without agitation. The ΔG° (237.711 kJmol-1) indicated that the adsorption process was spontaneous. The negative value of ΔS° (-408.999 Jmol-1K-1) and ΔH° (-115.829 kJmol-1) showed an exothermic physisorption process. The adsorption kinetics follows the pseudo-second-order model. In the adsorption equilibrium, the tested models provided good correlation coefficients ranging from 0.744 to 0.999 with the best fit observed for the Langmuir model. The maximum adsorption capacity of the kaolin clay for the annatto dye was obtained at 25°C with 1% of sodium sulphate (q max = 59.88 mgg-1).
Collapse
Affiliation(s)
- Munique Dias
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Alexsandra Valério
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Débora de Oliveira
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Antônio A Ulson de Souza
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Selene M Guelli U de Souza
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianopolis, Brazil
| |
Collapse
|
14
|
Fujimura T, Aoyama YH, Sasai R. Unique protonation behavior of cationic free-base porphyrins in the interlayer space of transparent solid films comprising layered α-zirconium phosphate. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
15
|
Arakawa K, Nakazato R, Shimada T, Ishida T, Eguchi M, Takagi S. Effect of clay surface on aldehyde-diol equilibrium. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.150986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
16
|
Yamaguchi T, Nut Leelaphattharaphan N, Shin H, Ogawa M. Acceleration of photochromism and negative photochromism by the interactions with mesoporous silicas. Photochem Photobiol Sci 2019; 18:1742-1749. [PMID: 31093626 DOI: 10.1039/c9pp00081j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The adsorption of merocyanine dye onto mesoporous silicas with varied pore sizes (5.5, 9.4 and 2.2 nm) from the toluene solution of 1,3,3-trimethylindolino-6'-nitrobenzopyrylospiran under UV irradiation was investigated quantitatively. The photoinduced adsorption of merocyanine onto SBA-15 with the pore diameter of 9.4 nm followed the pseudo-second order kinetics and the rate constant was larger than that observed for MCM-41 (pore size of 2.2 nm) owing to the efficient diffusion of merocyanine. The maximum adsorbed amounts of the merocyanine dye was 152 mg g-1 of SBA-15, which corresponded to the sufficiently high concentration of merocyanine in the pores (0.376 mol L-1 of pore). The resulting red-colored hybrids (SBA-15 containing merocyanine) showed decoloration in the solid-state by visible light irradiation (negative photochromism). The conversion was high (about 80% at the photostationary state) under visible light irradiation at room temperature using a solar simulator (100 W). The red color was re-generated by storing the photochemically formed colorless samples in the dark at room temperature. The half-lives of the thermal coloration process were 2.6, 1.9 and 1.3 h for the MCM-41, SBA-15s with the BJH pore sizes of 5.5 and 9.4 nm, respectively. Since the coloration was affected by the diffusion of the molecules in the pores, larger pores provided the efficient molecular diffusion, leading to faster reactions.
Collapse
Affiliation(s)
- Tetsuo Yamaguchi
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand.
| | - Nattapat Nut Leelaphattharaphan
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand.
| | - Hojoon Shin
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand.
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand.
| |
Collapse
|
17
|
Teepakakorn A(P, Yamaguchi T, Ogawa M. The Improved Stability of Molecular Guests by the Confinement into Nanospaces. CHEM LETT 2019. [DOI: 10.1246/cl.181026] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Aranee (Pleng) Teepakakorn
- School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| | - Tetsuo Yamaguchi
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| |
Collapse
|
18
|
Yamaguchi T, Ogawa M. Hydrophilic Internal Pore and Hydrophobic Particle Surface of Organically Modified Mesoporous Silica Particle to Host Photochromic Molecules. CHEM LETT 2019. [DOI: 10.1246/cl.180908] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Tetsuo Yamaguchi
- Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| | - Makoto Ogawa
- Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| |
Collapse
|