1
|
Olejnik-Fehér N, Jędrzejewska M, Wolska-Pietkiewicz M, Lee D, Paëpe GD, Lewiński J. On the Fate of Lithium Ions in Sol-Gel Derived Zinc Oxide Nanocrystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309984. [PMID: 38497489 DOI: 10.1002/smll.202309984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/28/2024] [Indexed: 03/19/2024]
Abstract
Among diverse chemical synthetic approaches to zinc oxide nanocrystals (ZnO NCs), ubiquitous inorganic sol-gel methodology proved crucial for advancements in ZnO-based nanoscience. Strikingly, unlike the exquisite level of control over morphology and size dispersity achieved in ZnO NC syntheses, the purity of the crystalline phase, as well as the understanding of the surface structure and the character of the inorganic-organic interface, have been limited to vague descriptors until very recently. Herein, ZnO NCs applying the standard sol-gel synthetic protocol are synthesized with zinc acetate and lithium hydroxide and tracked the integration of lithium (Li) cations into the interior and exterior of nanoparticles by combining various techniques, including advanced solid-state NMR methods. In contrast to common views, it is demonstrated that Li+ ions remain kinetically trapped in the inorganic core, enter into a shallow subsurface layer, and generate "swelling" of the surface and interface regions. Thus, this work enabled both the determination of the NCs' structural imperfections and an in-depth understanding of the unappreciated role of the Li+ ions in impacting the doping and the passivation of sol-gel-derived ZnO nanomaterials.
Collapse
Affiliation(s)
- Natalia Olejnik-Fehér
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, 01-224, Poland
- Université Grenoble Alpes, CEA, IRIG, MEM, Grenoble, 38000, France
| | - Maria Jędrzejewska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, 01-224, Poland
| | | | - Daniel Lee
- Université Grenoble Alpes, CEA, IRIG, MEM, Grenoble, 38000, France
| | - Gaël De Paëpe
- Université Grenoble Alpes, CEA, IRIG, MEM, Grenoble, 38000, France
| | - Janusz Lewiński
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, 01-224, Poland
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland
| |
Collapse
|
2
|
Kurdadze T, Lamadie F, Nehme KA, Teychené S, Biscans B, Rodriguez-Ruiz I. On-Chip Photonic Detection Techniques for Non-Invasive In Situ Characterizations at the Microfluidic Scale. SENSORS (BASEL, SWITZERLAND) 2024; 24:1529. [PMID: 38475065 DOI: 10.3390/s24051529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Microfluidics has emerged as a robust technology for diverse applications, ranging from bio-medical diagnostics to chemical analysis. Among the different characterization techniques that can be used to analyze samples at the microfluidic scale, the coupling of photonic detection techniques and on-chip configurations is particularly advantageous due to its non-invasive nature, which permits sensitive, real-time, high throughput, and rapid analyses, taking advantage of the microfluidic special environments and reduced sample volumes. Putting a special emphasis on integrated detection schemes, this review article explores the most relevant advances in the on-chip implementation of UV-vis, near-infrared, terahertz, and X-ray-based techniques for different characterizations, ranging from punctual spectroscopic or scattering-based measurements to different types of mapping/imaging. The principles of the techniques and their interest are discussed through their application to different systems.
Collapse
Affiliation(s)
- Tamar Kurdadze
- CEA, DES, ISEC, DMRC, Univ Montpellier, 30207 Bagnols-sur-Ceze, Marcoule, France
| | - Fabrice Lamadie
- CEA, DES, ISEC, DMRC, Univ Montpellier, 30207 Bagnols-sur-Ceze, Marcoule, France
| | - Karen A Nehme
- Laboratoire de Génie Chimique, CNRS, UMR 5503, 4 Allée Emile Monso, 31432 Toulouse, France
| | - Sébastien Teychené
- Laboratoire de Génie Chimique, CNRS, UMR 5503, 4 Allée Emile Monso, 31432 Toulouse, France
| | - Béatrice Biscans
- Laboratoire de Génie Chimique, CNRS, UMR 5503, 4 Allée Emile Monso, 31432 Toulouse, France
| | - Isaac Rodriguez-Ruiz
- Laboratoire de Génie Chimique, CNRS, UMR 5503, 4 Allée Emile Monso, 31432 Toulouse, France
| |
Collapse
|
3
|
Ramamoorthy RK, Yildirim E, Rodriguez-Ruiz I, Roblin P, Lacroix LM, Diaz A, Parmar R, Teychené S, Viau G. Sub-millisecond microfluidic mixers coupled to time-resolved in situ photonics to study ultra-fast reaction kinetics: the case of ultra-small gold nanoparticle synthesis. LAB ON A CHIP 2024; 24:327-338. [PMID: 38088259 DOI: 10.1039/d3lc00778b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
We report a continuous microreactor platform achieving sub-millisecond homogeneous reagent mixing (∼300 μs) for a time-resolved study on the synthesis of ultra-small gold nanoparticles (NPs). The microreactor (coupled with small angle X-ray scattering, UV-vis, and X-ray absorption spectroscopy for in situ and in operando characterizations), operates within mixing time frames below system characteristic times, providing a unique opportunity to deepen the comprehension of reaction and phase transition pathways with unprecedented details. The microreactor channel length can be approximated to a given reaction time when operated in continuous mode and steady state. As a result, the system can be statically investigated, eliminating technique-dependent probing time constraints and local inhomogeneities caused by mixing issues. We have studied Au(0) NP formation kinetics from Au(III) precursors complexed with oleylamine in organic media, using triisopropylsilane as a reducing agent. The existence of Au(III)/Au(I) prenucleation clusters and the formation of a transient Au(I) lamellar phase under certain conditions, before the onset of Au(0) formation, have been observed. Taking advantage of the high frequency time-resolved information, we propose and model two different reaction pathways associated with the presence or absence of the Au(I) lamellar phase. In both cases, non-classical pathways leading to the formation of NPs are discussed.
Collapse
Affiliation(s)
- Raj Kumar Ramamoorthy
- Laboratoire de Physique et Chimie des Nano-Objets UMR 5215 INSA, CNRS, UPS, Université de Toulouse, 135 avenue de Rangueil, F-31077 Toulouse cedex 4, France.
- Laboratoire de Génie Chimique, CNRS, INP, UPS, Université de Toulouse, Toulouse, France.
- Fédération de Recherche FeRMAT, CNRS, INP, INSA, UPS, Université de Toulouse, Toulouse, France
| | - Ezgi Yildirim
- Laboratoire de Physique et Chimie des Nano-Objets UMR 5215 INSA, CNRS, UPS, Université de Toulouse, 135 avenue de Rangueil, F-31077 Toulouse cedex 4, France.
| | - Isaac Rodriguez-Ruiz
- Laboratoire de Génie Chimique, CNRS, INP, UPS, Université de Toulouse, Toulouse, France.
| | - Pierre Roblin
- Laboratoire de Génie Chimique, CNRS, INP, UPS, Université de Toulouse, Toulouse, France.
| | - Lise-Marie Lacroix
- Laboratoire de Physique et Chimie des Nano-Objets UMR 5215 INSA, CNRS, UPS, Université de Toulouse, 135 avenue de Rangueil, F-31077 Toulouse cedex 4, France.
- Institut Universitaire de France (IUF), 103 boulevard Saint Michel, 75005 Paris, France
| | - Ana Diaz
- Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Rohan Parmar
- Laboratoire de Génie Chimique, CNRS, INP, UPS, Université de Toulouse, Toulouse, France.
| | - Sébastien Teychené
- Laboratoire de Génie Chimique, CNRS, INP, UPS, Université de Toulouse, Toulouse, France.
| | - Guillaume Viau
- Laboratoire de Physique et Chimie des Nano-Objets UMR 5215 INSA, CNRS, UPS, Université de Toulouse, 135 avenue de Rangueil, F-31077 Toulouse cedex 4, France.
| |
Collapse
|
4
|
Abitaev K, Atanasova P, Bill J, Preisig N, Kuzmenko I, Ilavsky J, Liu Y, Sottmann T. In Situ Ultra-Small- and Small-Angle X-ray Scattering Study of ZnO Nanoparticle Formation and Growth through Chemical Bath Deposition in the Presence of Polyvinylpyrrolidone. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2180. [PMID: 37570497 PMCID: PMC10421471 DOI: 10.3390/nano13152180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023]
Abstract
ZnO inverse opals combine the outstanding properties of the semiconductor ZnO with the high surface area of the open-porous framework, making them valuable photonic and catalysis support materials. One route to produce inverse opals is to mineralize the voids of close-packed polymer nanoparticle templates by chemical bath deposition (CBD) using a ZnO precursor solution, followed by template removal. To ensure synthesis control, the formation and growth of ZnO nanoparticles in a precursor solution containing the organic additive polyvinylpyrrolidone (PVP) was investigated by in situ ultra-small- and small-angle X-ray scattering (USAXS/SAXS). Before that, we studied the precursor solution by in-house SAXS at T = 25 °C, revealing the presence of a PVP network with semiflexible chain behavior. Heating the precursor solution to 58 °C or 63 °C initiates the formation of small ZnO nanoparticles that cluster together, as shown by complementary transmission electron microscopy images (TEM) taken after synthesis. The underlying kinetics of this process could be deciphered by quantitatively analyzing the USAXS/SAXS data considering the scattering contributions of particles, clusters, and the PVP network. A nearly quantitative description of both the nucleation and growth period could be achieved using the two-step Finke-Watzky model with slow, continuous nucleation followed by autocatalytic growth.
Collapse
Affiliation(s)
- Karina Abitaev
- Institute of Physical Chemistry, University of Stuttgart, 70569 Stuttgart, Germany; (K.A.); (N.P.)
| | - Petia Atanasova
- Institute for Materials Science, University of Stuttgart, 70569 Stuttgart, Germany; (P.A.); (J.B.)
| | - Joachim Bill
- Institute for Materials Science, University of Stuttgart, 70569 Stuttgart, Germany; (P.A.); (J.B.)
| | - Natalie Preisig
- Institute of Physical Chemistry, University of Stuttgart, 70569 Stuttgart, Germany; (K.A.); (N.P.)
| | - Ivan Kuzmenko
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA; (I.K.); (J.I.)
| | - Jan Ilavsky
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA; (I.K.); (J.I.)
| | - Yun Liu
- National Institute of Standards and Technology Center for Neutron Research, Gaithersburg, MD 20899, USA;
| | - Thomas Sottmann
- Institute of Physical Chemistry, University of Stuttgart, 70569 Stuttgart, Germany; (K.A.); (N.P.)
| |
Collapse
|
5
|
Maro CAG, Gálvez HEG, Olivas ODJN, Morales ML, Hernández DV, Flores HG, Carmona VMO, Chinchillas MDJC. Peumus boldus Used in the Synthesis of ZnO Semiconductor Nanoparticles and Their Evaluation in Organic Contaminants. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4344. [PMID: 37374529 DOI: 10.3390/ma16124344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023]
Abstract
The high demand for nanomaterials in the field of industry and science has forced researchers to develop new synthesis methods that are more efficient, economical, and environmentally friendly. At present, the application of green synthesis has taken a great advantage over conventional synthesis methods because it helps with the control of the characteristics and properties of the resulting nanomaterials. In this research, ZnO nanoparticles (NPs) were synthesized by biosynthesis using dried boldo (Peumus boldus) leaves. The resulting biosynthesized NPs had a high purity, quasi-spherical shape with average sizes ranging from 15 to 30 nm and a band gap of ~2.8-3.1 eV. These NPs were used in the photocatalytic activity of three organic dyes. The results showed degradation of 100% methylene blue (MB) in 180 min, 92% methyl orange (MO) in 180 min, and 100% Rhodamine B (RhB) in 30 min of exposure. These results show that the Peumus boldus leaf extract is effective in the biosynthesis of ZnO NPs with good photocatalytic properties.
Collapse
Affiliation(s)
- Caree Abigail García Maro
- Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Fuente de Poseidón y Prol. Ángel Flores S/N, Los Mochis C.P. 81223, Mexico
| | - Horacio Edgardo Garrafa Gálvez
- Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Fuente de Poseidón y Prol. Ángel Flores S/N, Los Mochis C.P. 81223, Mexico
| | | | - Mizael Luque Morales
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California, Ensenada C.P. 22860, Mexico
- Instituto Tecnológico Nacional, Campus Guasave, Guasave C.P. 81149, Mexico
| | - Diana Vargas Hernández
- Departamento de Investigación en Polímeros y Materiales, CONACYT-Universidad de Sonora, Blvd. Luis Encinas Johnson y Rosales S/N, Hermosillo 83000, Mexico
| | - Hugo Galindo Flores
- Departamento de Ingeniería y Tecnología, Universidad Autónoma de Occidente (UAdeO), Guasave 81048, Mexico
| | - Víctor Manuel Orozco Carmona
- Departamento de Metalurgia e Integridad Estructural, Centro de Investigación en Materiales Avanzados (CIMAV), Av. Miguel de Cervantes Saavedra 120, Complejo Industrial Chihuahua, Chihuahua 31136, Mexico
| | | |
Collapse
|
6
|
Thongam DD, Chaturvedi H. Induced defect and ZnO nano-flower formation by N, N, dimethylformamide solvent for natural sunlight responsive floating photocatalytic advanced oxidation process. CHEMOSPHERE 2023; 313:137600. [PMID: 36549513 DOI: 10.1016/j.chemosphere.2022.137600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/01/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
The increasing disposal of dyes and face-mask propel to hunt for a solution to fight water pollution while assisting sustainability. This research overcomes the key challenges associated with implementing photocatalytic water treatment by using natural sunlight active photocatalyst, changing slurry system, eliminating the use of external triggering sources, and reusing face-mask fabric coated with ZnO to act as a floating photocatalyst. Unique morphological structures-cauliflower, hydrangea, and petals-likes are obtained with the variation in synthesis medium (Diethylene glycol (DEG), N, N-dimethyl formamide (DMF), H2O) and methods (precipitation, solvothermal) which are found to be dependent on the solvent properties. With the use of DMF having a higher dielectric constant and formation of dimethyl amine via hydrolysis, it influences in forming petals and flower-like morphologies, unlike DEG solvent. The ZnO-coated face-mask fabric is used as the floating photocatalyst under natural sunlight observing comparable 91% degradation efficiency in 100 min with that of 99% efficiency in the UV light-illuminated slurry system. The formation of petals-like structures, defects from the liberation of DMF molecules from the ZnO surface by calcination, larger pore sizes and pore volumes provided a synergistic effect on enhancing the degradation efficiency in these cases.
Collapse
Affiliation(s)
- Debika Devi Thongam
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Harsh Chaturvedi
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
7
|
Abstract
Nucleation and growth are critical steps in crystallization, which plays an important role in determining crystal structure, size, morphology, and purity. Therefore, understanding the mechanisms of nucleation and growth is crucial to realize the controllable fabrication of crystalline products with desired and reproducible properties. Based on classical models, the initial crystal nucleus is formed by the spontaneous aggregation of ions, atoms, or molecules, and crystal growth is dependent on the monomer's diffusion and the surface reaction. Recently, numerous in situ investigations on crystallization dynamics have uncovered the existence of nonclassical mechanisms. This review provides a summary and highlights the in situ studies of crystal nucleation and growth, with a particular emphasis on the state-of-the-art research progress since the year 2016, and includes technological advances, atomic-scale observations, substrate- and temperature-dependent nucleation and growth, and the progress achieved in the various materials: metals, alloys, metallic compounds, colloids, and proteins. Finally, the forthcoming opportunities and challenges in this fascinating field are discussed.
Collapse
Affiliation(s)
- Junjie Li
- Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
| | - Francis Leonard Deepak
- Nanostructured Materials Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre Jose Veiga, 4715-330Braga, Portugal
| |
Collapse
|
8
|
Slekiene N, Snitka V, Bruzaite I, Ramanavicius A. Influence of TiO 2 and ZnO Nanoparticles on α-Synuclein and β-Amyloid Aggregation and Formation of Protein Fibrils. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7664. [PMID: 36363256 PMCID: PMC9653647 DOI: 10.3390/ma15217664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
The most common neurological disorders, i.e., Parkinson's disease (PD) and Alzheimer's disease (AD), are characterized by degeneration of cognitive functions due to the loss of neurons in the central nervous system. The aggregation of amyloid proteins is an important pathological feature of neurological disorders.The aggregation process involves a series of complex structural transitions from monomeric to the formation of fibrils. Despite its potential importance in understanding the pathobiology of PD and AD diseases, the details of the aggregation process are still unclear. Nanoparticles (NPs) absorbed by the human circulatory system can interact with amyloid proteins in the human brain and cause PD. In this work, we report the study of the interaction between TiO2 nanoparticles (TiO2-NPs) and ZnO nanoparticles (ZnO-NPs) on the aggregation kinetics of β-amyloid fragment 1-40 (βA) and α-synuclein protein using surface-enhanced Raman spectroscopy (SERS) and tip-enhanced Raman spectroscopy (TERS). The characterizations of ZnO-NPs and TiO2-NPs were evaluated by X-ray diffraction (XRD) spectrum, atomic force microscopy (AFM), and UV-Vis spectroscopy. The interaction of nanoparticles with amyloid proteins was investigated by SERS. Our study showed that exposure of amyloid protein molecules to TiO2-NPs and ZnO-NPs after incubation at 37 °C caused morphological changes and stimulated aggregation and fibrillation. In addition, significant differences in the intensity and location of active Raman frequencies in the amide I domain were found. The principal component analysis (PCA) results show that the effect of NPs after incubation at 4 °C does not cause changes in βA structure.
Collapse
Affiliation(s)
- Nora Slekiene
- Pharmacy Center, Institute of Biomedical Sciences, Faculty of Medicine, University of Vilnius, M.K. Čiurlionio g. 21/27, LT-03101 Vilnius, Lithuania
| | - Valentinas Snitka
- Research Center for Microsystems and Nanotechnology, Kaunas University of Technology, 65 Studentu Str., LT-51369 Kaunas, Lithuania
| | - Ingrida Bruzaite
- Department of Chemistry and Bioengineering, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, Sauletekio Av. 11, LT-10223 Vilnius, Lithuania
- Laboratory of Electrochemical Energy Conversion, State Research Institute Centre for Physical Sciences and Technology, Sauletekio Av. 3, LT-10257 Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, 24 Naugarduko Str., LT-03225 Vilnius, Lithuania
- Laboratory of Nanotechnology, State Research Institute Centre for Physical Sciences and Technology, Sauletekio Av. 3, LT-10257 Vilnius, Lithuania
| |
Collapse
|
9
|
Levenstein MA, Robertson K, Turner TD, Hunter L, O’Brien C, O’Shaughnessy C, Kulak AN, Le Magueres P, Wojciechowski J, Mykhaylyk OO, Kapur N, Meldrum FC. Serial small- and wide-angle X-ray scattering with laboratory sources. IUCRJ 2022; 9:538-543. [PMID: 36071805 PMCID: PMC9438489 DOI: 10.1107/s2052252522007631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Recent advances in X-ray instrumentation and sample injection systems have enabled serial crystallography of protein nanocrystals and the rapid structural analysis of dynamic processes. However, this progress has been restricted to large-scale X-ray free-electron laser (XFEL) and synchrotron facilities, which are often oversubscribed and have long waiting times. Here, we explore the potential of state-of-the-art laboratory X-ray systems to perform comparable analyses when coupled to micro- and millifluidic sample environments. Our results demonstrate that commercial small- and wide-angle X-ray scattering (SAXS/WAXS) instruments and X-ray diffractometers are ready to access samples and timescales (≳5 ms) relevant to many processes in materials science including the preparation of pharmaceuticals, nanoparticles and functional crystalline materials. Tests of different X-ray instruments highlighted the importance of the optical configuration and revealed that serial WAXS/XRD analysis of the investigated samples was only possible with the higher flux of a microfocus setup. We expect that these results will also stimulate similar developments for structural biology.
Collapse
Affiliation(s)
| | - Karen Robertson
- Department of Chemical and Environmental Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Thomas D. Turner
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Liam Hunter
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Cate O’Brien
- Soft Matter Analytical Laboratory, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield S3 7HF, United Kingdom
| | - Cedrick O’Shaughnessy
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Alexander N. Kulak
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Pierre Le Magueres
- Rigaku Americas Corporation, 9009 New Tails Drive, The Woodlands, TX 77381, USA
| | | | - Oleksandr O. Mykhaylyk
- Soft Matter Analytical Laboratory, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield S3 7HF, United Kingdom
| | - Nikil Kapur
- School of Mechanical Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Fiona C. Meldrum
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
10
|
Yaghmur A, Hamad I. Microfluidic Nanomaterial Synthesis and In Situ SAXS, WAXS, or SANS Characterization: Manipulation of Size Characteristics and Online Elucidation of Dynamic Structural Transitions. Molecules 2022; 27:4602. [PMID: 35889473 PMCID: PMC9323596 DOI: 10.3390/molecules27144602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 11/27/2022] Open
Abstract
With the ability to cross biological barriers, encapsulate and efficiently deliver drugs and nucleic acid therapeutics, and protect the loaded cargos from degradation, different soft polymer and lipid nanoparticles (including liposomes, cubosomes, and hexosomes) have received considerable interest in the last three decades as versatile platforms for drug delivery applications and for the design of vaccines. Hard nanocrystals (including gold nanoparticles and quantum dots) are also attractive for use in various biomedical applications. Here, microfluidics provides unique opportunities for the continuous synthesis of these hard and soft nanomaterials with controllable shapes and sizes, and their in situ characterization through manipulation of the flow conditions and coupling to synchrotron small-angle X-ray (SAXS), wide-angle scattering (WAXS), or neutron (SANS) scattering techniques, respectively. Two-dimensional (2D) and three-dimensional (3D) microfluidic devices are attractive not only for the continuous production of monodispersed nanomaterials, but also for improving our understanding of the involved nucleation and growth mechanisms during the formation of hard nanocrystals under confined geometry conditions. They allow further gaining insight into the involved dynamic structural transitions, mechanisms, and kinetics during the generation of self-assembled nanostructures (including drug nanocarriers) at different reaction times (ranging from fractions of seconds to minutes). This review provides an overview of recently developed 2D and 3D microfluidic platforms for the continuous production of nanomaterials, and their simultaneous use in in situ characterization investigations through coupling to nanostructural characterization techniques (e.g., SAXS, WAXS, and SANS).
Collapse
Affiliation(s)
- Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Islam Hamad
- Department of Pharmacy, Faculty of Health Sciences, American University of Madaba, Madaba 11821, Jordan;
| |
Collapse
|
11
|
Temporal Growth and Aging of ZnO Nanoparticles in Colloidal Solution: Phase Field Model. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02309-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Gebauer D, Gale JD, Cölfen H. Crystal Nucleation and Growth of Inorganic Ionic Materials from Aqueous Solution: Selected Recent Developments, and Implications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107735. [PMID: 35678091 DOI: 10.1002/smll.202107735] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/07/2022] [Indexed: 05/27/2023]
Abstract
In this review article, selected, latest theoretical, and experimental developments in the field of nucleation and crystal growth of inorganic materials from aqueous solution are highlighted, with a focus on literature after 2015 and on non-classical pathways. A key point is to emphasize the so far underappreciated role of water and solvent entropy in crystallization at all stages from solution speciation through to the final crystal. While drawing on examples from current inorganic materials where non-classical behavior has been proposed, the potential of these approaches to be adapted to a wide-range of systems is also discussed, while considering the broader implications of the current re-assessment of pathways for crystallization. Various techniques that are suitable for the exploration of crystallization pathways in aqueous solution, from nucleation to crystal growth are summarized, and a flow chart for the assignment of specific theories based on experimental observations is proposed.
Collapse
Affiliation(s)
- Denis Gebauer
- Leibniz University Hannover, Institute of Inorganic Chemistry, Callinstr. 9, 30167, Hannover, Germany
| | - Julian D Gale
- Curtin Institute for Computation/The Institute for Geoscience Research (TiGER), School of Molecular and Life Sciences, Curtin University, PO Box U1987, Perth, Western Australia, 6845, Australia
| | - Helmut Cölfen
- University of Konstanz, Physical Chemistry, Universitätsstr. 10, 78465, Konstanz, Germany
| |
Collapse
|
13
|
Thongam DD, Chaturvedi H. Functionalization of Pristine, Metallic, and Semiconducting-SWCNTs by ZnO for Efficient Charge Carrier Transfer: Analysis through Critical Coagulation Concentration. ACS OMEGA 2022; 7:14784-14796. [PMID: 35557661 PMCID: PMC9088952 DOI: 10.1021/acsomega.2c00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Noncovalent functionalization of single-walled carbon nanotubes (SWCNT) by semiconducting oxides is a majorly sought technique to retain individual properties while creating a synergetic effect for an efficient heterostructure charge transfer. Three types of electronically and optically different SWCNTs: metallic (m), semiconducting (s), and pristine (p) are functionalized by ZnO using a facile sonication method. The physicochemical and morphological properties of the ZnO-functionalized SWCNTs, m-SWCNT+ZnO, s-SWCNT+ZnO, and p-SWCNT+ZnO, are analyzed by advanced characterization techniques. Evidence of charge transfer between SWCNT and ZnO is observed with an increase in charge carrier lifetime from 3.31 ns (ZnO) to 4.76 ns (s-SWCNT+ZnO). To investigate the optimum interaction between SWCNTs and ZnO, critical coagulation concentrations (CCC) are determined using UV-vis absorption spectroscopy for m-SWCNT, s-SWCNT, and p-SWCNT using different molar concentrations of ZnO as the coagulant. The interaction and coagulation mechanisms are described by the modified DLVO theory. Due to the variation in dielectric values and electronic properties of SWCNTs, the CCC values obtained have differed: m-SWCNT (1.9 × 10-4), s-SWCNT (3.4 × 10-4), and p-SWCNT (2 × 10-4). An additional analysis of the aggregates and supernatants of the CCC experiments is also shown to give an insight into the interaction and coagulation processes, explaining the absence of influence exerted by sedimentation and centrifugation.
Collapse
|
14
|
Cai Q, Castagnola V, Boselli L, Moura A, Lopez H, Zhang W, de Araújo JM, Dawson KA. A microfluidic approach for synthesis and kinetic profiling of branched gold nanostructures. NANOSCALE HORIZONS 2022; 7:288-298. [PMID: 35119063 DOI: 10.1039/d1nh00540e] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Automatized approaches for nanoparticle synthesis and characterization represent a great asset to their applicability in the biomedical field by improving reproducibility and standardization, which help to meet the selection criteria of regulatory authorities. The scaled-up production of nanoparticles with carefully defined characteristics, including intrinsic morphological features, and minimal intra-batch, batch-to-batch, and operator variability, is an urgent requirement to elevate nanotechnology towards more trustable biological and technological applications. In this work, microfluidic approaches were employed to achieve fast mixing and good reproducibility in synthesizing a variety of gold nanostructures. The microfluidic setup allowed exploiting spatial resolution to investigate the growth evolution of the complex nanoarchitectures. By physically isolating intermediate reaction fractions, we performed an advanced characterization of the shape properties during their growth, not possible with routine characterization methods. Employing an in-house developed method to assign a specific identity to shapes, we followed the particle growth/deformation process and identified key reaction parameters for more precise control of the generated morphologies. Besides, this investigation led to the optimization of a one-pot multi-size and multi-shape synthesis of a variety of gold nanoparticles. In summary, we describe an optimized platform for highly controlled synthesis and a novel approach for the mechanistic study of shape-evolving nanomaterials.
Collapse
Affiliation(s)
- Qi Cai
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Valentina Castagnola
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Luca Boselli
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Alirio Moura
- Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-970, Natal, RN, Brazil
| | - Hender Lopez
- School of Physics and Optometric & Clinical Sciences, Technological University Dublin, Grangegorman, D07 XT95, Ireland
| | - Wei Zhang
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - João M de Araújo
- Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-970, Natal, RN, Brazil
| | - Kenneth A Dawson
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
15
|
Sha F, Tang C, Tang S, Wang Q, Han Z, Wang J, Li C. The promoting role of Ga in ZnZrOx solid solution catalyst for CO2 hydrogenation to methanol. J Catal 2021. [DOI: 10.1016/j.jcat.2021.09.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Radajewski D, Hunter L, He X, Nahi O, Galloway JM, Meldrum FC. An innovative data processing method for studying nanoparticle formation in droplet microfluidics using X-rays scattering. LAB ON A CHIP 2021; 21:4498-4506. [PMID: 34671784 DOI: 10.1039/d1lc00545f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
X-ray scattering techniques provide a powerful means of characterizing the formation of nanoparticles in solution. Coupling these techniques to segmented-flow microfluidic devices that offer well-defined environments gives access to in situ time-resolved analysis, excellent reproducibility, and eliminates potential radiation damage. However, analysis of the resulting datasets can be extremely time-consuming, where these comprise frames corresponding to the droplets alone, the continuous phase alone, and to both at their interface. We here describe a robust, low-cost, and versatile droplet microfluidics device and use it to study the formation of magnetite nanoparticles with simultaneous synchrotron SAXS and WAXS. Lateral outlet capillaries facilitate the X-ray analysis and reaction times of between a few seconds and minutes can be accommodated. A two-step data processing method is then described that exploits the unique WAXS signatures of the droplets, continuous phase, and interfacial region to identify the frames corresponding to the droplets. These are then sorted, and the background scattering is subtracted using an automated frame-by-frame approach, allowing the signal from the nanoparticles to be isolated from the raw data. Modeling these data gives quantitative information about the evolution of the sizes and structures of the nanoparticles, in agreement with TEM observations. This versatile platform can be readily employed to study a wide range of dynamic processes in heterogeneous systems.
Collapse
Affiliation(s)
- Dimitri Radajewski
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK.
| | - Liam Hunter
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK.
| | - Xuefeng He
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK.
| | - Ouassef Nahi
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK.
| | - Johanna M Galloway
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK.
| | - Fiona C Meldrum
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK.
| |
Collapse
|
17
|
Micheal Raj P, Barbe L, Andersson M, De Albuquerque Moreira M, Haase D, Wootton J, Nehzati S, Terry AE, Friel RJ, Tenje M, Sigfridsson Clauss KGV. Fabrication and characterisation of a silicon-borosilicate glass microfluidic device for synchrotron-based hard X-ray spectroscopy studies. RSC Adv 2021; 11:29859-29869. [PMID: 35479529 PMCID: PMC9040903 DOI: 10.1039/d1ra05270e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/26/2021] [Indexed: 01/09/2023] Open
Abstract
Some of the most fundamental chemical building blocks of life on Earth are the metal elements. X-ray absorption spectroscopy (XAS) is an element-specific technique that can analyse the local atomic and electronic structure of, for example, the active sites in catalysts and energy materials and allow the metal sites in biological samples to be identified and understood. A microfluidic device capable of withstanding the intense hard X-ray beams of a 4th generation synchrotron and harsh chemical sample conditions is presented in this work. The device is evaluated at the K-edges of iron and bromine and the L 3-edge of lead, in both transmission and fluorescence mode detection and in a wide range of sample concentrations, as low as 0.001 M. The device is fabricated in silicon and glass with plasma etched microchannels defined in the silicon wafer before anodic bonding of the glass wafer into a complete device. The device is supported with a well-designed printed chip holder that made the microfluidic device portable and easy to handle. The chip holder plays a pivotal role in mounting the delicate microfluidic device on the beamline stage. Testing validated that the device was sufficiently robust to contain and flow through harsh acids and toxic samples. There was also no significant radiation damage to the device observed, despite focusing with intense X-ray beams for multiple hours. The quality of X-ray spectra collected is comparable to that from standard methods; hence we present a robust microfluidic device to analyse liquid samples using synchrotron XAS.
Collapse
Affiliation(s)
| | - Laurent Barbe
- Dept. Materials Science and Engineering, Science for Life Laboratory, Uppsala University Uppsala Sweden
| | - Martin Andersson
- Dept. Materials Science and Engineering, Science for Life Laboratory, Uppsala University Uppsala Sweden
| | | | | | | | | | - Ann E Terry
- MAX IV Laboratory, Lund University Lund Sweden
| | - Ross J Friel
- School of Information Technology, Halmstad University Halmstad Sweden
| | - Maria Tenje
- Dept. Materials Science and Engineering, Science for Life Laboratory, Uppsala University Uppsala Sweden
| | | |
Collapse
|
18
|
Probst J, Borca CN, Newton MA, van Bokhoven J, Huthwelker T, Stavrakis S, deMello A. In Situ X-ray Absorption Spectroscopy and Droplet-Based Microfluidics: An Analysis of Calcium Carbonate Precipitation. ACS MEASUREMENT SCIENCE AU 2021; 1:27-34. [PMID: 36785734 PMCID: PMC9836070 DOI: 10.1021/acsmeasuresciau.1c00005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Droplet-based microfluidic systems are ideally suited for the investigation of nucleation and crystallization processes. To best leverage the features of such platforms (including exquisite time resolution and high-throughput operation), sensitive and in situ detection schemes are needed to extract real-time chemical information about all species of interest. In this regard, the extension of conventional (UV, visible, and infrared) optical detection schemes to the X-ray region of the electromagnetic spectrum is of high current interest, as techniques such as X-ray absorption spectroscopy (XAS) provide for the element-specific investigation of the local chemical environment. Accordingly, herein, we report for the first time the integration of millisecond droplet-based microfluidics with XAS. Such a platform allows for the sensitive acquisition of X-ray absorption data from picoliter-volume droplets moving at high linear velocities. Significantly, the high-temporal resolution of the droplet-based microfluidic platform enables unprecedented access to the early stages of the reaction. Using such an approach, we demonstrate in situ monitoring of calcium carbonate precipitation by extracting XAS spectra at the early time points of the reaction with a dead time as low as 10 ms. We obtain insights into the kinetics of the formation of amorphous calcium carbonate (ACC) as a first species during the crystallization process by monitoring the proportion of calcium ions converted into ACC. Within the confined and homogeneous environment of picoliter-volume droplets, the ACC content reaches 60% over the first 130 ms. More generally, the presented method offers new opportunities for the real-time monitoring of fast chemical and biological processes.
Collapse
Affiliation(s)
- Julie Probst
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | | | - Mark A. Newton
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Jeroen van Bokhoven
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
- Paul
Scherrer Institute, 5232 Villigen, Switzerland
| | | | - Stavros Stavrakis
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Andrew deMello
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| |
Collapse
|
19
|
Leffler V, Ehlert S, Förster B, Dulle M, Förster S. Nanoparticle Heat-Up Synthesis: In Situ X-ray Diffraction and Extension from Classical to Nonclassical Nucleation and Growth Theory. ACS NANO 2021; 15:840-856. [PMID: 33393769 DOI: 10.1021/acsnano.0c07359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Heat-up synthesis routes are very commonly used for the controlled large-scale production of semiconductor and magnetic nanoparticles with narrow size distribution and high crystallinity. To obtain fundamental insights into the nucleation and growth kinetics is particularly demanding, because these procedures involve heating to temperatures above 300 °C. We designed a sample environment to perform in situ SAXS/WAXS experiments to investigate the nucleation and growth kinetics of iron oxide nanoparticles during heat-up synthesis up to 320 °C. The analysis of the growth curves for varying heating rates, Fe/ligand ratios, and plateau temperatures shows that the kinetics proceeds via a characteristic sequence of three phases: an induction Phase I, a final growth Phase III, and an intermediate Phase II, which can be divided into an early phase with the evolution and subsequent dissolution of an amorphous transient state, and a late phase, where crystalline particle nucleation and aggregation occurs. We extended classical nucleation and growth theory to account for an amorphous transient state and particle aggregation during the nucleation and growth phases. We find that this nonclassical theory is able to quantitatively describe all measured growth curves. The model provides fundamental insights into the underlying kinetic processes especially in the complex Phase II with the occurrence of a transient amorphous state, the nucleation of crystalline primary particles, particle growth, and particle aggregation proceeding on overlapping time scales. The described in situ experiments together with the extension of the classical nucleation and growth model highlight the two most important features of nonclassical nucleation and growth routes, i.e., the formation of intermediate or transient species and particle aggregation processes. They thus allow us to quantitatively understand, predict, and control nanoparticle nucleation and growth kinetics for a wide range of nanoparticle systems and synthetic procedures.
Collapse
Affiliation(s)
- Vanessa Leffler
- Jülich Centre for Neutron Science (JCNS-1/IBI-8), Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute of Physical Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Sascha Ehlert
- Jülich Centre for Neutron Science (JCNS-1/IBI-8), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Beate Förster
- Institute of Physical Chemistry, RWTH Aachen University, 52074 Aachen, Germany
- Ernst Ruska Center, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Martin Dulle
- Jülich Centre for Neutron Science (JCNS-1/IBI-8), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Stephan Förster
- Jülich Centre for Neutron Science (JCNS-1/IBI-8), Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute of Physical Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
20
|
Scattarella F, Altamura E, Albanese P, Siliqi D, Ladisa M, Mavelli F, Giannini C, Altamura D. Table-top combined scanning X-ray small angle scattering and transmission microscopies of lipid vesicles dispersed in free-standing gel. RSC Adv 2020; 11:484-492. [PMID: 35423036 PMCID: PMC8690998 DOI: 10.1039/d0ra08581b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
A mm thick free-standing gel containing lipid vesicles made of 2-oleoyl-1-palmitoyl-sn-glycero-3-phosphocholine (POPC) was studied by scanning Small Angle X-ray Scattering (SAXS) and X-ray Transmission (XT) microscopies. Raster scanning relatively large volumes, besides reducing the risk of radiation damage, allows signal integration, improving the signal-to-noise ratio (SNR), as well as high statistical significance of the dataset. The persistence of lipid vesicles in gel was demonstrated, while mapping their spatial distribution and concentration gradients. Information about lipid aggregation and packing, as well as about gel density gradients, was obtained. A posteriori confirmation of lipid presence in well-defined sample areas was obtained by studying the dried sample, featuring clear Bragg peaks from stacked bilayers. The comparison between wet and dry samples allowed it to be proved that lipids do not significantly migrate within the gel even upon drying, whereas bilayer curvature is lost by removing water, resulting in lipids packed in ordered lamellae. Suitable algorithms were successfully employed for enhancing transmission microscopy sensitivity to low absorbing objects, and allowing full SAXS intensity normalization as a general approach. In particular, data reduction includes normalization of the SAXS intensity against the local sample thickness derived from absorption contrast maps. The proposed study was demonstrated by a room-sized instrumentation, although equipped with a high brilliance X-ray micro-source, and is expected to be applicable to a wide variety of organic, inorganic, and multicomponent systems, including biomaterials. The employed routines for data reduction and microscopy, including Gaussian filter for contrast enhancement of low absorbing objects and a region growing segmentation algorithm to exclude no-sample regions, have been implemented and made freely available through the updated in-house developed software SUNBIM.
Collapse
Affiliation(s)
| | - Emiliano Altamura
- Chemistry Department University of Bari Aldo Moro via Orabona 4 70125 Bari Italy
| | - Paola Albanese
- Chemistry Department University of Bari Aldo Moro via Orabona 4 70125 Bari Italy
| | - Dritan Siliqi
- Istituto di Cristallografia - CNR Via Amendola 122/O 70126 Bari Italy
| | - Massimo Ladisa
- Istituto di Cristallografia - CNR Via Amendola 122/O 70126 Bari Italy
| | - Fabio Mavelli
- Chemistry Department University of Bari Aldo Moro via Orabona 4 70125 Bari Italy
| | - Cinzia Giannini
- Istituto di Cristallografia - CNR Via Amendola 122/O 70126 Bari Italy
| | - Davide Altamura
- Istituto di Cristallografia - CNR Via Amendola 122/O 70126 Bari Italy
| |
Collapse
|
21
|
Angular super-resolution retrieval in small-angle X-ray scattering. Sci Rep 2020; 10:16038. [PMID: 32994517 PMCID: PMC7525553 DOI: 10.1038/s41598-020-73030-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/31/2020] [Indexed: 11/21/2022] Open
Abstract
Small-angle X-ray scattering (SAXS) techniques enable convenient nanoscopic characterization for various systems and conditions. Unlike synchrotron-based setups, lab-based SAXS systems intrinsically suffer from lower X-ray flux and limited angular resolution. Here, we develop a two-step retrieval methodology to enhance the angular resolution for given experimental conditions. Using minute hardware additions, we show that translating the X-ray detector in subpixel steps and modifying the incoming beam shape results in a set of 2D scattering images, which is sufficient for super-resolution SAXS retrieval. The technique is verified experimentally to show superior resolution. Such advantages have a direct impact on the ability to resolve finer nanoscopic structures and can be implemented in most existing SAXS apparatuses both using synchrotron- and laboratory-based sources.
Collapse
|
22
|
Hu S, Zhang B, Zeng S, Liu L, Yong KT, Ma H, Tang Y. Microfluidic chip enabled one-step synthesis of biofunctionalized CuInS 2/ZnS quantum dots. LAB ON A CHIP 2020; 20:3001-3010. [PMID: 32697260 DOI: 10.1039/d0lc00202j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Biofunctionalized quantum dots (QDs) are effective target fluorescent labels for bioimaging. However, conventional synthesis of biofunctionalized I-III-VI core-shell CuInS2/ZnS QDs requires complex bench-top operations, resulting in limited product performance and variety, and is not amenable to a 'one-step' approach. In this work, we have successfully demonstrated a fully automated method for preparing denatured bovine serum albumin (dBSA)-CuInS2/ZnS QDs by introducing microfluidic (MF) chips to synthesize biofunctionalized QDs, hence establishing a 'one-step' procedure. We have also studied and optimized the reaction synthesis parameters. The emission wavelength of the dBSA-CuInS2/ZnS QDs is located in the near-infrared range and can be tuned from 650 to 750 nm by simply varying the reaction parameters. In addition, the 'one-step'-synthesized dBSA-CuInS2/ZnS QDs have a long average fluorescence lifetime of 153.76 ns and a small particle size of 5 ± 2 nm. To demonstrate the applicability of the 'one-step'-synthesized dBSA-CuInS2/ZnS QDs in bioimaging studies, we modified the QDs with folic acid and hyaluronic acid, and then performed target bioimaging and cytotoxicity tests on macrophages, liver cancer cells and pancreatic cancer cells. The cell images show that the red emission signals originate from the QDs, which indicates that the dBSA-CuInS2/ZnS QDs prepared by the MF approach are suitable optical contrast agents for target bioimaging. This 'one-step' MF-based QD synthesis approach could serve as a rapid, cost-effective, and small-scale nanocrystal production platform for complex QD formulations for a wide range of bioapplications.
Collapse
Affiliation(s)
- Siyi Hu
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No.88 Keling Road, Suzhou, Jiangsu 215163, P.R. China.
| | - Butian Zhang
- MOE Key Laboratory of Fundamental Physical Quantities Measurement, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Shuwen Zeng
- XLIM Research Institute, UMR 7252 CNRS/University of Limoges, Limoges, 87060, France
| | - Liwei Liu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Hanbin Ma
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No.88 Keling Road, Suzhou, Jiangsu 215163, P.R. China.
| | - Yuguo Tang
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No.88 Keling Road, Suzhou, Jiangsu 215163, P.R. China.
| |
Collapse
|