1
|
Lee G, Jhang YJ, Jhang YT, Chang YC, Chang HW, Chuang CY, Chuang YK, Lin CW, Hsiao IL. Artificial digestion represents the worst-case scenario for studying nanoplastic fate in gastrointestinal tract. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136809. [PMID: 39673946 DOI: 10.1016/j.jhazmat.2024.136809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/23/2024] [Accepted: 12/05/2024] [Indexed: 12/16/2024]
Abstract
Humans may inevitably be exposed to nanoplastics (NPls) through ingestion. The size of NPls significantly influences their absorption efficiency, so understanding behaviors of NPls during digestion is vital for risk assessment. In this study, fluorescent polystyrene (PS) and melamine-formaldehyde resin (MF) NPls were characterized by different techniques after the in vitro digestion process both with and without a standard food model, or with and without pH adjustment in the absence of the proteins. Results derived from the in vitro method were compared to those using human and porcine digestive fluids. In summary, different types/charges of NPls caused distinct agglomeration states during the digestion procedure, and the pH and protein corona affected the agglomeration state of smaller PS particles more obviously than they did the other tested particles. The presence of a food matrix did not significantly change the particle size, while the protein corona composition was largely altered. Compared to real digestive fluids, size trends observed for NPls were consistent with those in artificial ones, while they were mostly underestimated, which for the first time, proves that the in vitro digestion can be regarded as a conservative model for predicting aggregation of NPls in gastrointestinal tract.
Collapse
Affiliation(s)
- Giselle Lee
- School of Food Safety, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Ya-Jhu Jhang
- Master Program in Food Safety, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Tung Jhang
- Master Program in Food Safety, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Yen-Chen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Hui-Wen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Chun-Yu Chuang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yung-Kun Chuang
- School of Food Safety, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; Master Program in Food Safety, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Ching-Wei Lin
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106319, Taiwan
| | - I-Lun Hsiao
- School of Food Safety, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; Master Program in Food Safety, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
2
|
Chota A, Abrahamse H, George BP. Green synthesis and characterization of AgNPs, liposomal loaded AgNPs and ZnPcS 4 photosensitizer for enhanced photodynamic therapy effects in MCF-7 breast cancer cells. Photodiagnosis Photodyn Ther 2024; 48:104252. [PMID: 38901719 DOI: 10.1016/j.pdpdt.2024.104252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Breast cancer remains a formidable challenge in oncology despite significant advancements in treatment modalities. Conventional therapies such as surgery, chemotherapy, radiation therapy, and hormonal therapy have been the mainstay in managing breast cancer for decades. However, a subset of patient's experiences treatment failure, leading to disease recurrence and progression. Therefore, this study investigates the therapeutic potential of green-synthesized silver nanoparticles (AgNPs) using an African medicinal plant (Dicoma anomala methanol root extract) as a reducing agent for combating breast cancer. AgNPs were synthesized using the bottom-up approach and later modified with liposomes (Lip) loaded with photosensitizer (PS) zinc phthalocyanine tetrasulfonate (Lip@ZnPcS4) using thin film hydration method. The successful formation and Lip modification of AgNPs, alongside ZnPcS4, were confirmed through various analytical techniques including UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), high-resolution transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Following a 24 h treatment period, MCF-7 cells were assessed for viability using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT viability assay), cell death analysis using mitochondrial membrane potential (MMP) (ΔΨm), Annexin V-fluorescein isothiocyanate (FITC)-propidium iodide (PI) kit, and caspase- 3, 8 and 9 activities. The experiments were repeated four times (n = 4), and the results were analyzed using SPSS statistical software version 27, with a confidence interval set at 0.95. The synthesized nanoparticles and nanocomplex, including AgNPs, AgNPs-Lip, Lip@ZnPcS4, and AgNPs-Lip@ZnPcS4, exhibited notable cytotoxicity and therapeutic efficacy against MCF-7 breast cancer cells. Notably, the induction of apoptosis, governed by the upregulation of apoptotic proteins i.e., caspase 8 and 9 activities. In addition, caspase 3 was not expressed by MCF-7 cells in both control and experimental groups. Given the challenging prognosis associated with breast cancer, the findings underscore the promise of liposomal nanoformulations in cancer photodynamic therapy (PDT), thus warranting further exploration in clinical settings.
Collapse
Affiliation(s)
- Alexander Chota
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Blassan P George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa.
| |
Collapse
|
3
|
Chota A, George BP, Abrahamse H. Apoptotic efficiency of Dicoma anomala biosynthesized silver nanoparticles against A549 lung cancer cells. Biomed Pharmacother 2024; 176:116845. [PMID: 38810403 DOI: 10.1016/j.biopha.2024.116845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024] Open
Abstract
Lung cancer is one of the common forms of cancer that affects both men and women and is regarded as the leading cause of cancer related deaths. It is characterized by unregulated cell division of altered cells within the lung tissues. Green nanotechnology is a promising therapeutic option that is adopted in cancer research. Dicoma anomala (D. anomala) is one of the commonly used African medicinal plant in the treatment of different medical conditions including cancer. In the present study, silver nanoparticles (AgNPs) were synthesized using D. anomala MeOH root extract. We evaluated the anticancer efficacy of the synthesized AgNPs as an individual treatment as well as in combination with pheophorbide a (PPBa) mediated photodynamic therapy (PDT) in vitro. UV-VIS spectroscopy, high-resolution transmission electron microscopy (HR-TEM), Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) was used to confirm the formation of D.A AgNPs. Post 24 h treatment, A549 cells were evaluated for ATP proliferation, morphological changes supported by LIVE/DEAD assay, and caspase activities. All experiments were repeated four times (n=4), with findings being analysed using SPSS statistical software version 27 set at 0.95 confidence interval. The results from the present study revealed a dose-dependent decrease in cell proliferation in both individual and combination therapy of PPBa mediated PDT and D.A AgNPs on A549 lung cancer cells with significant morphological changes. Additionally, LIVE/DEAD assay displayed a significant increase in the number of dead cell population in individual treatments (i.e., IC50's treated A549 cells) as well as in combination therapy. In conclusion, the findings from this study demonstrated the anticancer efficacy of green synthesized AgNPs as a mono-therapeutic drug as well as in combination with a chlorophyll derivative PPBa in PDT. Taken together, the findings highlight the therapeutic potential of green nanotechnology in medicine.
Collapse
Affiliation(s)
- Alexander Chota
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein, Johannesburg 2028, South Africa
| | - Blassan P George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein, Johannesburg 2028, South Africa.
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein, Johannesburg 2028, South Africa
| |
Collapse
|
4
|
Schürmann R, Gaál A, Sikora A, Ojeda D, Bartczak D, Goenaga-Infante H, Korpelainen V, Sauvet B, Deumer J, Varga Z, Gollwitzer C. Comparing novel small-angle x-ray scattering approaches for absolute size and number concentration measurements of spherical SiO 2particles to established methods. NANOTECHNOLOGY 2024; 35:385701. [PMID: 38861978 DOI: 10.1088/1361-6528/ad568b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Biomedical analytical applications, as well as the industrial production of high-quality nano- and sub-micrometre particles, require accurate methods to quantify the absolute number concentration of particles. In this context, small-angle x-ray scattering (SAXS) is a powerful tool to determine the particle size and concentration traceable to the Système international d'unités (SI). Therefore, absolute measurements of the scattering cross-section must be performed, which require precise knowledge of all experimental parameters, such as the electron density of solvent and particles, whereas the latter is often unknown. Within the present study, novel SAXS-based approaches to determine the size distribution, density and number concentrations of sub-micron spherical silica particles with narrow size distributions and mean diameters between 160 nm and 430 nm are presented. For the first-time traceable density and number concentration measurements of silica particles are presented and current challenges in SAXS measurements such as beam-smearing, poorly known electron densities and moderately polydisperse samples are addressed. In addition, and for comparison purpose, atomic force microscopy has been used for traceable measurements of the size distribution and single particle inductively coupled plasma mass spectrometry with the dynamic mass flow approach for the accurate quantification of the number concentrations of silica particles. The possibilities and limitations of the current approaches are critically discussed in this study.
Collapse
Affiliation(s)
- Robin Schürmann
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin, Germany
| | - Anikó Gaál
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, H-1117 Budapest, Hungary
| | - Aneta Sikora
- National Measurement Laboratory, LGC Limited, Teddington TW11 0LY, United Kingdom
| | - David Ojeda
- National Measurement Laboratory, LGC Limited, Teddington TW11 0LY, United Kingdom
| | - Dorota Bartczak
- National Measurement Laboratory, LGC Limited, Teddington TW11 0LY, United Kingdom
| | | | - Virpi Korpelainen
- National Metrology Institute VTT MIKES, Tekniikantie 1, FI-02150 Espoo, Finland
| | - Bruno Sauvet
- National Metrology Institute VTT MIKES, Tekniikantie 1, FI-02150 Espoo, Finland
| | - Jérôme Deumer
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin, Germany
| | - Zoltán Varga
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, H-1117 Budapest, Hungary
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Christian Gollwitzer
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin, Germany
| |
Collapse
|
5
|
McGlumphy S, Damai A, Salameh L, Corbin GB, Wang Q, Markiewicz J, Mosher JJ, Spitzer N, Quiñones R. Biocompatible antibiotic-coupled nickel-titanium nanoparticles as a potential coating material for biomedical devices. Heliyon 2024; 10:e31434. [PMID: 38831845 PMCID: PMC11145499 DOI: 10.1016/j.heliyon.2024.e31434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/04/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024] Open
Abstract
The challenges facing metallic implants for reconstructive surgery include the leaching of toxic metal ions, a mismatch in elastic modulus between the implant and the treated tissue, and the risk of infection. These problems can be addressed by passivating the metal surface with an organic substrate and incorporating antibiotic molecules. Nitinol (NiTi), a nickel-titanium alloy, is used in devices for biomedical applications due to its shape memory and superelasticity. However, unmodified NiTi carries a risk of localized nickel toxicity and inadequately supports angiogenesis or neuroregeneration due to limited cell adhesion, poor biomineralization, and little antibacterial activity. To address these challenges, NiTi nanoparticles were modified using self-assembled phosphonic acid monolayers and functionalized with the antibiotics ceftriaxone and vancomycin via the formation of an amide. Surface modifications were monitored to confirm that phosphonic acid modifications were present on NiTi nanoparticles and 100% of the samples formed ordered films. Modifications were stable for more than a year. Elemental composition showed the presence of nickel, titanium, and phosphorus (1.9% for each sample) after surface modifications. Dynamic light scattering analysis suggested some agglomeration in solution. However, scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy confirmed a particle size distribution of <100 nm, the even distribution of nanoparticles on coverslips, and elemental composition before and after cell culture. B35 neuroblastoma cells exhibited no inhibition of survival and extended neurites of approximately 100 μm in total length when cultured on coverslips coated with only poly-l-lysine or with phosphonic acid-modified NiTi, indicating high biocompatibility. The ability to support neural cell growth and differentiation makes modified NiTi nanoparticles a promising coating for surfaces in metallic bone and nerve implants. NiTi nanoparticles functionalized with ceftriaxone inhibited Escherichia coli and Serratia marcescens (SM6) at doses of 375 and 750 μg whereas the growth of Bacillus subtilis was inhibited by a dose of only 37.5 μg. NiTi-vancomycin was effective against B. subtilis at all doses even after mammalian cell culture. These are common bacteria associated with infected implants, further supporting the potential use of functionalized NiTi in coating reconstructive implants.
Collapse
Affiliation(s)
- Sarah McGlumphy
- Department of Chemistry, Marshall University, Huntington, WV, 25755, USA
- Department of Biological Sciences, Marshall University, Huntington, WV, 25755, USA
| | - Aakriti Damai
- Department of Chemistry, Marshall University, Huntington, WV, 25755, USA
- Department of Biological Sciences, Marshall University, Huntington, WV, 25755, USA
| | - Lena Salameh
- Department of Chemistry, Marshall University, Huntington, WV, 25755, USA
| | - Gabriell B. Corbin
- Department of Biological Sciences, Marshall University, Huntington, WV, 25755, USA
| | - Qiang Wang
- Shared Research Facilities, West Virginia University, Morgantown, WV, 25606, USA
| | - John Markiewicz
- Department of Chemistry, Marshall University, Huntington, WV, 25755, USA
| | - Jennifer J. Mosher
- Department of Biological Sciences, Marshall University, Huntington, WV, 25755, USA
| | - Nadja Spitzer
- Department of Biological Sciences, Marshall University, Huntington, WV, 25755, USA
| | - Rosalynn Quiñones
- Department of Chemistry, Marshall University, Huntington, WV, 25755, USA
| |
Collapse
|
6
|
Han J, Wu X, Zhao JX, Pierce DT. An Unprecedented Metal Distribution in Silica Nanoparticles Determined by Single-Particle Inductively Coupled Plasma Mass Spectrometry. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:637. [PMID: 38607171 PMCID: PMC11013762 DOI: 10.3390/nano14070637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
Metal-containing nanoparticles are now common in applications ranging from catalysts to biomarkers. However, little research has focused on per-particle metal content in multicomponent nanoparticles. In this work, we used single-particle inductively coupled plasma mass spectrometry (ICP-MS) to determine the per-particle metal content of silica nanoparticles doped with tris(2,2'-bipyridyl)ruthenium(II). Monodispersed silica nanoparticles with varied Ru doping levels were prepared using a water-in-oil microemulsion method. These nanoparticles were characterized using common bulk-sample methods such as absorbance spectroscopy and conventional ICP-MS, and also with single-particle ICP-MS. The results showed that averaged concentrations of metal dopant measured per-particle by single-particle ICP-MS were consistent with the bulk-sample methods over a wide range of dopant levels. However, the per-particle amount of metal varied greatly and did not adhere to the usual Gaussian distribution encountered with one-component nanoparticles, such as gold or silver. Instead, the amount of metal dopant per silica particle showed an unexpected geometric distribution regardless of the prepared doping levels. The results indicate that an unusual metal dispersal mechanism is taking place during the microemulsion synthesis, and they challenge a common assumption that doped silica nanoparticles have the same metal content as the average measured by bulk-sample methods.
Collapse
Affiliation(s)
- Juan Han
- Department of Chemistry, University of North Dakota, 151 Cornell Street, Stop 9024, Grand Forks, ND 58202, USA; (J.H.); (X.W.)
- New Mexico Institute of Mining & Technology, 801 Leroy Place, Socorro, NM 87801, USA
| | - Xu Wu
- Department of Chemistry, University of North Dakota, 151 Cornell Street, Stop 9024, Grand Forks, ND 58202, USA; (J.H.); (X.W.)
- Department of Chemistry, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, USA
| | - Julia Xiaojun Zhao
- Department of Chemistry, University of North Dakota, 151 Cornell Street, Stop 9024, Grand Forks, ND 58202, USA; (J.H.); (X.W.)
| | - David T. Pierce
- Department of Chemistry, University of North Dakota, 151 Cornell Street, Stop 9024, Grand Forks, ND 58202, USA; (J.H.); (X.W.)
| |
Collapse
|
7
|
Hussels M, Lichtenfeld H, Woehlecke H, Wollik E, Lerche D. Instrument with an ultra-wide dynamic detection range for the optical counting and sizing of individual particles in suspensions. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:023704. [PMID: 38381919 DOI: 10.1063/5.0165811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/09/2024] [Indexed: 02/23/2024]
Abstract
The characterization of dispersions, suspensions, and emulsions is important in a wide range of scientific applications and industries. Samples can consist of different materials and a wide range of particle sizes and concentrations. A single particle sizing and counting instrument with a dynamic detection range of ≥6 decades has been developed to detect single nano- and microparticles in aqueous suspensions based on light scattering measured in two directions. Hydrodynamic focusing is employed for particle separation and to provide stable conditions for light scattering detection. This gives the advantage of size resolution in the nm range, allowing, e.g., number based size distributions, classification of nanomaterials, determination of particle agglomerates, developments for dispersion stability analysis, or cutoff of filter media. In addition, concentration determination is based on sample volume measurement with <20 nl measurement uncertainty. We present results of particle detection in a size range from approximately above 40 nm for gold nanoparticles to 8 μm for polystyrene particles using a prototyped instrument of the LUMiSpoc® series produced by LUM GmbH. The data obtained demonstrate the advantages of single-particle detection, particularly for characterizing polydisperse systems, such as precise particle sizing in the nanometer range through light scattering intensity based on Mie scattering theory. In addition, we present particle concentration data based on the integrated measurement of sample volume, which allows particle concentration to be determined with an uncertainty of 2.5% (95% confidence interval). To achieve such small uncertainties, dilution series measurements must be used to correct for coincidence losses and particle adhesion.
Collapse
Affiliation(s)
- Martin Hussels
- Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin, Germany
| | | | - Holger Woehlecke
- Dr. Lerche KG, Justus-von-Liebig-Straße 3, 12489 Berlin, Germany
- LUM GmbH, Justus-von-Liebig-Straße 3, 12489 Berlin, Germany
| | - Elia Wollik
- Dr. Lerche KG, Justus-von-Liebig-Straße 3, 12489 Berlin, Germany
| | - Dietmar Lerche
- Dr. Lerche KG, Justus-von-Liebig-Straße 3, 12489 Berlin, Germany
- LUM GmbH, Justus-von-Liebig-Straße 3, 12489 Berlin, Germany
| |
Collapse
|
8
|
Barros J, Kumar S, Seena S. Does functionalised nanoplastics modulate the cellular and physiological responses of aquatic fungi to metals? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122549. [PMID: 37730145 DOI: 10.1016/j.envpol.2023.122549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/02/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023]
Abstract
Co-contamination of freshwaters by nanoplastics (NPs; ≤ 1 μm) and metals is an emerging concern. Aquatic hyphomycetes play a crucial role as primary decomposers in these ecosystems. However, concurrent impacts of NPs and metals on the cellular and physiological activities of these fungi remain poorly understood. Here, the effects of environmentally realistic concentrations of two types of polystyrene (PS) NPs (bare and -COOH; up to 25 μg L-1) and copper (Cu; up to 50 μg L-1) individually and all possible combinations (NPs types and Cu) on Articulospora tetracladia, a prevalent aquatic hyphomycete, were investigated. Endpoints measured were intracellular reactive oxygen species accumulation, plasma membrane disruption and fungal growth. The results suggest that functionalised (-COOH) NPs enhance Cu adsorption, as revealed by spectroscopic analyses. Notably, NPs, Cu and their co-exposure to A. tetracladia can lead to ROS accumulation and plasma membrane disruption. In most cases, exposure to treatments containing -COOH NPs with Cu showed greater cellular response and suppressed fungal growth. By contrast, exposure to Cu individually showed stimulatory effects on fungal growth. Overall, this study provides novel insight that functionalisation of NPs facilitates metal adsorption, thus modulating the impacts of metals on aquatic fungi.
Collapse
Affiliation(s)
- Juliana Barros
- Marine and Environmental Sciences Centre (MARE)/Rede de Investigação Aquática (ARNET), Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Santosh Kumar
- Division of Chemical Engineering, Konkuk University, Seoul 05029, South Korea; Department of Chemistry, School of Basic & Applied Sciences, Harcourt Butler Technical University, Kanpur 208002 Uttar Pradesh, India
| | - Sahadevan Seena
- Marine and Environmental Sciences Centre (MARE)/Rede de Investigação Aquática (ARNET), Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| |
Collapse
|
9
|
Petrucciani A, Moretti P, Ortore MG, Norici A. Integrative effects of morphology, silicification, and light on diatom vertical movements. FRONTIERS IN PLANT SCIENCE 2023; 14:1143998. [PMID: 37056507 PMCID: PMC10087530 DOI: 10.3389/fpls.2023.1143998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Diatoms represent the most abundant and diversified class of primary producers in present oceans; their distinctive trait is the ability to incorporate silicic acid in a silica outer shell called frustule. Numerous adaptative functions are ascribed to frustules, including the control of vertical movements through the water column; this indirectly determines cell access to fundamental resources such as light and nutrients, and favors diatom escape from predators. At the same time, light guides phototroph movements in the water column by affecting cell density (e.g., by modulating Si deposition in diatoms, vacuole volume, and/or solution). We investigated how the tremendous diversity in morphology and silicification that characterizes the frustule and the crucial role of light in diatom spatial distribution govern diatom sinking capacity. To test their integrative effects, we acclimated four diatoms distinguished by frustule traits (Chaetoceros muelleri, Conticribra weissflogii, Phaeodactylum tricornutum, and Cylindrotheca fusiformis) to different light conditions and evaluated their physiological performance in terms of growth, elemental composition, morphological changes, and their in vivo sinking capacity. What emerged from this study was that silicification, more than other morphological characteristics, controls species vertical movements, while a higher energy availability enhances cell floating independently from the silica content.
Collapse
|
10
|
Yamaguchi T. Laser scattering centrifugal liquid sedimentation method for the accurate quantitative analysis of mass-based size distributions of colloidal silica. ANAL SCI 2023:10.1007/s44211-023-00321-9. [PMID: 36966479 DOI: 10.1007/s44211-023-00321-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/08/2023] [Indexed: 03/27/2023]
Abstract
This paper proposes a laser scattering centrifugal liquid sedimentation (LS-CLS) method for the accurate quantitative analysis of the mass-based size distributions of colloidal silica. The optics comprised a laser diode light source and multi-pixel photon-counting detector for detecting scattered light intensity. The unique optics can only detect the light scattered by a sample through the interception of irradiated light. The developed centrifugal liquid sedimentation (CLS) method comprised a light-emitting diode and silicon photodiode detector for detecting transmittance light attenuation. The CLS apparatus could not accurately measure quantitative volume- or mass-based size distribution of poly-dispersed suspensions, such as colloidal silica, because the detecting signal includes both transmitted and scattered light. The LS-CLS method exhibited improved quantitative performance. Moreover, the LS-CLS system allowed the injection of samples with concentrations higher than that permitted by other particle size distribution measurement systems with particle size classification units using size-exclusion chromatography or centrifugal field-flow fractionation. The proposed LS-CLS method achieved an accurate quantitative analysis of the mass-based size distribution using both centrifugal classification and laser scattering optics. In particular, the system could measure the mass-based size distribution of approximately 20 mg mL-1 poly-dispersed colloidal silica samples, such as in a mixture of the four mono-dispersed colloidal silica, with high resolution and precision, thereby demonstrating high quantitative performance. The measured size distributions were compared with those observed through transmission electron microscopy. The proposed system can be used in practical setups to achieve a reasonable degree of consistency for determining particle size distribution in industrial applications.
Collapse
Affiliation(s)
- Tetsuji Yamaguchi
- HORIBA, Ltd., 2 Miyanohigashi, Kisshoin, Minami, Kyoto, 601-8510, Japan.
| |
Collapse
|
11
|
Marques SS, Ramos II, Silva C, Barreiros L, Domingues MR, Segundo MA. Lab-on-Valve Automated and Miniaturized Assessment of Nanoparticle Concentration Based on Light-Scattering. Anal Chem 2023; 95:4619-4626. [PMID: 36802495 PMCID: PMC10018450 DOI: 10.1021/acs.analchem.2c04631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Nanoparticles (NPs) concentration directly impacts the dose delivered to target tissues by nanocarriers. The evaluation of this parameter is required during NPs developmental and quality control stages, for setting dose-response correlations and for evaluating the reproducibility of the manufacturing process. Still, faster and simpler procedures, dismissing skilled operators and post-analysis conversions are needed to quantify NPs for research and quality control operations, and to support result validation. Herein, a miniaturized automated ensemble method to measure NPs concentration was established under the lab-on-valve (LOV) mesofluidic platform. Automatic NPs sampling and delivery to the LOV detection unit were set by flow programming. NPs concentration measurements were based on the decrease in the light transmitted to the detector due to the light scattered by NPs when passing through the optical path. Each analysis was accomplished in 2 min, rendering a determination throughput of 30 h-1 (6 samples h-1 for n = 5) and only requiring 30 μL (≈0.03 g) of NPs suspension. Measurements were performed on polymeric NPs, as these represent one of the major classes of NPs under development for drug-delivery aims. Determinations for polystyrene NPs (of 100, 200, and 500 nm) and for NPs made of PEGylated poly-d,l-lactide-co-glycolide (PEG-PLGA, a biocompatible FDA-approved polymer) were accomplished within 108-1012 particles mL-1 range, depending on the NPs size and composition. NPs size and concentration were maintained during analysis, as verified for NPs eluted from the LOV by particle tracking analysis (PTA). Moreover, concentration measurements for PEG-PLGA NPs loaded with an anti-inflammatory drug, methotrexate (MTX), after their incubation in simulated gastric and intestinal fluids were successfully achieved (recovery values of 102-115%, as confirmed by PTA), showing the suitability of the proposed method to support the development of polymeric NPs targeting intestinal delivery.
Collapse
Affiliation(s)
- Sara S Marques
- LAQV, REQUIMTE, University of Porto, Department of Chemical Sciences, Faculty of Pharmacy, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Inês I Ramos
- LAQV, REQUIMTE, University of Porto, Department of Chemical Sciences, Faculty of Pharmacy, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Carla Silva
- Centre of Biological Engineering (CEB), University of Minho, 4710-057 Braga, Portugal.,LABBELS - Associate Laboratory, 4710-057 Braga, Guimarães Portugal
| | - Luisa Barreiros
- LAQV, REQUIMTE, University of Porto, Department of Chemical Sciences, Faculty of Pharmacy, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.,School of Health, Polytechnic Institute of Porto, R. Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Maria R Domingues
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal.,Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Marcela A Segundo
- LAQV, REQUIMTE, University of Porto, Department of Chemical Sciences, Faculty of Pharmacy, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
12
|
Mitchell J, Pintro C, Nolan K, Davenport-Munoz M, Spitzer K, Yu R, Wu J. Functionalized silica nanoparticles coupled with nanoporous membrane for efficient ionic current rectification. NANOTECHNOLOGY 2022; 34:015707. [PMID: 36179658 DOI: 10.1088/1361-6528/ac9687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
In the last few decades, tremendous effort has been dedicated to mimicking the efficient ionic current rectification (ICR) of biological nanopores. Nanoporous membranes and singular nanopores with ICR functionality have been fabricated using advanced, yet costly technologies. We herein demonstrate that a simple, novel, and robust ICR platform can be constructed using 80 nm silica nanoparticles and a piece of 15 nm track-etched polycarbonate membrane. Efficient ICR can be obtained when voltages of different polarities are applied across the membrane, due to the asymmetric electrophoretic migration of silica nanoparticles whose surfaces are modified with different functional groups. The effect of pore size, ionic strength, pH, voltage magnitude, and density of silica nanoparticles on the efficiency of the ICR system has been systematically investigated in this report. Our results clearly show that smaller pore, lower ionic strength, appropriate pH value, higher electrical field strength, lower density of silica nanoparticles can generally enhance the efficiency of the ICR system. The principles of this new ICR system may find many potential applications in controllable drug delivery, energy storage and water purification.
Collapse
Affiliation(s)
- Juan Mitchell
- Department of Chemistry and Biochemistry, Georgia Southern University, 250 Forest Drive, Statesboro, GA 30460, United States of America
| | - Chris Pintro
- Department of Chemistry and Biochemistry, Georgia Southern University, 250 Forest Drive, Statesboro, GA 30460, United States of America
| | - Katie Nolan
- Department of Chemistry and Biochemistry, Georgia Southern University, 250 Forest Drive, Statesboro, GA 30460, United States of America
| | - Maurice Davenport-Munoz
- Department of Chemistry and Biochemistry, Georgia Southern University, 250 Forest Drive, Statesboro, GA 30460, United States of America
| | - Kyle Spitzer
- Department of Chemistry and Biochemistry, Georgia Southern University, 250 Forest Drive, Statesboro, GA 30460, United States of America
| | - Rachel Yu
- Department of Chemistry and Biochemistry, Georgia Southern University, 250 Forest Drive, Statesboro, GA 30460, United States of America
| | - Ji Wu
- Department of Chemistry and Biochemistry, Georgia Southern University, 250 Forest Drive, Statesboro, GA 30460, United States of America
| |
Collapse
|
13
|
Hinchliffe BA, Turner P, J H Cant D, De Santis E, Aggarwal P, Harris R, Templeton D, Shard AG, Hodnett M, Minelli C. Deagglomeration of DNA nanomedicine carriers using controlled ultrasonication. ULTRASONICS SONOCHEMISTRY 2022; 89:106141. [PMID: 36067646 PMCID: PMC9463456 DOI: 10.1016/j.ultsonch.2022.106141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Control over the agglomeration state of manufactured particle systems for drug and oligonucleotide intracellular delivery is paramount to ensure reproducible and scalable therapeutic efficacy. Ultrasonication is a well-established mechanism for the deagglomeration of bulk powders in dispersion. Its use in manufacturing requires strict control of the uniformity and reproducibility of the cavitation field within the sample volume to minimise within-batch and batch-to-batch variability. In this work, we demonstrate the use of a reference cavitating vessel which provides stable and reproducible cavitation fields over litre-scale volumes to assist the controlled deagglomeration of a novel non-viral particle-based plasmid delivery system. The system is the Nuvec delivery platform, comprising polyethylenimine-coated spiky silica particles with diameters of ∼ 200 nm. We evaluated the use of controlled cavitation at different input powers and stages of preparation, for example before and after plasmid loading. Plasmid loading was confirmed by X-ray photoelectron spectroscopy and gel electrophoresis. The latter was also used to assess plasmid integrity and the ability of the particles to protect plasmid from potential degradation caused by the deagglomeration process. We show the utility of laser diffraction and differential centrifugal sedimentation in quantifying the efficacy of product de-agglomeration in the microscale and nanoscale size range respectively. Transmission electron microscopy was used to assess potential damages to the silica particle structure due to the sonication process.
Collapse
Affiliation(s)
| | - Piers Turner
- National Physical Laboratory, Hampton Road, Teddington SW11 0LW, UK
| | - David J H Cant
- National Physical Laboratory, Hampton Road, Teddington SW11 0LW, UK
| | | | - Purnank Aggarwal
- National Physical Laboratory, Hampton Road, Teddington SW11 0LW, UK
| | - Rob Harris
- N4 Pharma, Weston House, Bradgate Park View, Chellaston DE73 5UJ, UK
| | - David Templeton
- N4 Pharma, Weston House, Bradgate Park View, Chellaston DE73 5UJ, UK
| | - Alex G Shard
- National Physical Laboratory, Hampton Road, Teddington SW11 0LW, UK
| | - Mark Hodnett
- National Physical Laboratory, Hampton Road, Teddington SW11 0LW, UK
| | - Caterina Minelli
- National Physical Laboratory, Hampton Road, Teddington SW11 0LW, UK.
| |
Collapse
|
14
|
Eller MJ, Sandoval JM, Verkhoturov SV, Schweikert EA. Nanoprojectile Secondary Ion Mass Spectrometry for Nanometrology of Nanoparticles and Their Interfaces. Anal Chem 2022; 94:7868-7876. [PMID: 35594187 DOI: 10.1021/acs.analchem.2c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nanoscale molecular characterization plays a crucial role in enhancing our insights into fundamental and materials processes occurring at the nanoscale. However, for many traditional techniques, measurements on different ensembles are mixed and the analytical result reflects the average surface composition or arrangement. Advances in nanometrologies that allow for measurements to be differentiated based on the chemical environment examined are critical for accurate analysis. Here, we present a variant of secondary ion mass spectrometry, SIMS, termed nanoprojectile SIMS, NP-SIMS, capable of nanoscale molecular analysis. The technique examines the sample with a suite, 106-107, of individual gold nanoprojectiles (e.g., Au4004+) which stochastically probe the surface. Analysis of coemitted ions from each impact allows for the inspection of colocalized moieties within the ejected volume of a single projectile impact (10-15 nm in diameter). If some of these 106-107 measurements arise from nanodomains of similar composition, data can be grouped based on the detected secondary ions. We applied the method to examine a mixture of three different-sized nanoparticles with identical metal cores (3-5 nm in diameter), differing in the length of the attached ligand (decanetiol, tetradecanethiol, and hexadecanethiol). Using NP-SIMS, we determined the relative abundance of the three particles on the surface and isolated measurements based on the impact parameter between the impacting nanoprojectile and the surface particle, demonstrating that measurements occurring near the center of the particle can be differentiated from those at the particle-particle and particle-substrate interfaces. The results suggest that the described methodology is well-suited for molecular analysis of nanoassemblies and may be applied for tracking defects. Here we demonstrate that, using NP-SIMS, ensemble averaging can be avoided and molecular analysis can be undertaken at a scale below 5 nm, allowing for nanoscale molecular analysis of nano-objects and their interfaces.
Collapse
Affiliation(s)
- Michael J Eller
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Jesse M Sandoval
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | | | - Emile A Schweikert
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
15
|
Concentration Quantification of TiO 2 Nanoparticles Synthesized by Laser Ablation of a Ti Target in Water. MATERIALS 2022; 15:ma15093146. [PMID: 35591479 PMCID: PMC9104483 DOI: 10.3390/ma15093146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/20/2022]
Abstract
In this work, we present a quantitative method for determining the concentration of metal oxide nanoparticles (NP) synthesized by laser ablation in liquid. The case study was performed with titanium dioxide nanoparticles (TiO2 NP), which were synthesized by laser ablation of a Ti target in water. After synthesis, a colloidal solution was analyzed with UV-Vis spectroscopy. At the same time, the craters that remained on the Ti target after ablation were evaluated with an optical microscope to determine the volume of the ablated material. SEM microscopy was used to determine the TiO2 NP size distribution. It was found that synthesized TiO2 NP followed a Log-Normal diameter distribution with a maximum at about 64 nm. From the volume of ablated material and NP size distribution, under the assumption that most of the ablated material is consumed to form nanoparticles, a concentration of nanoparticles can be determined. The proposed method is verified by comparing the calculated concentrations to the values obtained from the Beer–Lambert law using the Mie scattering theory for the NP cross-section calculation.
Collapse
|
16
|
Shajhutdinova Z, Pashirova T, Masson P. Kinetic Processes in Enzymatic Nanoreactors for In Vivo Detoxification. Biomedicines 2022; 10:biomedicines10040784. [PMID: 35453533 PMCID: PMC9025091 DOI: 10.3390/biomedicines10040784] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/20/2022] Open
Abstract
Enzymatic nanoreactors are enzyme-encapsulated nanobodies that are capable of performing biosynthetic or catabolic reactions. For this paper, we focused on therapeutic enzyme nanoreactors for the neutralization of toxicants, paying special attention to the inactivation of organophosphorus compounds (OP). Therapeutic enzymes that are capable of detoxifying OPs are known as bioscavengers. The encapsulation of injectable bioscavengers by nanoparticles was first used to prevent fast clearance and the immune response to heterologous enzymes. The aim of enzyme nanoreactors is also to provide a high concentration of the reactive enzyme in stable nanocontainers. Under these conditions, the detoxification reaction takes place inside the compartment, where the enzyme concentration is much higher than in the toxicant diffusing across the nanoreactor membrane. Thus, the determination of the concentration of the encapsulated enzyme is an important issue in nanoreactor biotechnology. The implications of second-order reaction conditions, the nanoreactor’s permeability in terms of substrates, and the reaction products and their possible osmotic, viscosity, and crowding effects are also examined.
Collapse
Affiliation(s)
- Zukhra Shajhutdinova
- Biochemical Neuropharmacology Laboratory, Kazan Federal University, Kremlevskaya Str. 18, 420111 Kazan, Russia;
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia;
| | - Tatiana Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia;
| | - Patrick Masson
- Biochemical Neuropharmacology Laboratory, Kazan Federal University, Kremlevskaya Str. 18, 420111 Kazan, Russia;
- Correspondence:
| |
Collapse
|
17
|
Minelli C, Wywijas M, Bartczak D, Cuello-Nuñez S, Infante HG, Deumer J, Gollwitzer C, Krumrey M, Murphy KE, Johnson ME, Montoro Bustos AR, Strenge IH, Faure B, Høghøj P, Tong V, Burr L, Norling K, Höök F, Roesslein M, Kocic J, Hendriks L, Kestens V, Ramaye Y, Contreras Lopez MC, Auclair G, Mehn D, Gilliland D, Potthoff A, Oelschlägel K, Tentschert J, Jungnickel H, Krause BC, Hachenberger YU, Reichardt P, Luch A, Whittaker TE, Stevens MM, Gupta S, Singh A, Lin FH, Liu YH, Costa AL, Baldisserri C, Jawad R, Andaloussi SEL, Holme MN, Lee TG, Kwak M, Kim J, Ziebel J, Guignard C, Cambier S, Contal S, Gutleb AC, Kuba Tatarkiewicz J, Jankiewicz BJ, Bartosewicz B, Wu X, Fagan JA, Elje E, Rundén-Pran E, Dusinska M, Kaur IP, Price D, Nesbitt I, O Reilly S, Peters RJB, Bucher G, Coleman D, Harrison AJ, Ghanem A, Gering A, McCarron E, Fitzgerald N, Cornelis G, Tuoriniemi J, Sakai M, Tsuchida H, Maguire C, Prina-Mello A, Lawlor AJ, Adams J, Schultz CL, Constantin D, Thanh NTK, Tung LD, Panariello L, Damilos S, Gavriilidis A, Lynch I, Fryer B, Carrazco Quevedo A, Guggenheim E, Briffa S, Valsami-Jones E, Huang Y, Keller AA, Kinnunen VT, Perämäki S, Krpetic Z, Greenwood M, Shard AG. Versailles project on advanced materials and standards (VAMAS) interlaboratory study on measuring the number concentration of colloidal gold nanoparticles. NANOSCALE 2022; 14:4690-4704. [PMID: 35262538 DOI: 10.1039/d1nr07775a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We describe the outcome of a large international interlaboratory study of the measurement of particle number concentration of colloidal nanoparticles, project 10 of the technical working area 34, "Nanoparticle Populations" of the Versailles Project on Advanced Materials and Standards (VAMAS). A total of 50 laboratories delivered results for the number concentration of 30 nm gold colloidal nanoparticles measured using particle tracking analysis (PTA), single particle inductively coupled plasma mass spectrometry (spICP-MS), ultraviolet-visible (UV-Vis) light spectroscopy, centrifugal liquid sedimentation (CLS) and small angle X-ray scattering (SAXS). The study provides quantitative data to evaluate the repeatability of these methods and their reproducibility in the measurement of number concentration of model nanoparticle systems following a common measurement protocol. We find that the population-averaging methods of SAXS, CLS and UV-Vis have high measurement repeatability and reproducibility, with between-labs variability of 2.6%, 11% and 1.4% respectively. However, results may be significantly biased for reasons including inaccurate material properties whose values are used to compute the number concentration. Particle-counting method results are less reproducibile than population-averaging methods, with measured between-labs variability of 68% and 46% for PTA and spICP-MS respectively. This study provides the stakeholder community with important comparative data to underpin measurement reproducibility and method validation for number concentration of nanoparticles.
Collapse
Affiliation(s)
- Caterina Minelli
- Chemical & Biological Sciences Department, National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK.
| | - Magdalena Wywijas
- Chemical & Biological Sciences Department, National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK.
| | - Dorota Bartczak
- National Measurement Laboratory, Queens road, Teddington TW11 0LY, UK
| | | | | | - Jerome Deumer
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin, Germany
| | - Christian Gollwitzer
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin, Germany
| | - Michael Krumrey
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin, Germany
| | - Karen E Murphy
- National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899-8391, USA
| | - Monique E Johnson
- National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899-8391, USA
| | - Antonio R Montoro Bustos
- National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899-8391, USA
| | - Ingo H Strenge
- National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899-8391, USA
| | - Bertrand Faure
- Xenocs SAS, 1-3 Allée du Nanomètre, 38000 Grenoble, France
| | - Peter Høghøj
- Xenocs SAS, 1-3 Allée du Nanomètre, 38000 Grenoble, France
| | - Vivian Tong
- Chemical & Biological Sciences Department, National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK.
| | - Loïc Burr
- CSEM SA, Bahnhofstrasse 1, 7242 Landquart, Switzerland
| | - Karin Norling
- Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Fredrik Höök
- Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Matthias Roesslein
- Empa, Swiss Federal Laboratories for Material Science and Technology, Lerchenfeldstrasse 5, CH-9014 St Gallen, Switzerland
| | - Jovana Kocic
- ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | | | - Vikram Kestens
- European Commission, Joint Research Centre (JRC), Geel, Belgium
| | - Yannic Ramaye
- European Commission, Joint Research Centre (JRC), Geel, Belgium
| | | | - Guy Auclair
- European Commission, Joint Research Centre (JRC), Geel, Belgium
| | - Dora Mehn
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Annegret Potthoff
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Winterbergstr. 28, 01217 Dresden, Germany
| | - Kathrin Oelschlägel
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Winterbergstr. 28, 01217 Dresden, Germany
| | - Jutta Tentschert
- The German Federal Institute for Risk Assessment, Max-Dohrn Str. 8-10, Berlin, Germany
| | - Harald Jungnickel
- The German Federal Institute for Risk Assessment, Max-Dohrn Str. 8-10, Berlin, Germany
| | - Benjamin C Krause
- The German Federal Institute for Risk Assessment, Max-Dohrn Str. 8-10, Berlin, Germany
| | - Yves U Hachenberger
- The German Federal Institute for Risk Assessment, Max-Dohrn Str. 8-10, Berlin, Germany
| | - Philipp Reichardt
- The German Federal Institute for Risk Assessment, Max-Dohrn Str. 8-10, Berlin, Germany
| | - Andreas Luch
- The German Federal Institute for Risk Assessment, Max-Dohrn Str. 8-10, Berlin, Germany
| | - Thomas E Whittaker
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, Exhibition road, London SW7 2BX, UK
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, Exhibition road, London SW7 2BX, UK
| | - Shalini Gupta
- Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Akash Singh
- Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Fang-Hsin Lin
- Centre for Measurement Standards, Industrial Technology Research Institute, No. 321, Sec. 2, Kuang Fu Rd., Hsinchu, 30011, Taiwan, Republic of China
| | - Yi-Hung Liu
- Centre for Measurement Standards, Industrial Technology Research Institute, No. 321, Sec. 2, Kuang Fu Rd., Hsinchu, 30011, Taiwan, Republic of China
| | - Anna Luisa Costa
- Institute of Science and Technology for Ceramics, Via Granarolo 64, 48018 Faenza, Italy
| | - Carlo Baldisserri
- Institute of Science and Technology for Ceramics, Via Granarolo 64, 48018 Faenza, Italy
| | - Rid Jawad
- Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Margaret N Holme
- Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, Exhibition road, London SW7 2BX, UK
| | - Tae Geol Lee
- Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
| | - Minjeong Kwak
- Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
| | - Jaeseok Kim
- Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
| | - Johanna Ziebel
- Luxembourg Institute of Science and Technology, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Cedric Guignard
- Luxembourg Institute of Science and Technology, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Sebastien Cambier
- Luxembourg Institute of Science and Technology, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Servane Contal
- Luxembourg Institute of Science and Technology, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Arno C Gutleb
- Luxembourg Institute of Science and Technology, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | | | | | - Bartosz Bartosewicz
- Military University of Technology, gen. Sylwestra Kaliskiego 2 str., 00-908 Warsaw, Poland
| | - Xiaochun Wu
- National Center for Nanoscience and Technology (NCNST), No. 11, ZhongGuanCun BeiYiTiao, Beijing 100190, People's Republic of China
| | - Jeffrey A Fagan
- National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899-8391, USA
| | - Elisabeth Elje
- NILU-Norwegian Institute for Air Research, Instituttveien 18, 2007 Kjeller, Norway
- University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway
| | - Elise Rundén-Pran
- NILU-Norwegian Institute for Air Research, Instituttveien 18, 2007 Kjeller, Norway
| | - Maria Dusinska
- NILU-Norwegian Institute for Air Research, Instituttveien 18, 2007 Kjeller, Norway
| | - Inder Preet Kaur
- Nottingham Trent University, 50 Shakespeare St, Nottingham NG1 4FQ, UK
| | - David Price
- PerkinElmer, Chalfont Road, Seer Green, Bucks HP92FX, UK
| | - Ian Nesbitt
- Public Analyst's Laboratory, Sir Patrick Duns, Lower Grand Canal Street, Dublin 2, D02 P667, Ireland
| | - Sarah O Reilly
- Public Analyst's Laboratory, Sir Patrick Duns, Lower Grand Canal Street, Dublin 2, D02 P667, Ireland
| | - Ruud J B Peters
- Wageningen Food Safety Research, Wageningen University & Research, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands
| | - Guillaume Bucher
- Service Commun des Laboratoires, 3 Avenue Dr Albert Schweitzer, 33600 Pessac, France
| | | | | | - Antoine Ghanem
- SOLVAY Research & Innovation, Brussels Centre, Rue de Ransbeek 310, 1120 Brussels, Belgium
| | - Anne Gering
- SOLVAY Research & Innovation, Brussels Centre, Rue de Ransbeek 310, 1120 Brussels, Belgium
| | - Eileen McCarron
- State Laboratory, Backweston Campus, Young's Cross, Celbridge, Co Kildare, W23 VW2C, Ireland
| | - Niamh Fitzgerald
- State Laboratory, Backweston Campus, Young's Cross, Celbridge, Co Kildare, W23 VW2C, Ireland
| | - Geert Cornelis
- Swedish University of Agricultural Sciences, Lennart Hjelms väg 9, 75651 Uppsala, Sweden
| | - Jani Tuoriniemi
- Swedish University of Agricultural Sciences, Lennart Hjelms väg 9, 75651 Uppsala, Sweden
| | - Midori Sakai
- Toray Research Center, Inc., 3-3-7 Sonoyama, Otsu, Shiga 5208567, Japan
| | - Hidehisa Tsuchida
- Toray Research Center, Inc., 3-3-7 Sonoyama, Otsu, Shiga 5208567, Japan
| | - Ciarán Maguire
- Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Adriele Prina-Mello
- Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Alan J Lawlor
- UK centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, UK
| | - Jessica Adams
- UK centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, UK
| | - Carolin L Schultz
- UK Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh-Gifford, Wallingford, OX10 8BB, UK
| | - Doru Constantin
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Nguyen Thi Kim Thanh
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
| | - Le Duc Tung
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
| | - Luca Panariello
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Spyridon Damilos
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Asterios Gavriilidis
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, UK
| | - Benjamin Fryer
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, UK
| | - Ana Carrazco Quevedo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, UK
| | - Emily Guggenheim
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, UK
| | - Sophie Briffa
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, UK
| | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, UK
| | - Yuxiong Huang
- Bren School of Environmental Science and Management, University of California at Santa Barbara, CA, 93106, USA
| | - Arturo A Keller
- Bren School of Environmental Science and Management, University of California at Santa Barbara, CA, 93106, USA
| | - Virva-Tuuli Kinnunen
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Siiri Perämäki
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Zeljka Krpetic
- School of Science Engineering and Environment, University of Salford, M5 4WT Salford, UK
| | - Michael Greenwood
- School of Science Engineering and Environment, University of Salford, M5 4WT Salford, UK
| | - Alexander G Shard
- Chemical & Biological Sciences Department, National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK.
| |
Collapse
|
18
|
Petersen EJ, Ceger P, Allen DG, Coyle J, Derk R, Reyero NG, Gordon J, Kleinstreuer N, Matheson J, McShan D, Nelson BC, Patri AK, Rice P, Rojanasakul L, Sasidharan A, Scarano L, Chang X. U.S. Federal Agency interests and key considerations for new approach methodologies for nanomaterials. ALTEX 2021; 39:183–206. [PMID: 34874455 PMCID: PMC9115850 DOI: 10.14573/altex.2105041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 12/02/2021] [Indexed: 12/22/2022]
Abstract
Engineered nanomaterials (ENMs) come in a wide array of shapes, sizes, surface coatings, and compositions, and often possess novel or enhanced properties compared to larger sized particles of the same elemental composition. To ensure the safe commercialization of products containing ENMs, it is important to thoroughly understand their potential risks. Given that ENMs can be created in an almost infinite number of variations, it is not feasible to conduct in vivo testing on each type of ENM. Instead, new approach methodologies (NAMs) such as in vitro or in chemico test methods may be needed, given their capacity for higher throughput testing, lower cost, and ability to provide information on toxicological mechanisms. However, the different behaviors of ENMs compared to dissolved chemicals may challenge safety testing of ENMs using NAMs. In this study, member agencies within the Interagency Coordinating Committee on the Validation of Alternative Methods were queried about what types of ENMs are of agency interest and whether there is agency-specific guidance for ENM toxicity testing. To support the ability of NAMs to provide robust results in ENM testing, two key issues in the usage of NAMs, namely dosimetry and interference/bias controls, are thoroughly discussed.
Collapse
Affiliation(s)
- Elijah J. Petersen
- U.S. Department of Commerce, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Patricia Ceger
- Integrated Laboratory Systems LLC, Research Triangle Park, NC, USA
| | - David G. Allen
- Integrated Laboratory Systems LLC, Research Triangle Park, NC, USA
| | - Jayme Coyle
- National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Morgantown, WV, USA
- Current affiliation: UES, Inc., Dayton, OH, USA
| | - Raymond Derk
- National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Morgantown, WV, USA
| | | | - John Gordon
- U.S. Consumer Product Safety Commission, Bethesda, MD, USA
| | - Nicole Kleinstreuer
- National Institute of Environmental Health Sciences, National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, Research Triangle Park, NC, USA
| | | | - Danielle McShan
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington, DC, USA
| | - Bryant C. Nelson
- U.S. Department of Commerce, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Anil K. Patri
- U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, AR, USA
| | - Penelope Rice
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - Liying Rojanasakul
- National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Morgantown, WV, USA
| | - Abhilash Sasidharan
- U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics, Washington, DC, USA
| | - Louis Scarano
- U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics, Washington, DC, USA
| | - Xiaoqing Chang
- Integrated Laboratory Systems LLC, Research Triangle Park, NC, USA
| |
Collapse
|
19
|
Bakier MAYA, Suzuki K, Khajornrungruang P. Study on Nanoparticle Agglomeration During Chemical Mechanical Polishing (CMP) Performance. JOURNAL OF NANOFLUIDS 2021. [DOI: 10.1166/jon.2021.1791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The materials used in base fluids and nanoparticles are varied. One- and two-step manufacturing processes are used to create stable and highly conductive nanofluids. Both methods for making nanoparticle suspensions suffer from nanoparticle agglomeration, which is a major problem in
any technique that uses nanopowders. As a result, the key to substantial surface finishing at planarization treatments and increase in the thermal characteristics of nanofluids is the production and suspension of almost non-agglomerated or monodispersed nanoparticles in liquids. This unfavorable
aggregation is a major problem in nanopowder technology. Primary material constituents agglomerate rapidly overcoming the stable situation, and nanoparticle agglomerates set out in liquids, making it difficult to create nanofluids using two-step techniques. This research looks at the link
between nanoparticle agglomeration during slurry flow and Material Removal Rate (MRR) during chemical mechanical polishing (CMP). The reciprocal relationship between MRR and the shear force exerted by the slurry flow was qualitatively elucidated by the researchers for the theoretical investigation.
However, the present manipulation is focused on quantifying the shear stress exerted by nanoparticles floating in the slurry. As a result, the MRR-aggregation model is established based on the relationship between MRR and shear force. The experiment is being carried out to support this idea.
The experimental results of aggregation and shear forces have been conducted by some recent studies. However, the extension to the real CMP is very promising for accomplishing a precise style of the removal mechanism and surface finishing criterion as well.
Collapse
Affiliation(s)
- Mohammed A. Y. A. Bakier
- Department of Mechanical Information Science and Technology, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, 820-8502, Japan
| | - Keisuke Suzuki
- Department of Mechanical Information Science and Technology, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, 820-8502, Japan
| | - Panart Khajornrungruang
- Department of Mechanical Information Science and Technology, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, 820-8502, Japan
| |
Collapse
|
20
|
Russell E, Dunne V, Russell B, Mohamud H, Ghita M, McMahon SJ, Butterworth KT, Schettino G, McGarry CK, Prise KM. Impact of superparamagnetic iron oxide nanoparticles on in vitro and in vivo radiosensitisation of cancer cells. Radiat Oncol 2021; 16:104. [PMID: 34118963 PMCID: PMC8199842 DOI: 10.1186/s13014-021-01829-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE The recent implementation of MR-Linacs has highlighted theranostic opportunities of contrast agents in both imaging and radiotherapy. There is a lack of data exploring the potential of superparamagnetic iron oxide nanoparticles (SPIONs) as radiosensitisers. Through preclinical 225 kVp exposures, this study aimed to characterise the uptake and radiobiological effects of SPIONs in tumour cell models in vitro and to provide proof-of-principle application in a xenograft tumour model. METHODS SPIONs were also characterised to determine their hydrodynamic radius using dynamic light scattering and uptake was measured using ICP-MS in 6 cancer cell lines; H460, MiaPaCa2, DU145, MCF7, U87 and HEPG2. The impact of SPIONs on radiobiological response was determined by measuring DNA damage using 53BP1 immunofluorescence and cell survival. Sensitisation Enhancement Ratios (SERs) were compared with the predicted Dose Enhancement Ratios (DEFs) based on physical absorption estimations. In vivo efficacy was demonstrated using a subcutaneous H460 xenograft tumour model in SCID mice by following intra-tumoural injection of SPIONs. RESULTS The hydrodynamic radius was found to be between 110 and 130 nm, with evidence of being monodisperse in nature. SPIONs significantly increased DNA damage in all cell lines with the exception of U87 cells at a dose of 1 Gy, 1 h post-irradiation. Levels of DNA damage correlated with the cell survival, in which all cell lines except U87 cells showed an increased sensitivity (P < 0.05) in the linear quadratic curve fit for 1 h exposure to 23.5 μg/ml SPIONs. There was also a 30.1% increase in the number of DNA damage foci found for HEPG2 cells at 2 Gy. No strong correlation was found between SPION uptake and DNA damage at any dose, yet the biological consequences of SPIONs on radiosensitisation were found to be much greater, with SERs up to 1.28 ± 0.03, compared with predicted physical dose enhancement levels of 1.0001. In vivo, intra-tumoural injection of SPIONs combined with radiation showed significant tumour growth delay compared to animals treated with radiation or SPIONs alone (P < 0.05). CONCLUSIONS SPIONs showed radiosensitising effects in 5 out of 6 cancer cell lines. No correlation was found between the cell-specific uptake of SPIONs into the cells and DNA damage levels. The in vivo study found a significant decrease in the tumour growth rate.
Collapse
Affiliation(s)
- Emily Russell
- Patrick G. Johnston Centre for Cancer Research, Queen's University, Belfast, UK.
- National Physical Laboratory, London, UK.
- Department of Medical Physics and Engineering, Leeds Teaching Hospitals, NHS Trust, Leeds, UK.
| | - Victoria Dunne
- Patrick G. Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| | | | | | - Mihaela Ghita
- Patrick G. Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| | - Stephen J McMahon
- Patrick G. Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| | - Karl T Butterworth
- Patrick G. Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| | - Giuseppe Schettino
- National Physical Laboratory, London, UK
- Department of Physics, University of Surrey, Guildford, UK
| | - Conor K McGarry
- Patrick G. Johnston Centre for Cancer Research, Queen's University, Belfast, UK
- Northern Ireland Cancer Centre, Belfast, UK
| | - Kevin M Prise
- Patrick G. Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| |
Collapse
|
21
|
Huang X, Liu H, Lu D, Lin Y, Liu J, Liu Q, Nie Z, Jiang G. Mass spectrometry for multi-dimensional characterization of natural and synthetic materials at the nanoscale. Chem Soc Rev 2021; 50:5243-5280. [PMID: 33656017 DOI: 10.1039/d0cs00714e] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Characterization of materials at the nanoscale plays a crucial role in in-depth understanding the nature and processes of the substances. Mass spectrometry (MS) has characterization capabilities for nanomaterials (NMs) and nanostructures by offering reliable multi-dimensional information consisting of accurate mass, isotopic, and molecular structural information. In the last decade, MS has emerged as a powerful nano-characterization technique. This review comprehensively summarizes the capabilities of MS in various aspects of nano-characterization that greatly enrich the toolbox of nano research. Compared with other characterization techniques, MS has unique capabilities for real-time monitoring and tracking reaction intermediates and by-products. Moreover, MS has shown application potential in some novel aspects, such as MS imaging of the biodistribution and fate of NMs in animals and humans, stable isotopic tracing of NMs, and risk assessment of NMs, which deserve update and integration into the current knowledge framework of nano-characterization.
Collapse
Affiliation(s)
- Xiu Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huihui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Dawei Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yue Lin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. and University of Chinese Academy of Sciences, Beijing 100049, China and Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Zongxiu Nie
- University of Chinese Academy of Sciences, Beijing 100049, China and Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Gold Nanoparticles Induce Oxidative Stress and Apoptosis in Human Kidney Cells. NANOMATERIALS 2020; 10:nano10050995. [PMID: 32455923 PMCID: PMC7279525 DOI: 10.3390/nano10050995] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/14/2020] [Accepted: 05/16/2020] [Indexed: 12/15/2022]
Abstract
Gold nanoparticles (AuNPs) are highly attractive for biomedical applications. Therefore, several in vitro and in vivo studies have addressed their safety evaluation. Nevertheless, there is a lack of knowledge regarding their potential detrimental effect on human kidney. To evaluate this effect, AuNPs with different sizes (13 nm and 60 nm), shapes (spheres and stars), and coated with 11-mercaptoundecanoic acid (MUA) or with sodium citrate, were synthesized, characterized, and their toxicological effects evaluated 24 h after incubation with a proximal tubular cell line derived from normal human kidney (HK-2). After exposure, viability was assessed by the MTT assay. Changes in lysosomal integrity, mitochondrial membrane potential (ΔΨm), reactive species (ROS/RNS), intracellular glutathione (total GSH), and ATP were also evaluated. Apoptosis was investigated through the evaluation of the activity of caspases 3, 8 and 9. Overall, the tested AuNPs targeted mainly the mitochondria in a concentration-dependent manner. The lysosomal integrity was also affected but to a lower extent. The smaller 13 nm nanospheres (both citrate- and MUA-coated) proved to be the most toxic among all types of AuNPs, increasing ROS production and decreasing mitochondrial membrane potential (p ≤ 0.01). For the MUA-coated 13 nm nanospheres, these effects were associated also to increased levels of total glutathione (p ≤ 0.01) and enhanced ATP production (p ≤ 0.05). Programmed cell death was detected through the activation of both extrinsic and intrinsic pathways (caspase 8 and 9) (p ≤ 0.05). We found that the larger 60 nm AuNPs, both nanospheres and nanostars, are apparently less toxic than their smaller counter parts. Considering the results herein presented, it should be taken into consideration that even if renal clearance of the AuNPs is desirable, since it would prevent accumulation and detrimental effects in other organs, a possible intracellular accumulation of AuNPs in kidneys can induce cell damage and later compromise kidney function.
Collapse
|
23
|
Enea M, Pereira E, Silva DD, Costa J, Soares ME, de Lourdes Bastos M, Carmo H. Study of the intestinal uptake and permeability of gold nanoparticles using both in vitro and in vivo approaches. NANOTECHNOLOGY 2020; 31:195102. [PMID: 31962292 DOI: 10.1088/1361-6528/ab6dfb] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Gold nanoparticles (AuNPs) are highly attractive to biomedical applications. Here, we investigated the effects of (i) ca. 15 nm spherical AuNPs capped with citrate or 11-mercaptoundecanoic acid (MUA) and (ii) ca. 60 nm spherical citrate-capped AuNPs, and ca. 60 nm MUA-capped star-shaped AuNPs on the cytotoxicity, cellular uptake and permeability, using media supplemented or not with 1% fetal bovine serum (FBS) on caucasian colon adenocarcinoma Caco-2 cells. In addition, the colloidal stability of the nanoparticles in media (supplemented or not) was assessed after 24 h-incubations at 60 μM. The 60 nm gold nanospheres and stars were administrated orally to Wistar rats in order to evaluate their systemic absorption and biodistribution after 24 h. At non-supplemented media settings, citrate-capped gold nanoparticles seem to be more toxic than their MUA-capped counterparts. Also, smaller nanoparticles show higher toxicity than larger ones. The use of cell culture media with 1% FBS not only increased the stability of all AuNPs, as also significantly reduced their cytotoxicity. In the uptake studies, higher AuNPs incorporation was noticed in serum supplemented media, this effect being particularly significant for the 60 nm nanoparticles. Cellular incorporation depended also on the capping agent and size. None of the tested samples crossed the in vitro intestinal barrier. Confirming the in vitro results, the in vivo biodistribution study of the 60 nm AuNPs orally given to rats showed that their systemic absorption is low and that they are mainly eliminated through the faeces. Altogether, these preliminary results suggest that our novel AuNPs have high potential to be considered promising candidates for application in diagnostics or drug delivery at the intestinal level, showing high biocompatibility. However, unless it is desired that these nanomaterials avoid systemic absorption upon oral administration, additional functionalization should be sought to increase their low bioavailability.
Collapse
Affiliation(s)
- Maria Enea
- UCIBIO REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, Porto, 4050-313, Portugal. LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, Porto, 4169-007, Portugal
| | | | | | | | | | | | | |
Collapse
|
24
|
Effect of Silver Nanoparticles on the Microstructure, Non-Isothermal Crystallization Behavior and Antibacterial Activity of Polyoxymethylene. Polymers (Basel) 2020; 12:polym12020424. [PMID: 32059358 PMCID: PMC7077674 DOI: 10.3390/polym12020424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/01/2020] [Accepted: 02/07/2020] [Indexed: 12/17/2022] Open
Abstract
Silver (Ag) nanoparticles were synthesized by a facile route in the presence of oleic acid and n-propylamine. It was shown that the average primary size of the as-synthesized Ag nanoparticles was approximately 10 nm and the surface of as-synthesized Ag nanoparticles was capped with monolayer surfactants with the content of 19.6%. Based on as-synthesized Ag nanoparticles, polyoxymethylene (POM)/Ag nanocomposites were prepared. The influence of Ag nanoparticles on non-isothermal crystallization behavior of POM was investigated by differential scanning calorimetry (DSC). The Jeziorny, Jeziorny-modified Avrami, Ozawa, Liu and Mo, Ziabicki and Kissinger models were applied to analyze the non-isothermal melt crystallization data of POM/Ag nanocomposites. Results of half time (t1/2), crystallization rate parameter (CRP), crystallization rate function (K(T)), kinetic parameter (F(T)), the kinetic crystallizability at unit cooling rate (GZ) and the crystallization activation energy (∆E) were determined. Small amounts of Ag nanoparticles dispersed into POM matrix were shown to act as heterogeneous nuclei, which could enhance the crystallization rate of POM, increase the number of POM spherulites and reduce POM spherulites size. However, the higher loading of Ag nanoparticles were easily aggregated, which restrained POM crystallization to some degree. Furthermore, the POM/Ag nanocomposites showed robust antibacterial activity against Escherichia coli and Staphylococcus aureus.
Collapse
|