1
|
Oh Y, Kim SH. Concentric Capillary Microfluidic Devices Designed for Robust Production of Multiple-Emulsion Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19166-19175. [PMID: 39183643 DOI: 10.1021/acs.langmuir.4c02316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Multiple emulsions are used as templates for producing functional microcapsules due to their unique core-shell geometry. Employing glass capillary devices with coaxial channels has proven effective in creating uniform multiple-emulsion droplets. However, the use of partially miscible fluids, crucial for microcapsule production, often results in clogging and disrupts the stability of these devices. Here, we introduce innovative capillary microfluidic devices with concentric capillary channels, specifically designed to optimize the production of multiple-emulsion droplets while mitigating issues of precipitation and clogging. The key aspect of these devices is their configuration of two or three concentrically aligned capillaries, which form separate, coaxial microchannels for fluid injection. This unique alignment, achieved through rotational adjustments that leverage the natural off-center positioning of tapered capillaries, facilitates the simultaneous coaxial injection of various fluids into a droplet-forming junction, significantly reducing fluid contact before emulsification. The devices, featuring double and triple concentric capillary channels, consistently produce highly uniform double-, triple-, and quadruple-emulsion droplets with precisely controlled diameters and layer thicknesses. The minimal contact between fluids prior to emulsification in these devices broadens the usable range of fluid combinations, heralding new possibilities in microcapsule development for pharmaceutical and cosmetic applications.
Collapse
Affiliation(s)
- Yoonjin Oh
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
2
|
Tran DT, Yadav AS, Nguyen NK, Singha P, Ooi CH, Nguyen NT. Biodegradable Polymers for Micro Elastofluidics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303435. [PMID: 37292037 DOI: 10.1002/smll.202303435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Indexed: 06/10/2023]
Abstract
Micro elastofluidics is an emerging research field that encompasses characteristics of conventional microfluidics and fluid-structure interactions. Micro elastofluidics is expected to enable practical applications, for instance, where direct contact between biological samples and fluid handling systems is required. Besides design optimization, choosing a proper material is critical to the practical use of micro elastofluidics upon interaction with biological interface and after its functional lifetime. Biodegradable polymers are one of the most studied materials for this purpose. Micro elastofluidic devices made of biodegradable polymers possess exceptional mechanical elasticity, excellent bio compatibility, and structural degradability into non-toxic products. This article provides an insightful and systematic review of the utilization of biodegradable polymers in digital and continuous-flow micro elastofluidics.
Collapse
Affiliation(s)
- Du Tuan Tran
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Ajeet Singh Yadav
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Nhat-Khuong Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Pradip Singha
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Chin Hong Ooi
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| |
Collapse
|
3
|
Li Z, Guo C, Jian Z. Compound Droplet Generation by a Hybrid Microfluidic Device. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38976874 DOI: 10.1021/acs.langmuir.4c00990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Microfluidic technology based on a compound droplet plays an increasingly significant role in different disciplines, such as genetic detection, drug transportation, and cell culture. Low-cost, stable, and rapid methods to produce compound droplets are more and more in demand. In this paper, a hybrid 3D-printed microfluidic device was designed to realize efficient fabrication of multicore compound droplets, where a first oil phase (O1) is cut by a water phase (W) to form pure O1 droplets, and then the W phase containing O1 droplets is cut by a second oil phase (O2) to generate multicore compound droplets. A series of experiments were conducted to determine the influence of the flow rate and viscosity on the formation dynamics of compound droplets. It is found that the number of inner cores is mainly affected by the W and O2 phases, and a W phase with higher viscosity and a higher flow rate is more likely to produce compound droplets with more inner cores. This work provides new insights into the formation dynamics of compound droplets and can contribute to the optimization of emulsion production.
Collapse
Affiliation(s)
- Zhi Li
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, International Center for Applied Mechanics, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Changxin Guo
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, International Center for Applied Mechanics, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhen Jian
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, International Center for Applied Mechanics, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- Research Institute of Xi'an Jiaotong University Zhejiang, Hangzhou 311215, China
| |
Collapse
|
4
|
Baghbanbashi M, Shiran HS, Kakkar A, Pazuki G, Ristroph K. Recent advances in drug delivery applications of aqueous two-phase systems. PNAS NEXUS 2024; 3:pgae255. [PMID: 39006476 PMCID: PMC11245733 DOI: 10.1093/pnasnexus/pgae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 07/16/2024]
Abstract
Aqueous two-phase systems (ATPSs) are liquid-liquid equilibria between two aqueous phases that usually contain over 70% water content each, which results in a nontoxic organic solvent-free environment for biological compounds and biomolecules. ATPSs have attracted significant interest in applications for formulating carriers (microparticles, nanoparticles, hydrogels, and polymersomes) which can be prepared using the spontaneous phase separation of ATPSs as a driving force, and loaded with a wide range of bioactive materials, including small molecule drugs, proteins, and cells, for delivery applications. This review provides a detailed analysis of various ATPSs, including strategies employed for particle formation, polymerization of droplets in ATPSs, phase-guided block copolymer assemblies, and stimulus-responsive carriers. Processes for loading various bioactive payloads are discussed, and applications of these systems for drug delivery are summarized and discussed.
Collapse
Affiliation(s)
- Mojhdeh Baghbanbashi
- Department of Agricultural and Biological Engineering, Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, USA
| | - Hadi Shaker Shiran
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591634311, Iran
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St West, Montreal, QC H3A 0B8, Canada
| | - Gholamreza Pazuki
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591634311, Iran
| | - Kurt Ristroph
- Department of Agricultural and Biological Engineering, Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, USA
| |
Collapse
|
5
|
Ko Y, Oh Y, Park CH, Kim SH. Designing Tough Hydrogel Shells for Glucose Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310283. [PMID: 38227378 DOI: 10.1002/smll.202310283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/26/2023] [Indexed: 01/17/2024]
Abstract
Conventional hydrogel microcapsules often suffer from inadequate mechanical stability, hindering their use. Here, water-cored double-network (DN) hydrogel shells are designed, formed by polyacrylamide and calcium alginate networks using triple-emulsion templates. These DN hydrogel shells offer robust mechanical stability, optical transparency, and a precisely-defined cut-off threshold. The feasibility of this platform is demonstrated through the development of a fluorometric glucose sensor. Glucose oxidase is enclosed within the water core, while a pH-responsive fluorescent dye is incorporated into the DN shells. Glucose diffuses into the core through the DN shells, where the glucose oxidase converts glucose into gluconic acid, leading to pH reduction and a subsequent decrease in fluorescence intensity of DN shells. Additionally, the pH-sensitive colorant dissolved in the medium enables visual pH assessment. Thus, glucose levels can be determined using both fluorometric and colorimetric methods. Notably, the DN shells exhibit exceptional stability, enduring intense mechanical stress and cycles of drying and rehydration without leakage. Moreover, the DN shells act as effective barriers, safeguarding glucose oxidase against proteolysis by large disruptive proteins, like pancreatin. This versatile DN shell platform extends beyond glucose oxidase encapsulation, serving as a foundation for various capsule sensors utilizing enzymes and heterogeneous catalysts.
Collapse
Affiliation(s)
- Yeounju Ko
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yoonjin Oh
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Chan Ho Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, 13120, Republic of Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
6
|
Ghosh R, Arnheim A, van Zee M, Shang L, Soemardy C, Tang RC, Mellody M, Baghdasarian S, Sanchez Ochoa E, Ye S, Chen S, Williamson C, Karunaratne A, Di Carlo D. Lab on a Particle Technologies. Anal Chem 2024; 96:7817-7839. [PMID: 38650433 PMCID: PMC11112544 DOI: 10.1021/acs.analchem.4c01510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Affiliation(s)
- Rajesh Ghosh
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Alyssa Arnheim
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Mark van Zee
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Lily Shang
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Citradewi Soemardy
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Rui-Chian Tang
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Michael Mellody
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Sevana Baghdasarian
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Edwin Sanchez Ochoa
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Shun Ye
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Siyu Chen
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Cayden Williamson
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Amrith Karunaratne
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Dino Di Carlo
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Jonsson
Comprehensive Cancer Center, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- California
NanoSystems Institute, Los Angeles, California 90095, United States
| |
Collapse
|
7
|
Jiang Y, Zhu C, Ma X, Fan D. Janus hydrogels: merging boundaries in tissue engineering for enhanced biomaterials and regenerative therapies. Biomater Sci 2024; 12:2504-2520. [PMID: 38529571 DOI: 10.1039/d3bm01875j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
In recent years, the design and synthesis of Janus hydrogels have witnessed a thriving development, overcoming the limitations of single-performance materials and expanding their potential applications in tissue engineering and regenerative medicine. Janus hydrogels, with their exceptional mechanical properties and excellent biocompatibility, have emerged as promising candidates for various biomedical applications, including tissue engineering and regenerative therapies. In this review, we present the latest progress in the synthesis of Janus hydrogels using commonly employed preparation methods. We elucidate the surface and interface interactions of these hydrogels and discuss the enhanced properties bestowed by the unique "Janus" structure in biomaterials. Additionally, we explore the applications of Janus hydrogels in facilitating regenerative therapies, such as drug delivery, wound healing, tissue engineering, and biosensing. Furthermore, we analyze the challenges and future trends associated with the utilization of Janus hydrogels in biomedical applications.
Collapse
Affiliation(s)
- Yingxue Jiang
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| | - Xiaoxuan Ma
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| |
Collapse
|
8
|
Masaoka M, Ishida H, Watanabe T, Ono T. Engineering Interconnected Open-Porous Particles via Microfluidics Using Bijel Droplets as Structural Templates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8074-8082. [PMID: 38578046 DOI: 10.1021/acs.langmuir.3c04017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Designing porous structures is key in materials science, particularly for separation, catalysis, and cell culture systems. Bicontinuous interfacially jammed emulsion gels represent a unique class of soft matter formed by kinetically arresting the separation of the spinodal decomposition phase, which is stabilized by colloidal particles with neutral wetting. This study introduces a microfluidic technique to create highly interconnected open-porous particles using bijel droplets stabilized with hexadecyltrimethylammonium bromide (CTAB)-modified silica particles. Monodisperse droplets comprising a hydrophobic monomer, water, ethanol, silica particles, and CTAB were initially formed in the microfluidic device. The diffusion of ethanol from these droplets into the continuous cyclohexane phase triggered spinodal decomposition within the droplets. The phase-separated structure within the droplets was stabilized by the CTAB-modified silica particles, and subsequent photopolymerization yielded microparticles with highly interconnected, open pores. Moreover, the influence of the ratio of the CTAB and silica particles, fluid composition, and microchannel direction on the final structure of the microparticles was explored. Our findings indicated that the phase-separated structure of the particles transitioned from oil-in-water to water-in-oil as the CTAB/silica ratio was increased. At intermediate CTAB/silica ratios, microparticles with bicontinuous structures were formed. Regardless of the fluid composition, the pore size of the particles increased with time after phase separation. However, this coarsening was arrested 15 s after droplet formation in the CTAB-modified silica particles, accompanied by a change in the particle shape from spherical to ellipsoidal. In situ observations of the bijel droplet formation revealed that the particle shape deformation is caused by the rolling of elastic bijel droplets at the bottom of the microchannel. As such, the channel setup was altered from horizontal to vertical to prevent the deformation of bijel droplets, resulting in spherical particles with open pores.
Collapse
Affiliation(s)
- Mina Masaoka
- Department of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Hiroaki Ishida
- Department of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Takaichi Watanabe
- Department of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Tsutomu Ono
- Department of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
9
|
Wu J, Liu S, Ma X, Zhang C, Feng C, Wang L, Han J, Wang Y. Temperature-Sensitive Janus Particles PEG/SiO 2/PNIPAM-PEA: Applications in Foam Stabilization and Defoaming. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1774-1784. [PMID: 38194298 DOI: 10.1021/acs.langmuir.3c03026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The current study presents a scalable approach for the preparation of temperature-responsive PEG/SiO2/PNIPAM-PEA Janus particles and, for the first time, investigates their potential applications in stabilizing foam and defoaming by adjusting the temperature. The method utilizes a (W1 + O)/W2 emulsion system, which incorporates appropriate surfactants to stabilize the emulsion and prevent rapid dissolution of the hydrophilic triblock polymer PEG-b-PTEPM-b-PNIPAM in water. The PEG/SiO2/PNIPAM-PEA Janus particles with temperature-responsive characteristics were synthesized in a single step that combined the sol-gel reaction and photoinduced free radical polymerization. The contact angle of the hydrophilic PEG/SiO2/PNIPAM surface was measured to be 54.7 ± 0.1°, while the contact angle of the hydrophobic PEA surface was found to be 122.4 ± 0.1°. By incorporating PEG/SiO2/PNIPAM-PEA Janus particles at a temperature of 25 °C, the foam's half-life is significantly prolonged from 42 s to nearly 30 min. However, with an increase in temperature to 50 °C, the foam's half-life rapidly diminished to only 44 s. This innovative application effectively enhances foam stabilization at low temperatures and facilitates the rapid dissipation of foam at high temperatures.
Collapse
Affiliation(s)
- Jiacong Wu
- College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shiyuan Liu
- College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinnan Ma
- College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Cailiang Zhang
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chengxiang Feng
- College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lei Wang
- College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Juan Han
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yun Wang
- College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
10
|
Zhang Y, Luo Y, Zhao J, Zheng W, Zhan J, Zheng H, Luo F. Emerging delivery systems based on aqueous two-phase systems: A review. Acta Pharm Sin B 2024; 14:110-132. [PMID: 38239237 PMCID: PMC10792979 DOI: 10.1016/j.apsb.2023.08.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 01/22/2024] Open
Abstract
The aqueous two-phase system (ATPS) is an all-aqueous system fabricated from two immiscible aqueous phases. It is spontaneously assembled through physical liquid-liquid phase separation (LLPS) and can create suitable templates like the multicompartment of the intracellular environment. Delicate structures containing multiple compartments make it possible to endow materials with advanced functions. Due to the properties of ATPSs, ATPS-based drug delivery systems exhibit excellent biocompatibility, extraordinary loading efficiency, and intelligently controlled content release, which are particularly advantageous for delivering drugs in vivo . Therefore, we will systematically review and evaluate ATPSs as an ideal drug delivery system. Based on the basic mechanisms and influencing factors in forming ATPSs, the transformation of ATPSs into valuable biomaterials is described. Afterward, we concentrate on the most recent cutting-edge research on ATPS-based delivery systems. Finally, the potential for further collaborations between ATPS-based drug-carrying biomaterials and disease diagnosis and treatment is also explored.
Collapse
Affiliation(s)
- Yaowen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yankun Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jingqi Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenzhuo Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jun Zhan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Huaping Zheng
- Department of Dermatology, Rare Diseases Center, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Feng Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Prosthodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Wang T, Chang TMS. Superparamagnetic Artificial Cells PLGA-Fe 3O 4 Micro/Nanocapsules for Cancer Targeted Delivery. Cancers (Basel) 2023; 15:5807. [PMID: 38136352 PMCID: PMC10741498 DOI: 10.3390/cancers15245807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/10/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Artificial cells have been extensively used in many fields, such as nanomedicine, biotherapy, blood substitutes, drug delivery, enzyme/gene therapy, cancer therapy, and the COVID-19 vaccine. The unique properties of superparamagnetic Fe3O4 nanoparticles have contributed to increased interest in using superparamagnetic artificial cells (PLGA-Fe3O4 micro/nanocapsules) for targeted therapy. In this review, the preparation methods of Fe3O4 NPs and superparamagnetic artificial cell PLGA-drug-Fe3O4 micro/nanocapsules are discussed. This review also focuses on the recent progress of superparamagnetic PLGA-drug-Fe3O4 micro/nanocapsules as targeted therapeutics. We shall concentrate on the use of superparamagnetic artificial cells in the form of PLGA-drug-Fe3O4 nanocapsules for magnetic hyperthermia/photothermal therapy and cancer therapies, including lung breast cancer and glioblastoma.
Collapse
Affiliation(s)
| | - Thomas Ming Swi Chang
- Artificial Cells and Organs Research Centre, Departments of Medicine and Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
12
|
Hester EW, Carney S, Shah V, Arnheim A, Patel B, Di Carlo D, Bertozzi AL. Fluid dynamics alters liquid-liquid phase separation in confined aqueous two-phase systems. Proc Natl Acad Sci U S A 2023; 120:e2306467120. [PMID: 38039270 PMCID: PMC10710025 DOI: 10.1073/pnas.2306467120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/28/2023] [Indexed: 12/03/2023] Open
Abstract
Liquid-liquid phase separation is key to understanding aqueous two-phase systems (ATPS) arising throughout cell biology, medical science, and the pharmaceutical industry. Controlling the detailed morphology of phase-separating compound droplets leads to new technologies for efficient single-cell analysis, targeted drug delivery, and effective cell scaffolds for wound healing. We present a computational model of liquid-liquid phase separation relevant to recent laboratory experiments with gelatin-polyethylene glycol mixtures. We include buoyancy and surface-tension-driven finite viscosity fluid dynamics with thermally induced phase separation. We show that the fluid dynamics greatly alters the evolution and equilibria of the phase separation problem. Notably, buoyancy plays a critical role in driving the ATPS to energy-minimizing crescent-shaped morphologies, and shear flows can generate a tenfold speedup in particle formation. Neglecting fluid dynamics produces incorrect minimum-energy droplet shapes. The model allows for optimization of current manufacturing procedures for structured microparticles and improves understanding of ATPS evolution in confined and flowing settings important in biology and biotechnology.
Collapse
Affiliation(s)
- Eric W. Hester
- Department of Mathematics, University of California, Los Angeles90095, CA
- California NanoSystems Institute, University of California, Los Angeles90095, CA
| | - Sean Carney
- Department of Mathematics, University of California, Los Angeles90095, CA
- California NanoSystems Institute, University of California, Los Angeles90095, CA
| | - Vishwesh Shah
- Department of Bioengineering, University of California, Los Angeles90095, CA
| | - Alyssa Arnheim
- Department of Bioengineering, University of California, Los Angeles90095, CA
| | - Bena Patel
- Department of Bioengineering, University of California, Los Angeles90095, CA
| | - Dino Di Carlo
- California NanoSystems Institute, University of California, Los Angeles90095, CA
- Department of Bioengineering, University of California, Los Angeles90095, CA
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles90095, CA
| | - Andrea L. Bertozzi
- Department of Mathematics, University of California, Los Angeles90095, CA
- California NanoSystems Institute, University of California, Los Angeles90095, CA
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles90095, CA
| |
Collapse
|
13
|
van Loo B, Ten Den SA, Araújo-Gomes N, de Jong V, Snabel RR, Schot M, Rivera-Arbeláez JM, Veenstra GJC, Passier R, Kamperman T, Leijten J. Mass production of lumenogenic human embryoid bodies and functional cardiospheres using in-air-generated microcapsules. Nat Commun 2023; 14:6685. [PMID: 37865642 PMCID: PMC10590445 DOI: 10.1038/s41467-023-42297-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/05/2023] [Indexed: 10/23/2023] Open
Abstract
Organoids are engineered 3D miniature tissues that are defined by their organ-like structures, which drive a fundamental understanding of human development. However, current organoid generation methods are associated with low production throughputs and poor control over size and function including due to organoid merging, which limits their clinical and industrial translation. Here, we present a microfluidic platform for the mass production of lumenogenic embryoid bodies and functional cardiospheres. Specifically, we apply triple-jet in-air microfluidics for the ultra-high-throughput generation of hollow, thin-shelled, hydrogel microcapsules that can act as spheroid-forming bioreactors in a cytocompatible, oil-free, surfactant-free, and size-controlled manner. Uniquely, we show that microcapsules generated by in-air microfluidics provide a lumenogenic microenvironment with near 100% efficient cavitation of spheroids. We demonstrate that upon chemical stimulation, human pluripotent stem cell-derived spheroids undergo cardiomyogenic differentiation, effectively resulting in the mass production of homogeneous and functional cardiospheres that are responsive to external electrical stimulation. These findings drive clinical and industrial adaption of stem cell technology in tissue engineering and drug testing.
Collapse
Affiliation(s)
- Bas van Loo
- University of Twente, TechMed Centre, Department of Developmental BioEngineering, Enschede, The Netherlands
| | - Simone A Ten Den
- University of Twente, TechMed Centre, Department of Applied Stem Cell Technology, Enschede, The Netherlands
| | - Nuno Araújo-Gomes
- University of Twente, TechMed Centre, Department of Developmental BioEngineering, Enschede, The Netherlands
| | - Vincent de Jong
- University of Twente, TechMed Centre, Department of Developmental BioEngineering, Enschede, The Netherlands
| | - Rebecca R Snabel
- Radboud University, Radboud Institute for Molecular Life Sciences, Faculty of Science, Department of Molecular Developmental Biology, Nijmegen, The Netherlands
| | - Maik Schot
- University of Twente, TechMed Centre, Department of Developmental BioEngineering, Enschede, The Netherlands
| | - José M Rivera-Arbeláez
- University of Twente, TechMed Centre, Department of Applied Stem Cell Technology, Enschede, The Netherlands
- University of Twente, TechMed Centre, Max Planck Center for Complex Fluid Dynamics, BIOS Lab-on-a-Chip Group, Enschede, The Netherlands
| | - Gert Jan C Veenstra
- Radboud University, Radboud Institute for Molecular Life Sciences, Faculty of Science, Department of Molecular Developmental Biology, Nijmegen, The Netherlands
| | - Robert Passier
- University of Twente, TechMed Centre, Department of Applied Stem Cell Technology, Enschede, The Netherlands
- Leiden University Medical Centre, Department of Anatomy and Embryology, Leiden, Netherlands
| | - Tom Kamperman
- University of Twente, TechMed Centre, Department of Developmental BioEngineering, Enschede, The Netherlands
- IamFluidics B.V., De Veldmaat 17, 7522NM, Enschede, The Netherlands
| | - Jeroen Leijten
- University of Twente, TechMed Centre, Department of Developmental BioEngineering, Enschede, The Netherlands.
| |
Collapse
|
14
|
Joshi PU, Kroger SM, Zustiak SP, Heldt CL. Multimodal peptide ligand extracts parvovirus from interface in affinity aqueous two-phase system. Biotechnol Prog 2023; 39:e3338. [PMID: 36891815 DOI: 10.1002/btpr.3338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/10/2023]
Abstract
Aqueous two-phase systems (ATPS) have found various applications in bioseparations and microencapsulation. The primary goal of this technique is to partition target biomolecules in a preferred phase, rich in one of the phase-forming components. However, there is a lack of understanding of biomolecule behavior at the interface between the two phases. Biomolecule partitioning behavior is studied using tie-lines (TL), where each TL is a group of systems at thermodynamic equilibrium. Across a TL, a system can either have a bulk PEG-rich phase with citrate-rich droplets, or the opposite can occur. We found that porcine parvovirus (PPV) was recovered at a higher amount when PEG was the bulk phase and citrate was in droplets and that the salt and PEG concentrations are high. To improve the recovery, A PEG 10 kDa-peptide conjugate was formed using the multimodal WRW ligand. When WRW was present, less PPV was caught at the interface of the two-phase system, and more was recovered in the PEG-rich phase. While WRW did not significantly increase the PPV recovery in the high TL system, which was found earlier to be optimal for PPV recovery, the peptide did greatly enhance recovery at a lower TL. This lower TL has a lower viscosity and overall system PEG and citrate concentration. The results provide both a method to increase virus recovery in a lower viscosity system, as well as provide interesting thoughts into the interfacial phenomenon and how to recover virus in a phase and not at the interface.
Collapse
Affiliation(s)
- Pratik U Joshi
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan, USA
- Health Research Institute, Michigan Technological University, Houghton, Michigan, USA
| | - Stephanie M Kroger
- Department of Biomedical Engineering, Saint Louis University, Missouri, USA
| | - Silviya P Zustiak
- Department of Biomedical Engineering, Saint Louis University, Missouri, USA
| | - Caryn L Heldt
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan, USA
- Health Research Institute, Michigan Technological University, Houghton, Michigan, USA
| |
Collapse
|
15
|
Kieda J, Appak-Baskoy S, Jeyhani M, Navi M, Chan KWY, Tsai SSH. Microfluidically-generated Encapsulated Spheroids (μ-GELS): An All-Aqueous Droplet Microfluidics Platform for Multicellular Spheroids Generation. ACS Biomater Sci Eng 2023; 9:1043-1052. [PMID: 36626575 DOI: 10.1021/acsbiomaterials.2c00963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Spheroids are three-dimensional clusters of cells that serve as in vitro tumor models to recapitulate in vivo morphology. A limitation of many existing on-chip platforms for spheroid formation is the use of cytotoxic organic solvents as the continuous phase in droplet generation processes. All-aqueous methods do not contain cytotoxic organic solvents but have so far been unable to achieve complete hydrogel gelation on chip. Here, we describe an enhanced droplet microfluidic platform that achieves on-chip gelation of all-aqueous hydrogel multicellular spheroids (MCSs). Specifically, we generate dextran-alginate droplets containing MCF-7 breast cancer cells, surrounded by polyethylene glycol, at a flow-focusing junction. Droplets then travel to a second flow-focusing junction where they interact with calcium chloride and gel on chip to form hydrogel MCSs. On-chip gelation of the MCSs is possible here because of an embedded capillary at the second junction that delays the droplet gelation, which prevents channel clogging problems that would otherwise exist. In drug-free experiments, we demonstrate that MCSs remain viable for 6 days. We also confirm the applicability of this system for cancer drug testing by observing that dose-dependent cell death is achievable using doxorubicin.
Collapse
Affiliation(s)
- Jennifer Kieda
- Graduate Program in Biomedical Engineering, Toronto Metropolitan University, TorontoM5B 2K3, Canada.,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, TorontoM5B 2K3, Canada.,Institute for Biomedical Engineering, Science, and Technology (iBEST) - A partnership between Toronto Metropolitan University and St. Michael's Hospital, TorontoM5B 1W8, Canada
| | - Sila Appak-Baskoy
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, TorontoM5B 2K3, Canada.,Institute for Biomedical Engineering, Science, and Technology (iBEST) - A partnership between Toronto Metropolitan University and St. Michael's Hospital, TorontoM5B 1W8, Canada.,Department of Chemistry and Biology, Toronto Metropolitan University, TorontoM5B 2K3, Canada
| | - Morteza Jeyhani
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, TorontoM5B 2K3, Canada.,Institute for Biomedical Engineering, Science, and Technology (iBEST) - A partnership between Toronto Metropolitan University and St. Michael's Hospital, TorontoM5B 1W8, Canada.,Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, TorontoM5B 2K3, Canada
| | - Maryam Navi
- Graduate Program in Biomedical Engineering, Toronto Metropolitan University, TorontoM5B 2K3, Canada.,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, TorontoM5B 2K3, Canada.,Institute for Biomedical Engineering, Science, and Technology (iBEST) - A partnership between Toronto Metropolitan University and St. Michael's Hospital, TorontoM5B 1W8, Canada
| | - Katherine W Y Chan
- Graduate Program in Biomedical Engineering, Toronto Metropolitan University, TorontoM5B 2K3, Canada.,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, TorontoM5B 2K3, Canada.,Institute for Biomedical Engineering, Science, and Technology (iBEST) - A partnership between Toronto Metropolitan University and St. Michael's Hospital, TorontoM5B 1W8, Canada
| | - Scott S H Tsai
- Graduate Program in Biomedical Engineering, Toronto Metropolitan University, TorontoM5B 2K3, Canada.,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, TorontoM5B 2K3, Canada.,Institute for Biomedical Engineering, Science, and Technology (iBEST) - A partnership between Toronto Metropolitan University and St. Michael's Hospital, TorontoM5B 1W8, Canada.,Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, TorontoM5B 2K3, Canada
| |
Collapse
|
16
|
Rojek K, Ćwiklińska M, Kuczak J, Guzowski J. Microfluidic Formulation of Topological Hydrogels for Microtissue Engineering. Chem Rev 2022; 122:16839-16909. [PMID: 36108106 PMCID: PMC9706502 DOI: 10.1021/acs.chemrev.1c00798] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 02/07/2023]
Abstract
Microfluidics has recently emerged as a powerful tool in generation of submillimeter-sized cell aggregates capable of performing tissue-specific functions, so-called microtissues, for applications in drug testing, regenerative medicine, and cell therapies. In this work, we review the most recent advances in the field, with particular focus on the formulation of cell-encapsulating microgels of small "dimensionalities": "0D" (particles), "1D" (fibers), "2D" (sheets), etc., and with nontrivial internal topologies, typically consisting of multiple compartments loaded with different types of cells and/or biopolymers. Such structures, which we refer to as topological hydrogels or topological microgels (examples including core-shell or Janus microbeads and microfibers, hollow or porous microstructures, or granular hydrogels) can be precisely tailored with high reproducibility and throughput by using microfluidics and used to provide controlled "initial conditions" for cell proliferation and maturation into functional tissue-like microstructures. Microfluidic methods of formulation of topological biomaterials have enabled significant progress in engineering of miniature tissues and organs, such as pancreas, liver, muscle, bone, heart, neural tissue, or vasculature, as well as in fabrication of tailored microenvironments for stem-cell expansion and differentiation, or in cancer modeling, including generation of vascularized tumors for personalized drug testing. We review the available microfluidic fabrication methods by exploiting various cross-linking mechanisms and various routes toward compartmentalization and critically discuss the available tissue-specific applications. Finally, we list the remaining challenges such as simplification of the microfluidic workflow for its widespread use in biomedical research, bench-to-bedside transition including production upscaling, further in vivo validation, generation of more precise organ-like models, as well as incorporation of induced pluripotent stem cells as a step toward clinical applications.
Collapse
Affiliation(s)
- Katarzyna
O. Rojek
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Monika Ćwiklińska
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Julia Kuczak
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Jan Guzowski
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
17
|
Daradmare S, Lee CS. Recent progress in the synthesis of all-aqueous two-phase droplets using microfluidic approaches. Colloids Surf B Biointerfaces 2022; 219:112795. [PMID: 36049253 DOI: 10.1016/j.colsurfb.2022.112795] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/10/2022] [Accepted: 08/21/2022] [Indexed: 12/21/2022]
Abstract
An aqueous two-phase system (ATPS) is a system with liquid-liquid phase separation and shows great potential for the extraction, separation, purification, and enrichment of proteins, membranes, viruses, enzymes, nucleic acids, and other biomolecules because of its simplicity, biocompatibility, and wide applicability [1-4]. The clear aqueous-aqueous interface of ATPSs is highly advantageous for their implementation, therefore making ATPSs a green alternative approach to replace conventional emulsion systems, such as water-in-oil droplets. All aqueous emulsions (water-in-water, w-in-w) hold great promise in the biomedical field as glucose sensors [5] and promising carriers for the encapsulation and release of various biomolecules and nonbiomolecules [6-10]. However, the ultralow interfacial tension between the two phases is a hurdle in generating w-in-w emulsion droplets. In the past, bulk emulsification and electrospray techniques were employed for the generation of w-in-w emulsion droplets and the fabrication of microparticles and microcapsules in the later stage. Bulk emulsification is a simple and low-cost technique; however, it generates polydisperse w-in-w emulsion droplets. Another technique, electrospray, involves easy experimental setups that can generate monodisperse but nonspherical w-in-w emulsion droplets. In comparison, microfluidic platforms provide monodisperse w-in-w emulsion droplets with spherical shapes, deal with the small volumes of solutions and short reaction times and achieve portability and versatility in their design through rapid prototyping. Owing to several advantages, microfluidic approaches have recently been introduced. To date, several different strategies have been explored to generate w-in-w emulsions and multiple w-in-w emulsions and to fabricate microparticles and microcapsules using conventional microfluidic devices. Although a few review articles on ATPSs emulsions have been published in the past, to date, few reviews have exclusively focused on the evolution of microfluidic-based ATPS droplets. The present review begins with a brief discussion of the history of ATPSs and their fundamentals, which is followed by an account chronicling the integration of microfluidic devices with ATPSs to generate w-in-w emulsion droplets. Furthermore, the stabilization strategies of w-in-w emulsion droplets and microfluidic fabrication of microparticles and microcapsules for modern applications, such as biomolecule encapsulation and spheroid construction, are discussed in detail in this review. We believe that the present review will provide useful information to not only new entrants in the microfluidic community wanting to appreciate the findings of the field but also existing researchers wanting to keep themselves updated on progress in the field.
Collapse
Affiliation(s)
- Sneha Daradmare
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Chang-Soo Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
| |
Collapse
|
18
|
Jia F, Gao Y, Wang H. Recent Advances in Drug Delivery System Fabricated by Microfluidics for Disease Therapy. Bioengineering (Basel) 2022; 9:625. [PMID: 36354536 PMCID: PMC9687342 DOI: 10.3390/bioengineering9110625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/16/2022] [Accepted: 10/26/2022] [Indexed: 09/08/2024] Open
Abstract
Traditional drug therapy faces challenges such as drug distribution throughout the body, rapid degradation and excretion, and extensive adverse reactions. In contrast, micro/nanoparticles can controllably deliver drugs to target sites to improve drug efficacy. Unlike traditional large-scale synthetic systems, microfluidics allows manipulation of fluids at the microscale and shows great potential in drug delivery and precision medicine. Well-designed microfluidic devices have been used to fabricate multifunctional drug carriers using stimuli-responsive materials. In this review, we first introduce the selection of materials and processing techniques for microfluidic devices. Then, various well-designed microfluidic chips are shown for the fabrication of multifunctional micro/nanoparticles as drug delivery vehicles. Finally, we describe the interaction of drugs with lymphatic vessels that are neglected in organs-on-chips. Overall, the accelerated development of microfluidics holds great potential for the clinical translation of micro/nanoparticle drug delivery systems for disease treatment.
Collapse
Affiliation(s)
- Fuhao Jia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanbing Gao
- Troop 96901 of the Chinese People’s Liberation Army, Beijing 100094, China
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Kim JW, Han SH, Choi YH, Hamonangan WM, Oh Y, Kim SH. Recent advances in the microfluidic production of functional microcapsules by multiple-emulsion templating. LAB ON A CHIP 2022; 22:2259-2291. [PMID: 35608122 DOI: 10.1039/d2lc00196a] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multiple-emulsion drops serve as versatile templates to design functional microcapsules due to their core-shell geometry and multiple compartments. Microfluidics has been used for the elaborate production of multiple-emulsion drops with a controlled composition, order, and dimensions, elevating the value of multiple-emulsion templates. Moreover, recent advances in the microfluidic control of the emulsification and parallelization of drop-making junctions significantly enhance the production throughput for practical use. Metastable multiple-emulsion drops are converted into stable microcapsules through the solidification of selected phases, among which solid shells are designed to function in a programmed manner. Functional microcapsules are used for the storage and release of active materials as drug carriers. Beyond their conventional uses, microcapsules can serve as microcompartments responsible for transmembrane communication, which is promising for their application in advanced microreactors, artificial cells, and microsensors. Given that post-processing provides additional control over the composition and construction of multiple-emulsion drops, they are excellent confining geometries to study the self-assembly of colloids and liquid crystals and produce miniaturized photonic devices. This review article presents the recent progress and current state of the art in the microfluidic production of multiple-emulsion drops, functionalization of solid shells, and applications of microcapsules.
Collapse
Affiliation(s)
- Ji-Won Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Sang Hoon Han
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Ye Hun Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Wahyu Martumpal Hamonangan
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Yoonjin Oh
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
20
|
Zhou C, Zhu P, Tian Y, Shi R, Wang L. Progress in all-aqueous droplets generation with microfluidics: Mechanisms of formation and stability improvements. BIOPHYSICS REVIEWS 2022; 3:021301. [PMID: 38505416 PMCID: PMC10914135 DOI: 10.1063/5.0054201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 01/27/2022] [Indexed: 03/21/2024]
Abstract
All-aqueous systems have attracted intensive attention as a promising platform for applications in cell separation, protein partitioning, and DNA extraction, due to their selective separation capability, rapid mass transfer, and good biocompatibility. Reliable generation of all-aqueous droplets with accurate control over their size and size distribution is vital to meet the increasingly growing demands in emulsion-based applications. However, the ultra-low interfacial tension and large effective interfacial thickness of the water-water interface pose challenges for the generation and stabilization of uniform all-aqueous droplets, respectively. Microfluidics technology has emerged as a versatile platform for the precision generation of all-aqueous droplets with improved stability. This review aims to systematize the controllable generation of all-aqueous droplets and summarize various strategies to improve their stability with microfluidics. We first provide a comprehensive review on the recent progress of all-aqueous droplets generation with microfluidics by detailing the properties of all-aqueous systems, mechanisms of droplet formation, active and passive methods for droplet generation, and the property of droplets. We then review the various strategies used to improve the stability of all-aqueous droplets and discuss the fabrication of biomaterials using all-aqueous droplets as liquid templates. We envision that this review will benefit the future development of all-aqueous droplet generation and its applications in developing biomaterials, which will be useful for researchers working in the field of all-aqueous systems and those who are new and interested in the field.
Collapse
Affiliation(s)
| | - Pingan Zhu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | | | | | | |
Collapse
|
21
|
Field RD, Jakus MA, Chen X, Human K, Zhao X, Chitnis PV, Sia SK. Ultrasound-Responsive Aqueous Two-Phase Microcapsules for On-Demand Drug Release. Angew Chem Int Ed Engl 2022; 61:e202116515. [PMID: 35233907 DOI: 10.1002/anie.202116515] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Indexed: 12/21/2022]
Abstract
Traditional implanted drug delivery systems cannot easily change their release profile in real time to respond to physiological changes. Here we present a microfluidic aqueous two-phase system to generate microcapsules that can release drugs on demand as triggered by focused ultrasound (FUS). The biphasic microcapsules are made of hydrogels with an outer phase of mixed molecular weight (MW) poly(ethylene glycol) diacrylate that mitigates premature payload release and an inner phase of high MW dextran with payload that breaks down in response to FUS. Compound release from microcapsules could be triggered as desired; 0.4 μg of payload was released across 16 on-demand steps over days. We detected broadband acoustic signals amidst low heating, suggesting inertial cavitation as a key mechanism for payload release. Overall, FUS-responsive microcapsules are a biocompatible and wirelessly triggerable structure for on-demand drug delivery over days to weeks.
Collapse
Affiliation(s)
- Rachel D Field
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Margaret A Jakus
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Xiaoyu Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kelia Human
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Parag V Chitnis
- Department of Bioengineering, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA
| | - Samuel K Sia
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| |
Collapse
|
22
|
Field RD, Jakus MA, Chen X, Human K, Zhao X, Chitnis PV, Sia SK. Ultrasound‐Responsive Aqueous Two‐Phase Microcapsules for On‐Demand Drug Release. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rachel D. Field
- Department of Biomedical Engineering Columbia University 351 Engineering Terrace, 1210 Amsterdam Avenue New York NY 10027 USA
| | - Margaret A. Jakus
- Department of Biomedical Engineering Columbia University 351 Engineering Terrace, 1210 Amsterdam Avenue New York NY 10027 USA
| | - Xiaoyu Chen
- Department of Mechanical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Kelia Human
- Department of Biomedical Engineering Columbia University 351 Engineering Terrace, 1210 Amsterdam Avenue New York NY 10027 USA
| | - Xuanhe Zhao
- Department of Mechanical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Civil and Environmental Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Parag V. Chitnis
- Department of Bioengineering George Mason University 4400 University Drive Fairfax VA 22030 USA
| | - Samuel K. Sia
- Department of Biomedical Engineering Columbia University 351 Engineering Terrace, 1210 Amsterdam Avenue New York NY 10027 USA
| |
Collapse
|
23
|
Crowe CD, Keating CD. Microfluidic Control of Coexisting Chemical Microenvironments within Multiphase Water-in-Fluorocarbon Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1811-1820. [PMID: 35090115 DOI: 10.1021/acs.langmuir.1c02929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The use of aqueous polymer-based phase separation within water-in-oil emulsion droplets provides a powerful platform for exploring the impact of compartmentalization and preferential partitioning on biologically relevant solutes. By forming an emulsion, a bulk solution is converted into a large number of chemically isolated microscale droplets. Microfluidic techniques provide an additional level of control over the formation of such systems. This enables the selective production of multiphase droplets with desired solution compositions and specific characteristics, such as solute partitioning. Here, we demonstrate control over the chemical microenvironment by adjusting the composition to increase tie line length for poly(ethylene glycol) (PEG)-dextran aqueous two-phase systems (ATPS) encapsulated within multiphase water-in-fluorocarbon oil emulsion droplets. Through rational adjustment of microfluidic parameters alone, ATPS droplets containing differing compositions could be produced during the course of a single experiment, with the produced droplets demonstrating a controllable range of tie line lengths. This provided control over partitioning behavior for biologically relevant macromolecules such that the difference in local protein concentration between adjacent phases could be rationally tuned. This work illustrates a broadly applicable technique to rationally create emulsified multiphase aqueous systems of desired compositions through the adjustment of microfluidic parameters alone, allowing for easy and rapid screening of various chemical microenvironments.
Collapse
Affiliation(s)
- Charles D Crowe
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Christine D Keating
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
24
|
Schmidt BVKJ. Multicompartment Hydrogels. Macromol Rapid Commun 2022; 43:e2100895. [PMID: 35092101 DOI: 10.1002/marc.202100895] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/27/2022] [Indexed: 11/11/2022]
Abstract
Hydrogels belong to the most promising materials in polymer and materials science at the moment. As they feature soft and tissue-like character as well as high water-content, a broad range of applications are addressed with hydrogels, e.g. tissue engineering and wound dressings but also soft robotics, drug delivery, actuators and catalysis. Ways to tailor hydrogel properties are crosslinking mechanism, hydrogel shape and reinforcement, but new features can be introduced by variation of hydrogel composition as well, e.g. via monomer choice, functionalization or compartmentalization. Especially, multicompartment hydrogels drive progress towards complex and highly functional soft materials. In the present review the latest developments in multicompartment hydrogels are highlighted with a focus on three types of compartments, i.e. micellar/vesicular, droplets or multi-layers including various sub-categories. Furthermore, several morphologies of compartmentalized hydrogels and applications of multicompartment hydrogels will be discussed as well. Finally, an outlook towards future developments of the field will be given. The further development of multicompartment hydrogels is highly relevant for a broad range of applications and will have a significant impact on biomedicine and organic devices. This article is protected by copyright. All rights reserved.
Collapse
|
25
|
Watanabe T, Sakai Y, Sugimori N, Ikeda T, Monzen M, Ono T. Microfluidic Production of Monodisperse Biopolymer Microcapsules for Latent Heat Storage. ACS MATERIALS AU 2022; 2:250-259. [PMID: 36855389 PMCID: PMC9888623 DOI: 10.1021/acsmaterialsau.1c00068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microencapsulation of phase change materials in a polymer shell is a promising technology to prevent them from leakage and to use them as a handleable powder state. However, the microencapsulation process is a time-consuming process because the typical shell-forming step requires polymerization or evaporation of the solvent. In this study, we report a simple and rapid flow process to prepare monodisperse biocompatible cellulose acetate (CA) microcapsules encapsulating n-hexadecane (HD) for latent heat storage applications. The microcapsules were prepared by combining microfluidic droplet formation and subsequent rapid solvent removal from the droplets by solvent diffusion. The diameter and shell thickness of the microcapsules could be controlled by adjusting the flow rate and the HD-to-CA weight ratio in the dispersed phase. We found that 1-hexadecanol added to the microcapsules played the role of a nucleation agent and mitigated the supercooling phenomenon during crystallization. Furthermore, cross-linking of the CA shell with poly(propylene glycol), tolylene 2,4-diisocyanate terminated, resulted in the formation of a thin and dense shell. The microcapsules exhibited a 66 wt % encapsulation efficiency and a 176 J g-1 latent heat storage capacity, with negligible supercooling. We believe that this microflow process can contribute to the preparation of environmentally friendly microcapsules for heat storage applications.
Collapse
Affiliation(s)
- Takaichi Watanabe
- Department
of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan,. Phone: +81-86-251-8072
| | - Yuko Sakai
- Department
of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Naomi Sugimori
- Chusei
Oil Co., Ltd., 8252-8,
Otoshima, Tamashima, Kurashiki 713-8103, Japan
| | - Toshinori Ikeda
- Chusei
Oil Co., Ltd., 8252-8,
Otoshima, Tamashima, Kurashiki 713-8103, Japan
| | - Masayuki Monzen
- Chusei
Oil Co., Ltd., 8252-8,
Otoshima, Tamashima, Kurashiki 713-8103, Japan
| | - Tsutomu Ono
- Department
of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan,. Phone: +81-86-251-8083
| |
Collapse
|
26
|
High-throughput selection of cells based on accumulated growth and division using PicoShell particles. Proc Natl Acad Sci U S A 2022; 119:2109430119. [PMID: 35046027 PMCID: PMC8794849 DOI: 10.1073/pnas.2109430119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 01/19/2023] Open
Abstract
Production of high-energy lipids by microalgae may provide a sustainable energy source that can help tackle climate change. However, microalgae engineered to produce more lipids usually grow slowly, leading to reduced overall yields. Unfortunately, culture vessels used to select cells based on growth while maintaining high biomass production, such as well plates, water-in-oil droplet emulsions, and nanowell arrays, do not provide production-relevant environments that cells experience in scaled-up cultures (e.g., bioreactors or outdoor cultivation farms). As a result, strains that are developed in the laboratory may not exhibit the same beneficial phenotypic behavior when transferred to industrial production. Here, we introduce PicoShells, picoliter-scale porous hydrogel compartments, that enable >100,000 individual cells to be compartmentalized, cultured in production-relevant environments, and selected based on growth and bioproduct accumulation traits using standard flow cytometers. PicoShells consist of a hollow inner cavity where cells are encapsulated and a porous outer shell that allows for continuous solution exchange with the external environment. PicoShells allow for cell growth directly in culture environments, such as shaking flasks and bioreactors. We experimentally demonstrate that Chlorella sp., Saccharomyces cerevisiae, and Chinese hamster ovary cells, used for bioproduction, grow to significantly larger colony sizes in PicoShells than in water-in-oil droplet emulsions (P < 0.05). We also demonstrate that PicoShells containing faster dividing and growing Chlorella clonal colonies can be selected using a fluorescence-activated cell sorter and regrown. Using the PicoShell process, we select a Chlorella population that accumulates chlorophyll 8% faster than does an unselected population after a single selection cycle.
Collapse
|
27
|
Ladeira B, Custodio C, Mano J. Core-Shell Microcapsules: Biofabrication and Potential Applications in Tissue Engineering and Regenerative Medicine. Biomater Sci 2022; 10:2122-2153. [DOI: 10.1039/d1bm01974k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The construction of biomaterial scaffolds that accurately recreate the architecture of living tissues in vitro is a major challenge in the field of tissue engineering and regenerative medicine. Core-shell microcapsules...
Collapse
|
28
|
Keller S, Dekkers R, Hu GX, Tollemeto M, Morosini M, Keskin A, Wilson DA. A simple microfluidic tool to design anisotropic microgels. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Gomes MC, Costa DCS, Oliveira CS, Mano JF. Design of Protein-Based Liquefied Cell-Laden Capsules with Bioinspired Adhesion for Tissue Engineering. Adv Healthc Mater 2021; 10:e2100782. [PMID: 34216107 DOI: 10.1002/adhm.202100782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/12/2021] [Indexed: 12/23/2022]
Abstract
Platforms with liquid cores are extensively explored as cell delivery vehicles for cell-based therapies and tissue engineering. However, the recurrence of synthetic materials can impair its translation into the clinic. Inspired by the adhesive proteins secreted by mussels, liquefied capsule is developed using gelatin modified with hydroxypyridinones (Gel-HOPO), a catechol analogue with oxidant-resistant properties. The protein-based liquefied macrocapsule permitted the compartmentalization of living cells by an approachable and non-time-consuming methodology resorting to i) superhydrophobic surfaces as a processing platform of hydrogel beads, ii) gelation of gelatin at temperatures < 25 °C, iii) iron coordination of the hydroxypyridinone (HOPO) moieties at physiological pH, and iv) core liquefaction at 37 °C. With the design of a proteolytically degradable shell, the possibility of encapsulating human adipose-derived mesenchymal stem cells (hASC) with and without the presence of polycaprolactone microparticles (μPCL) is evaluated. Showing prevalence toward adhesion to the inner shell wall, hASC formed a monolayer evidencing the biocompatibility and adequate mechanical properties of these platforms for proliferation, diminishing the need for μPCL as a supporting substrate. This new protein-based liquefied platform can provide biofactories devices of both fundamental and practical importance for tissue engineering and regenerative medicine or in other biotechnology fields.
Collapse
Affiliation(s)
- Maria C. Gomes
- Department of Chemistry CICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - Dora C. S. Costa
- Department of Chemistry CICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - Cláudia S. Oliveira
- Department of Chemistry CICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - João F. Mano
- Department of Chemistry CICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| |
Collapse
|
30
|
Keller S, Teora SP, Boujemaa M, Wilson DA. Exploring New Horizons in Liquid Compartmentalization via Microfluidics. Biomacromolecules 2021; 22:1759-1769. [PMID: 33835788 PMCID: PMC8154250 DOI: 10.1021/acs.biomac.0c01796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/26/2021] [Indexed: 11/29/2022]
Abstract
Spatial organization of cellular processes is crucial to efficiently regulate life's essential reactions. Nature does this by compartmentalization, either using membranes, such as the cell and nuclear membrane, or by liquid-like droplets formed by aqueous liquid-liquid phase separation. Aqueous liquid-liquid phase separation can be divided in two different phenomena, associative and segregative phase separation, of which both are studied for their membraneless compartmentalization abilities. For centuries, segregative phase separation has been used for the extraction and purification of biomolecules. With the emergence of microfluidic techniques, further exciting possibilities were explored because of their ability to fine-tune phase separation within emulsions of various compositions and morphologies and achieve one of the simplest forms of compartmentalization. Lately, interest in aqueous liquid-liquid phase separation has been revived due to the discovery of membraneless phases within the cell. In this Perspective we focus on segregative aqueous phase separation, discuss the theory of this interesting phenomenon, and give an overview of the evolution of aqueous phase separation in microfluidics.
Collapse
Affiliation(s)
| | | | | | - Daniela A. Wilson
- Institute of Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
31
|
Plucinski A, Lyu Z, Schmidt BVKJ. Polysaccharide nanoparticles: from fabrication to applications. J Mater Chem B 2021; 9:7030-7062. [DOI: 10.1039/d1tb00628b] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The present review highlights the developments in polysaccharide nanoparticles with a particular focus on applications in biomedicine, cosmetics and food.
Collapse
Affiliation(s)
| | - Zan Lyu
- School of Chemistry, University of Glasgow, G12 8QQ Glasgow, UK
| | | |
Collapse
|
32
|
Microparticles from glycidylmethacrylated gelatin as cell carriers prepared in an aqueous two-phase system. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Yazdian Kashani S, Afzalian A, Shirinichi F, Keshavarz Moraveji M. Microfluidics for core-shell drug carrier particles - a review. RSC Adv 2020; 11:229-249. [PMID: 35423057 PMCID: PMC8691093 DOI: 10.1039/d0ra08607j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/07/2020] [Indexed: 01/07/2023] Open
Abstract
Core-shell drug-carrier particles are known for their unique features. Due to the combination of superior properties not exhibited by the individual components, core-shell particles have gained a lot of interest. The structures could integrate core and shell characteristics and properties. These particles were designed for controlled drug release in the desired location. Therefore, the side effects would be minimized. So, these particles' advantages have led to the introduction of new methods and ideas for their fabrication. In the past few years, the generation of drug carrier core-shell particles in microfluidic chips has attracted much attention. This method makes it possible to produce particles at nanometer and micrometer levels of the same shape and size; it usually costs less than other methods. The other advantages of using microfluidic techniques compared to conventional bulk methods are integration capability, reproducibility, and higher efficiency. These advantages have created a positive outlook on this approach. This review gives an overview of the various fluidic concepts that are used to generate microparticles or nanoparticles. Also, an overview of traditional and more recent microfluidic devices and their design and structure for the generation of core-shell particles is given. The unique benefits of the microfluidic technique for core-shell drug carrier particle generation are demonstrated.
Collapse
Affiliation(s)
- Sepideh Yazdian Kashani
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic) 1591634311 Tehran Iran +98 21 64543182
| | - Amir Afzalian
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic) 1591634311 Tehran Iran +98 21 64543182
| | - Farbod Shirinichi
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic) 1591634311 Tehran Iran +98 21 64543182
| | - Mostafa Keshavarz Moraveji
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic) 1591634311 Tehran Iran +98 21 64543182
| |
Collapse
|
34
|
Leonaviciene G, Leonavicius K, Meskys R, Mazutis L. Multi-step processing of single cells using semi-permeable capsules. LAB ON A CHIP 2020; 20:4052-4062. [PMID: 33006353 DOI: 10.1039/d0lc00660b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Droplet microfluidics technology provides a powerful approach to isolate and process millions of single cells simultaneously. Despite many exciting applications that have emerged based on this technology, workflows based on multi-step operations, including molecular biology and cell-based phenotypic screening assays, cannot be easily adapted to droplet format. Here, we present a microfluidics-based technique to isolate single cells, or biological samples, into semi-permeable hydrogel capsules and perform multi-step biological workflows on thousands to millions of individual cells simultaneously. The biochemical reactions are performed by changing the aqueous buffer surrounding the capsules, without needing sophisticated equipment. The semi-permeable nature of the capsules' shell retains large encapsulated biomolecules (such as genome) while allowing smaller molecules (such as proteins) to passively diffuse. In contrast to conventional hydrogel bead assays, the approach presented here improves bacterial cell retention during multi-step procedures as well as the efficiency of biochemical reactions. We showcase two examples of capsule use for single genome amplification of bacteria, and expansion of individual clones into isogenic microcolonies for later screening for biodegradable plastic production.
Collapse
Affiliation(s)
- Greta Leonaviciene
- Institute of Biotechnology, Life Science Centre, Vilnius University, 7 Sauletekio av., Vilnius, LT-10257, Lithuania.
| | - Karolis Leonavicius
- Institute of Biotechnology, Life Science Centre, Vilnius University, 7 Sauletekio av., Vilnius, LT-10257, Lithuania.
| | - Rolandas Meskys
- Institute of Biochemistry, Life Science Centre, Vilnius University, 7 Sauletekio av., Vilnius, LT-10257, Lithuania
| | - Linas Mazutis
- Institute of Biotechnology, Life Science Centre, Vilnius University, 7 Sauletekio av., Vilnius, LT-10257, Lithuania.
| |
Collapse
|
35
|
Ying G, Manríquez J, Wu D, Zhang J, Jiang N, Maharjan S, Hernández Medina D, Zhang Y. An open-source handheld extruder loaded with pore-forming bioink for in situ wound dressing. Mater Today Bio 2020; 8:100074. [PMID: 32995743 PMCID: PMC7508999 DOI: 10.1016/j.mtbio.2020.100074] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/18/2022] Open
Abstract
The increasing demand in rapid wound dressing and healing has promoted the development of intraoperative strategies, such as intraoperative bioprinting, which allows deposition of bioinks directly at the injury sites to conform to their specific shapes and structures. Although successes have been achieved to varying degrees, either the instrumentation remains complex and high-cost or the bioink is insufficient for desired cellular activities. Here, we report the development of a cost-effective, open-source handheld bioprinter featuring an ergonomic design, which was entirely portable powered by a battery pack. We further integrated an aqueous two-phase emulsion bioink based on gelatin methacryloyl with the handheld system, enabling convenient shape-controlled in situ bioprinting. The unique pore-forming property of the emulsion bioink facilitated liquid and oxygen transport as well as cellular proliferation and spreading, with an additional ability of good elasticity to withstand repeated mechanical compressions. These advantages of our pore-forming bioink-loaded handheld bioprinter are believed to pave a new avenue for effective wound dressing potentially in a personalized manner down the future.
Collapse
Affiliation(s)
- G. Ying
- Division of Engineering of Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - J. Manríquez
- Division of Engineering of Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - D. Wu
- Division of Engineering of Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - J. Zhang
- Division of Engineering of Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - N. Jiang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - S. Maharjan
- Division of Engineering of Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - D.H. Hernández Medina
- Division of Engineering of Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Y.S. Zhang
- Division of Engineering of Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| |
Collapse
|
36
|
Mohamed MGA, Ambhorkar P, Samanipour R, Yang A, Ghafoor A, Kim K. Microfluidics-based fabrication of cell-laden microgels. BIOMICROFLUIDICS 2020; 14:021501. [PMID: 32161630 PMCID: PMC7058428 DOI: 10.1063/1.5134060] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/16/2020] [Indexed: 05/02/2023]
Abstract
Microfluidic principles have been extensively utilized as powerful tools to fabricate controlled monodisperse cell-laden hydrogel microdroplets for various biological applications, especially tissue engineering. In this review, we report recent advances in microfluidic-based droplet fabrication and provide our rationale to justify the superiority of microfluidics-based techniques over other microtechnology methods in achieving the encapsulation of cells within hydrogels. The three main components of such a system-hydrogels, cells, and device configurations-are examined thoroughly. First, the characteristics of various types of hydrogels including natural and synthetic types, especially concerning cell encapsulation, are examined. This is followed by the elucidation of the reasoning behind choosing specific cells for encapsulation. Next, in addition to a detailed discussion of their respective droplet formation mechanisms, various device configurations including T-junctions, flow-focusing, and co-flowing that aid in achieving cell encapsulation are critically reviewed. We then present an outlook on the current applications of cell-laden hydrogel droplets in tissue engineering such as 3D cell culturing, rapid generation and repair of tissues, and their usage as platforms for studying cell-cell and cell-microenvironment interactions. Finally, we shed some light upon the prospects of microfluidics-based production of cell-laden microgels and propose some directions for forthcoming research that can aid in overcoming challenges currently impeding the translation of the technology into clinical success.
Collapse
Affiliation(s)
- Mohamed G. A. Mohamed
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Pranav Ambhorkar
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Roya Samanipour
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Annie Yang
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Ali Ghafoor
- Irving K. Barber School of Arts and Sciences, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | | |
Collapse
|
37
|
Chao Y, Shum HC. Emerging aqueous two-phase systems: from fundamentals of interfaces to biomedical applications. Chem Soc Rev 2020; 49:114-142. [DOI: 10.1039/c9cs00466a] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review summarizes recent advances of aqueous two-phase systems (ATPSs), particularly their interfaces, with a focus on biomedical applications.
Collapse
Affiliation(s)
- Youchuang Chao
- Department of Mechanical Engineering
- The University of Hong Kong
- China
| | - Ho Cheung Shum
- Department of Mechanical Engineering
- The University of Hong Kong
- China
| |
Collapse
|
38
|
Jans A, Lölsberg J, Omidinia-Anarkoli A, Viermann R, Möller M, De Laporte L, Wessling M, Kuehne AJC. High-Throughput Production of Micrometer Sized Double Emulsions and Microgel Capsules in Parallelized 3D Printed Microfluidic Devices. Polymers (Basel) 2019; 11:polym11111887. [PMID: 31731709 PMCID: PMC6918360 DOI: 10.3390/polym11111887] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 02/03/2023] Open
Abstract
Double emulsions are useful geometries as templates for core-shell particles, hollow sphere capsules, and for the production of biomedical delivery vehicles. In microfluidics, two approaches are currently being pursued for the preparation of microfluidic double emulsion devices. The first approach utilizes soft lithography, where many identical double-flow-focusing channel geometries are produced in a hydrophobic silicone matrix. This technique requires selective surface modification of the respective channel sections to facilitate alternating wetting conditions of the channel walls to obtain monodisperse double emulsion droplets. The second technique relies on tapered glass capillaries, which are coaxially aligned, so that double emulsions are produced after flow focusing of two co-flowing streams. This technique does not require surface modification of the capillaries, as only the continuous phase is in contact with the emulsifying orifice; however, these devices cannot be fabricated in a reproducible manner, which results in polydisperse double emulsion droplets, if these capillary devices were to be parallelized. Here, we present 3D printing as a means to generate four identical and parallelized capillary device architectures, which produce monodisperse double emulsions with droplet diameters in the range of 500 µm. We demonstrate high throughput synthesis of W/O/W and O/W/O double emulsions, without the need for time-consuming surface treatment of the 3D printed microfluidic device architecture. Finally, we show that we can apply this device platform to generate hollow sphere microgels.
Collapse
Affiliation(s)
- Alexander Jans
- DWI—Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52076 Aachen, Germany; (A.J.); (J.L.); (A.O.-A.); (R.V.); (M.M.); (L.D.L.); (M.W.)
| | - Jonas Lölsberg
- DWI—Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52076 Aachen, Germany; (A.J.); (J.L.); (A.O.-A.); (R.V.); (M.M.); (L.D.L.); (M.W.)
- AVT—Chemical Process Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - Abdolrahman Omidinia-Anarkoli
- DWI—Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52076 Aachen, Germany; (A.J.); (J.L.); (A.O.-A.); (R.V.); (M.M.); (L.D.L.); (M.W.)
| | - Robin Viermann
- DWI—Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52076 Aachen, Germany; (A.J.); (J.L.); (A.O.-A.); (R.V.); (M.M.); (L.D.L.); (M.W.)
| | - Martin Möller
- DWI—Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52076 Aachen, Germany; (A.J.); (J.L.); (A.O.-A.); (R.V.); (M.M.); (L.D.L.); (M.W.)
| | - Laura De Laporte
- DWI—Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52076 Aachen, Germany; (A.J.); (J.L.); (A.O.-A.); (R.V.); (M.M.); (L.D.L.); (M.W.)
| | - Matthias Wessling
- DWI—Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52076 Aachen, Germany; (A.J.); (J.L.); (A.O.-A.); (R.V.); (M.M.); (L.D.L.); (M.W.)
- AVT—Chemical Process Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - Alexander J. C. Kuehne
- DWI—Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52076 Aachen, Germany; (A.J.); (J.L.); (A.O.-A.); (R.V.); (M.M.); (L.D.L.); (M.W.)
- OC3—Institute of Organic and Macromolecular Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Correspondence:
| |
Collapse
|
39
|
Trujillo-de Santiago G, Flores-Garza BG, Tavares-Negrete JA, Lara-Mayorga IM, González-Gamboa I, Zhang YS, Rojas-Martínez A, Ortiz-López R, Álvarez MM. The Tumor-on-Chip: Recent Advances in the Development of Microfluidic Systems to Recapitulate the Physiology of Solid Tumors. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2945. [PMID: 31514390 PMCID: PMC6766252 DOI: 10.3390/ma12182945] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 12/29/2022]
Abstract
The ideal in vitro recreation of the micro-tumor niche-although much needed for a better understanding of cancer etiology and development of better anticancer therapies-is highly challenging. Tumors are complex three-dimensional (3D) tissues that establish a dynamic cross-talk with the surrounding tissues through complex chemical signaling. An extensive body of experimental evidence has established that 3D culture systems more closely recapitulate the architecture and the physiology of human solid tumors when compared with traditional 2D systems. Moreover, conventional 3D culture systems fail to recreate the dynamics of the tumor niche. Tumor-on-chip systems, which are microfluidic devices that aim to recreate relevant features of the tumor physiology, have recently emerged as powerful tools in cancer research. In tumor-on-chip systems, the use of microfluidics adds another dimension of physiological mimicry by allowing a continuous feed of nutrients (and pharmaceutical compounds). Here, we discuss recently published literature related to the culture of solid tumor-like tissues in microfluidic systems (tumor-on-chip devices). Our aim is to provide the readers with an overview of the state of the art on this particular theme and to illustrate the toolbox available today for engineering tumor-like structures (and their environments) in microfluidic devices. The suitability of tumor-on-chip devices is increasing in many areas of cancer research, including the study of the physiology of solid tumors, the screening of novel anticancer pharmaceutical compounds before resourcing to animal models, and the development of personalized treatments. In the years to come, additive manufacturing (3D bioprinting and 3D printing), computational fluid dynamics, and medium- to high-throughput omics will become powerful enablers of a new wave of more sophisticated and effective tumor-on-chip devices.
Collapse
Affiliation(s)
- Grissel Trujillo-de Santiago
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, Nuevo León CP 64849, Mexico.
- Departamento de Ingeniería Mecátrónica y Eléctrica, Tecnologico de Monterrey, Monterrey, Nuevo León CP 64849, Mexico.
| | | | | | - Itzel Montserrat Lara-Mayorga
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, Nuevo León CP 64849, Mexico
- Departamento de Ingeniería Mecátrónica y Eléctrica, Tecnologico de Monterrey, Monterrey, Nuevo León CP 64849, Mexico
| | - Ivonne González-Gamboa
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, Nuevo León CP 64849, Mexico
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Augusto Rojas-Martínez
- Centro de Investigación y Transferencia en Salud, Hospital San José, Tecnologico de Monterrey, Monterrey, Nuevo León CP 64849, Mexico
| | - Rocío Ortiz-López
- Centro de Investigación y Transferencia en Salud, Hospital San José, Tecnologico de Monterrey, Monterrey, Nuevo León CP 64849, Mexico
| | - Mario Moisés Álvarez
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, Nuevo León CP 64849, Mexico.
| |
Collapse
|
40
|
Correia CR, Ghasemzadeh-Hasankolaei M, Mano JF. Cell encapsulation in liquified compartments: Protocol optimization and challenges. PLoS One 2019; 14:e0218045. [PMID: 31226115 PMCID: PMC6588215 DOI: 10.1371/journal.pone.0218045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cell encapsulation is a widely used technique in the field of Tissue Engineering and Regenerative Medicine (TERM). However, for the particular case of liquefied compartmentalised systems, only a limited number of studies have been reported in the literature. We have been exploring a unique cell encapsulation system composed by liquefied and multilayered capsules. This system transfigured the concept of 3D scaffolds for TERM, and was already successfully applied for bone and cartilage regeneration. Due to a number of appealing features, we envisage that it can be applied in many other fields, including in advanced therapies or as disease models for drug discovery. In this review, we intend to highlight the advantages of this new system, while discussing the methodology, and sharing the protocol optimization and results. The different liquefied systems for cell encapsulation reported in the literature will be also discussed, considering the different encapsulation matrixes as core templates, the types of membranes, and the core liquefaction treatments.
Collapse
Affiliation(s)
- Clara R. Correia
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | | | - João F. Mano
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|