1
|
Carlier B, Heymans SV, Nooijens S, Collado-Lara G, Toumia Y, Delombaerde L, Paradossi G, D’hooge J, Van Den Abeele K, Sterpin E, Himmelreich U. A Preliminary Investigation of Radiation-Sensitive Ultrasound Contrast Agents for Photon Dosimetry. Pharmaceuticals (Basel) 2024; 17:629. [PMID: 38794199 PMCID: PMC11125270 DOI: 10.3390/ph17050629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Radiotherapy treatment plans have become highly conformal, posing additional constraints on the accuracy of treatment delivery. Here, we explore the use of radiation-sensitive ultrasound contrast agents (superheated phase-change nanodroplets) as dosimetric radiation sensors. In a series of experiments, we irradiated perfluorobutane nanodroplets dispersed in gel phantoms at various temperatures and assessed the radiation-induced nanodroplet vaporization events using offline or online ultrasound imaging. At 25 °C and 37 °C, the nanodroplet response was only present at higher photon energies (≥10 MV) and limited to <2 vaporization events per cm2 per Gy. A strong response (~2000 vaporizations per cm2 per Gy) was observed at 65 °C, suggesting radiation-induced nucleation of the droplet core at a sufficiently high degree of superheat. These results emphasize the need for alternative nanodroplet formulations, with a more volatile perfluorocarbon core, to enable in vivo photon dosimetry. The current nanodroplet formulation carries potential as an innovative gel dosimeter if an appropriate gel matrix can be found to ensure reproducibility. Eventually, the proposed technology might unlock unprecedented temporal and spatial resolution in image-based dosimetry, thanks to the combination of high-frame-rate ultrasound imaging and the detection of individual vaporization events, thereby addressing some of the burning challenges of new radiotherapy innovations.
Collapse
Affiliation(s)
- Bram Carlier
- Department of Oncology, KU Leuven-University of Leuven, 3000 Leuven, Belgium; (B.C.); (L.D.); (E.S.)
- Department of Imaging and Pathology, KU Leuven-University of Leuven, 3000 Leuven, Belgium
- Molecular Small Animal Imaging Center (MoSAIC), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Sophie V. Heymans
- Department of Physics, KU Leuven Campus Kortrijk—KULAK, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium; (S.V.H.); (K.V.D.A.)
- Department of Cardiovascular Sciences, KU Leuven-University of Leuven, 3000 Leuven, Belgium; (S.N.); (J.D.)
| | - Sjoerd Nooijens
- Department of Cardiovascular Sciences, KU Leuven-University of Leuven, 3000 Leuven, Belgium; (S.N.); (J.D.)
| | - Gonzalo Collado-Lara
- Department of Cardiology, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Yosra Toumia
- National Institute for Nuclear Physics, INFN Sezione di Roma Tor Vergata, 00133 Rome, Italy;
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Laurence Delombaerde
- Department of Oncology, KU Leuven-University of Leuven, 3000 Leuven, Belgium; (B.C.); (L.D.); (E.S.)
- Department of Radiotherapy, UH Leuven, 3000 Leuven, Belgium
| | - Gaio Paradossi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Jan D’hooge
- Department of Cardiovascular Sciences, KU Leuven-University of Leuven, 3000 Leuven, Belgium; (S.N.); (J.D.)
| | - Koen Van Den Abeele
- Department of Physics, KU Leuven Campus Kortrijk—KULAK, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium; (S.V.H.); (K.V.D.A.)
| | - Edmond Sterpin
- Department of Oncology, KU Leuven-University of Leuven, 3000 Leuven, Belgium; (B.C.); (L.D.); (E.S.)
- Particle Therapy Interuniversity Center Leuven—PARTICLE, 3000 Leuven, Belgium
| | - Uwe Himmelreich
- Department of Imaging and Pathology, KU Leuven-University of Leuven, 3000 Leuven, Belgium
- Molecular Small Animal Imaging Center (MoSAIC), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
2
|
Alcaraz PE, Davidson SJ, Shreeve E, Meuschke R, Romanowski M, Witte RS, Porter TR, Matsunaga TO. Thermal and Acoustic Stabilization Of Volatile Phase-Change Contrast Agents Via Layer-By-Layer Assembly. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1058-1069. [PMID: 36797095 PMCID: PMC10050125 DOI: 10.1016/j.ultrasmedbio.2022.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 05/11/2023]
Abstract
OBJECTIVE Phase-change contrast agents (PCCAs) are perfluorocarbon nanodroplets (NDs) that have been widely studied for ultrasound imaging in vitro, pre-clinical studies, and most recently incorporated a variant of PCCAs, namely a microbubble-conjugated microdroplet emulsion, into the first clinical studies. Their properties also make them attractive candidates for a variety of diagnostic and therapeutic applications including drug-delivery, diagnosis and treatment of cancerous and inflammatory diseases, as well as tumor-growth tracking. However, control over the thermal and acoustic stability of PCCAs both in vivo and in vitro has remained a challenge for expanding the potential utility of these agents in novel clinical applications. As such, our objective was to determine the stabilizing effects of layer-by-layer assemblies and its effect on both thermal and acoustic stability. METHODS We utilized layer-by-layer (LBL) assemblies to coat the outer PCCA membrane and characterized layering by measuring zeta potential and particle size. Stability studies were conducted by; 1) incubating the LBL-PCCAs at atmospheric pressure at 37∘C and 45∘C followed by; 2) ultrasound-mediated activation at 7.24 MHz and peak-negative pressures ranging from 0.71 - 5.48 MPa to ascertain nanodroplet activation and resultant microbubble persistence. The thermal and acoustic properties of decafluorobutane gas-condensed nanodroplets (DFB-NDs) layered with 6 and 10 layers of charge-alternating biopolymers, (LBL6NDs and LBL10NDs) respectively, were studied and compared to non-layered DFB-NDs. Half-life determinations were conducted at both 37∘C and 45∘C with acoustic droplet vaporization (ADV) measurements occurring at 23∘C. DISCUSSION Successful application of up to 10 layers of alternating positive and negatively charged biopolymers onto the surface membrane of DFB-NDs was demonstrated. Two major claims were substantiated in this study; namely, (1) biopolymeric layering of DFB-NDs imparts a thermal stability up to an extent; and, (2) both LBL6NDs and LBL10NDs did not appear to alter particle acoustic vaporization thresholds, suggesting that the thermal stability of the particle may not necessarily be coupled with particle acoustic vaporization thresholds. CONCLUSION Results demonstrate that the layered PCCAs had higher thermal stability, where the half-lifes of the LBLxNDs are significantly increased after incubation at 37∘C and 45∘C. Furthermore, the acoustic vaporization profiles the DFB-NDs, LBL6NDs, and LBL10NDs show that there is no statistically significant difference between the acoustic vaporization energy required to initiate acoustic droplet vaporization.
Collapse
Affiliation(s)
- Pedro Enrique Alcaraz
- College of Optical Sciences, University of Arizona, 1630 E University Blvd., Tucson, AZ 85721 United States; Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85719 United States; Department of Medical Imaging, University of Arizona, Tucson, AZ. 85719 United States
| | - Skylar J Davidson
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85719 United States
| | - Evan Shreeve
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85719 United States
| | - Rainee Meuschke
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85719 United States
| | - Marek Romanowski
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85719 United States; Department of Materials Science and Engineering, University of Arizona, Tucson, AZ 85719 United States
| | - Russell S Witte
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85719 United States; Department of Materials Science and Engineering, University of Arizona, Tucson, AZ 85719 United States; Department of Medical Imaging, University of Arizona, Tucson, AZ. 85719 United States
| | - Thomas R Porter
- Division of Cardiovascular Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Terry O Matsunaga
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85719 United States; Department of Medical Imaging, University of Arizona, Tucson, AZ. 85719 United States.
| |
Collapse
|
3
|
Edwards IA, De Carlo F, Sitta J, Varner W, Howard CM, Claudio PP. Enhancing Targeted Therapy in Breast Cancer by Ultrasound-Responsive Nanocarriers. Int J Mol Sci 2023; 24:ijms24065474. [PMID: 36982548 PMCID: PMC10053544 DOI: 10.3390/ijms24065474] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023] Open
Abstract
Currently, the response to cancer treatments is highly variable, and severe side effects and toxicity are experienced by patients receiving high doses of chemotherapy, such as those diagnosed with triple-negative breast cancer. The main goal of researchers and clinicians is to develop new effective treatments that will be able to specifically target and kill tumor cells by employing the minimum doses of drugs exerting a therapeutic effect. Despite the development of new formulations that overall can increase the drugs’ pharmacokinetics, and that are specifically designed to bind overexpressed molecules on cancer cells and achieve active targeting of the tumor, the desired clinical outcome has not been reached yet. In this review, we will discuss the current classification and standard of care for breast cancer, the application of nanomedicine, and ultrasound-responsive biocompatible carriers (micro/nanobubbles, liposomes, micelles, polymeric nanoparticles, and nanodroplets/nanoemulsions) employed in preclinical studies to target and enhance the delivery of drugs and genes to breast cancer.
Collapse
Affiliation(s)
- Isaiah A. Edwards
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Flavia De Carlo
- Department of Pharmacology and Toxicology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Juliana Sitta
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - William Varner
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Candace M. Howard
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Pier Paolo Claudio
- Department of Pharmacology and Toxicology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Correspondence:
| |
Collapse
|
4
|
Collado-Lara G, Heymans SV, Rovituso M, Sterpin E, D'hooge J, Vos HJ, Abeele KVD, de Jong N. Analytic prediction of droplet vaporization events to estimate the precision of ultrasound-based proton range verification. Med Phys 2023. [PMID: 36856326 DOI: 10.1002/mp.16327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND The safety and efficacy of proton therapy is currently hampered by range uncertainties. The combination of ultrasound imaging with injectable radiation-sensitive superheated nanodroplets was recently proposed for in vivo range verification. The proton range can be estimated from the distribution of nanodroplet vaporization events, which is stochastically related to the stopping distribution of protons, as nanodroplets are vaporized by protons reaching their maximal LET at the end of their range. PURPOSE Here, we aim to estimate the range estimation precision of this technique. As for any stochastic measurement, the precision will increase with the sample size, that is, the number of detected vaporizations. Thus, we first develop and validate a model to predict the number of vaporizations, which is then applied to estimate the range verification precision for a set of conditions (droplet size, droplet concentration, and proton beam parameters). METHODS Starting from the thermal spike theory, we derived a model that predicts the expected number of droplet vaporizations in an irradiated sample as a function of the droplet size, concentration, and number of protons. The model was validated by irradiating phantoms consisting of size-sorted perfluorobutane droplets dispersed in an aqueous matrix. The number of protons was counted with an ionization chamber, and the droplet vaporizations were recorded and counted individually using high frame rate ultrasound imaging. After validation, the range estimate precision was determined for different conditions using a Monte Carlo algorithm. RESULTS A good agreement between theory and experiments was observed for the number of vaporizations, especially for large (5.8 ± 2.2 µm) and medium (3.5 ± 1.1 µm) sized droplets. The number of events was lower than expected in phantoms with small droplets (2.0 ± 0.7 µm), but still within the same order of magnitude. The inter-phantom variability was considerably larger (up to 30x) than predicted by the model. The validated model was then combined with Monte Carlo simulations, which predicted a theoretical range retrieval precision improving with the square-root of the number of vaporizations, and degrading at high beam energies due to range straggling. For single pencil beams with energies between 70 and 240 MeV, a range verification precision below 1% of the range required perfluorocarbon concentrations in the order of 0.3-2.4 µM. CONCLUSION We proposed and experimentally validated a model to provide a quick estimate of the number of vaporizations for a given set of conditions (droplet size, droplet concentration, and proton beam parameters). From this model, promising range verification performances were predicted for realistic perfluorocarbon concentrations. These findings are an incentive to move towards preclinical studies, which are critical to assess the achievable droplet distribution in and around the tumor, and hence the in vivo range verification precision.
Collapse
Affiliation(s)
- Gonzalo Collado-Lara
- Biomedical Engineering, Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Sophie V Heymans
- Biomedical Engineering, Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Physics, KU Leuven Campus Kulak, Kortrijk, Belgium.,Department of Cardiovascular Sciences, Leuven KU, Leuven, Belgium
| | | | - Edmond Sterpin
- Department of Oncology, Leuven KU, Leuven, Belgium.,Center of Molecular Imaging, Radiotherapy and Oncology, IREC Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Jan D'hooge
- Department of Cardiovascular Sciences, Leuven KU, Leuven, Belgium
| | - Hendrik J Vos
- Biomedical Engineering, Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | - Nico de Jong
- Biomedical Engineering, Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
5
|
Toumia Y, Pullia M, Domenici F, Facoetti A, Ferrarini M, Heymans SV, Carlier B, Van Den Abeele K, Sterpin E, D'hooge J, D'Agostino E, Paradossi G. Ultrasound-assisted carbon ion dosimetry and range measurement using injectable polymer-shelled phase-change nanodroplets: in vitro study. Sci Rep 2022; 12:8012. [PMID: 35568710 PMCID: PMC9107472 DOI: 10.1038/s41598-022-11524-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/20/2022] [Indexed: 11/09/2022] Open
Abstract
Methods allowing for in situ dosimetry and range verification are essential in radiotherapy to reduce the safety margins required to account for uncertainties introduced in the entire treatment workflow. This study suggests a non-invasive dosimetry concept for carbon ion radiotherapy based on phase-change ultrasound contrast agents. Injectable nanodroplets made of a metastable perfluorobutane (PFB) liquid core, stabilized with a crosslinked poly(vinylalcohol) shell, are vaporized at physiological temperature when exposed to carbon ion radiation (C-ions), converting them into echogenic microbubbles. Nanodroplets, embedded in tissue-mimicking phantoms, are exposed at 37 °C to a 312 MeV/u clinical C-ions beam at different doses between 0.1 and 4 Gy. The evaluation of the contrast enhancement from ultrasound imaging of the phantoms, pre- and post-irradiation, reveals a significant radiation-triggered nanodroplets vaporization occurring at the C-ions Bragg peak with sub-millimeter shift reproducibility and dose dependency. The specific response of the nanodroplets to C-ions is further confirmed by varying the phantom position, the beam range, and by performing spread-out Bragg peak irradiation. The nanodroplets' response to C-ions is influenced by their concentration and is dose rate independent. These early findings show the ground-breaking potential of polymer-shelled PFB nanodroplets to enable in vivo carbon ion dosimetry and range verification.
Collapse
Affiliation(s)
- Yosra Toumia
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133, Rome, Italy.
- National Institute for Nuclear Physics, INFN Sez. Roma Tor Vergata, 00133, Rome, Italy.
| | - Marco Pullia
- Fondazione CNAO, The National Center of Oncological Hadrontherapy, 27100, Pavia, Italy
| | - Fabio Domenici
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133, Rome, Italy
- National Institute for Nuclear Physics, INFN Sez. Roma Tor Vergata, 00133, Rome, Italy
| | - Angelica Facoetti
- Fondazione CNAO, The National Center of Oncological Hadrontherapy, 27100, Pavia, Italy
| | - Michele Ferrarini
- Fondazione CNAO, The National Center of Oncological Hadrontherapy, 27100, Pavia, Italy
| | - Sophie V Heymans
- Department of Physics, KU Leuven Campus Kulak, Kortrijk, Belgium
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- Biomedical Engineering, Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Bram Carlier
- Department of Oncology, KU Leuven, Leuven, Belgium
| | | | | | - Jan D'hooge
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | | | - Gaio Paradossi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133, Rome, Italy
- National Institute for Nuclear Physics, INFN Sez. Roma Tor Vergata, 00133, Rome, Italy
| |
Collapse
|
6
|
Improved hybrid-shelled perfluorocarbon microdroplets as ultrasound- and laser-activated phase-change platform. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Collado-Lara G, Heymans SV, Rovituso M, Carlier B, Toumia Y, Verweij M, Paradossi G, Sterpin E, Vos HJ, D'hooge J, de Jong N, Van Den Abeele K, Daeichin V. Spatiotemporal Distribution of Nanodroplet Vaporization in a Proton Beam Using Real-Time Ultrasound Imaging for Range Verification. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:149-156. [PMID: 34629191 DOI: 10.1016/j.ultrasmedbio.2021.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
The potential of proton therapy to improve the conformity of the delivered dose to the tumor volume is currently limited by range uncertainties. Injectable superheated nanodroplets have recently been proposed for ultrasound-based in vivo range verification, as these vaporize into echogenic microbubbles on proton irradiation. In previous studies, offline ultrasound images of phantoms with dispersed nanodroplets were acquired after irradiation, relating the induced vaporization profiles to the proton range. However, the aforementioned method did not enable the counting of individual vaporization events, and offline imaging cannot provide real-time feedback. In this study, we overcame these limitations using high-frame-rate ultrasound imaging with a linear array during proton irradiation of phantoms with dispersed perfluorobutane nanodroplets at 37°C and 50°C. Differential image analysis of subsequent frames allowed us to count individual vaporization events and to localize them with a resolution beyond the ultrasound diffraction limit, enabling spatial and temporal quantification of the interaction between ionizing radiation and nanodroplets. Vaporization maps were found to accurately correlate with the stopping distribution of protons (at 50°C) or secondary particles (at both temperatures). Furthermore, a linear relationship between the vaporization count and the number of incoming protons was observed. These results indicate the potential of real-time high-frame-rate contrast-enhanced ultrasound imaging for proton range verification and dosimetry.
Collapse
Affiliation(s)
- Gonzalo Collado-Lara
- Biomedical Engineering, Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| | - Sophie V Heymans
- Biomedical Engineering, Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Department of Physics, KU Leuven Campus Kulak, Kortrijk, Belgium; Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | | | - Bram Carlier
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Yosra Toumia
- Department of Chemical Sciences and Technology, University of Rome Tor Vergata, Rome, Italy
| | - Martin Verweij
- Biomedical Engineering, Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Department of Medical Imaging, TU Delft, Delft, The Netherlands
| | - Gaio Paradossi
- Department of Chemical Sciences and Technology, University of Rome Tor Vergata, Rome, Italy
| | | | - Hendrik J Vos
- Biomedical Engineering, Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Department of Medical Imaging, TU Delft, Delft, The Netherlands
| | - Jan D'hooge
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Nico de Jong
- Biomedical Engineering, Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Department of Medical Imaging, TU Delft, Delft, The Netherlands
| | | | - Verya Daeichin
- Department of Medical Imaging, TU Delft, Delft, The Netherlands
| |
Collapse
|
8
|
Liu H, Li X, Chen Z, Bai L, Wang Y, Lv W. Synergic fabrication of pembrolizumab loaded doxorubicin incorporating microbubbles delivery for ultrasound contrast agents mediated anti-proliferation and apoptosis. Drug Deliv 2021; 28:1466-1477. [PMID: 34259093 PMCID: PMC8281080 DOI: 10.1080/10717544.2021.1921080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 01/29/2023] Open
Abstract
This study evaluated pembrolizumab-conjugated, doxorubicin (DOX)-loaded microbubbles (PDMs) in combination with ultrasound (US) as molecular imaging agents for early diagnosis of B cell lymphomas, and as a targeted drug delivery system. Pembrolizumab, a monoclonal CD20 antibody, was attached to the surfaces of DOX-loaded microbubbles. PDM binding to B cell lymphoma cells was assessed using immunofluorescence. The cytotoxic effects of PDMs in combination with ultrasound (PDMs + US) were evaluated in vitro in CD20+ and CD20- cell lines, and its antitumor activities were assessed in Raji (CD20+) and Jurkat (CD20-) lymphoma cell-grafted mice. PDMs specifically bound to CD20+ cells in vitro and in vivo. Contrast enhancement was monitored in vivo via US. PDM peak intensities and contrast enhancement durations were higher in Raji than in Jurkat cell-grafted mice (p < 0.05). PDMs + US treatment resulted in improved antitumor effects and reduced systemic toxicity in Raji cell-grafted mice compared with other treatments (p < .05). Our results showed that PDMs + US enhanced tumor targeting, reduced systemic toxicity, and inhibited CD20+ B cell lymphoma growth in vivo. Targeted PDMs could be employed as US molecular imaging agents for early diagnosis, and are an effective targeted drug delivery system in combination with US for CD20+ B cell malignancy treatment.
Collapse
Affiliation(s)
- Huilin Liu
- Department of Ultrasound, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar City, PR China
| | - Xing Li
- Department of Ultrasound, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar City, PR China
| | - Zihe Chen
- School of Medical Technology, Qiqihar Medical University, Qiqihar City, PR China
| | - Lianjie Bai
- Department of Ultrasound, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar City, PR China
| | - Ying Wang
- Department of Ultrasound, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar City, PR China
| | - Weiyang Lv
- Department of Ultrasound, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar City, PR China
| |
Collapse
|
9
|
Toumia Y, Miceli R, Domenici F, Heymans SV, Carlier B, Cociorb M, Oddo L, Rossi P, D'Angellilo RM, Sterpin E, D'Agostino E, Van Den Abeele K, D'hooge J, Paradossi G. Ultrasound-assisted investigation of photon triggered vaporization of poly(vinylalcohol) phase-change nanodroplets: A preliminary concept study with dosimetry perspective. Phys Med 2021; 89:232-242. [PMID: 34425514 DOI: 10.1016/j.ejmp.2021.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/08/2021] [Accepted: 08/10/2021] [Indexed: 01/24/2023] Open
Abstract
PURPOSE We investigate the vaporization of phase-change ultrasound contrast agents using photon radiation for dosimetry perspectives in radiotherapy. METHODS We studied superheated perfluorobutane nanodroplets with a crosslinked poly(vinylalcohol) shell. The nanodroplets' physico-chemical properties, and their acoustic transition have been assessed firstly. Then, poly(vinylalcohol)-perfluorobutane nanodroplets were dispersed in poly(acrylamide) hydrogel phantoms and exposed to a photon beam. We addressed the effect of several parameters influencing the nanodroplets radiation sensitivity (energy/delivered dose/dose rate/temperature). The nanodroplets-vaporization post-photon exposure was evaluated using ultrasound imaging at a low mechanical index. RESULTS Poly(vinylalcohol)-perfluorobutane nanodroplets show a good colloidal stability over four weeks and remain highly stable at temperatures up to 78 °C. Nanodroplets acoustically-triggered phase transition leads to microbubbles with diameters <10 μm and an activation threshold of mechanical index = 0.4, at 7.5 MHz. A small number of vaporization events occur post-photon exposure (6MV/15MV), at doses between 2 and 10 Gy, leading to ultrasound contrast increase up to 60% at RT. The nanodroplets become efficiently sensitive to photons when heated to a temperature of 65 °C (while remaining below the superheat limit temperature) during irradiation. CONCLUSIONS Nanodroplets' core is linked to the degree of superheat in the metastable state and plays a critical role in determining nanodroplet' stability and sensitivity to ionizing radiation, requiring higher or lower linear energy transfer vaporization thresholds. While poly(vinylalcohol)-perfluorobutane nanodroplets could be slightly activated by photons at ambient conditions, a good balance between the degree of superheat and stability will aim at optimizing the design of nanodroplets to reach high sensitivity to photons at physiological conditions.
Collapse
Affiliation(s)
- Yosra Toumia
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Italy; INFN sez.Roma Tor Vergata, Italy.
| | - Roberto Miceli
- Radiotherapy Unit, Department of Oncology and Hematology, University Hospital Tor Vergata (PTV), University of Rome Tor Vergata, Italy
| | - Fabio Domenici
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Italy; INFN sez.Roma Tor Vergata, Italy
| | - Sophie V Heymans
- Department of Physics, KU Leuven Campus Kulak, Kortrijk, Belgium; Department of Biomedical Engineering, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Bram Carlier
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Madalina Cociorb
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Italy; DoseVue, Hasselt, Belgium
| | - Letizia Oddo
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Italy
| | - Piero Rossi
- Department of Surgical Sciences, PTV, University of Rome Tor Vergata, Italy
| | - Rolando Maria D'Angellilo
- Radiotherapy Unit, Department of Oncology and Hematology, University Hospital Tor Vergata (PTV), University of Rome Tor Vergata, Italy
| | | | | | | | - Jan D'hooge
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Gaio Paradossi
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Italy; INFN sez.Roma Tor Vergata, Italy
| |
Collapse
|
10
|
Han Y, Xu X, Liu F, Wei W, Liu Z. Novel Microfluidic Device for the Preparation of Multiple Microproducts. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yu Han
- R&D Institute of Fluid and Powder Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaofei Xu
- R&D Institute of Fluid and Powder Engineering, Dalian University of Technology, Dalian 116024, China
| | - Fengxia Liu
- R&D Institute of Fluid and Powder Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wei Wei
- R&D Institute of Fluid and Powder Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhijun Liu
- R&D Institute of Fluid and Powder Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
11
|
Heymans SV, Carlier B, Toumia Y, Nooijens S, Ingram M, Giammanco A, d'Agostino E, Crijns W, Bertrand A, Paradossi G, Himmelreich U, D'hooge J, Sterpin E, Van Den Abeele K. Modulating ultrasound contrast generation from injectable nanodroplets for proton range verification by varying the degree of superheat. Med Phys 2021; 48:1983-1995. [PMID: 33587754 DOI: 10.1002/mp.14778] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/21/2021] [Accepted: 02/08/2021] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Despite the physical benefits of protons over conventional photon radiation in cancer treatment, range uncertainties impede the ability to harness the full potential of proton therapy. While monitoring the proton range in vivo could reduce the currently adopted safety margins, a routinely applicable range verification technique is still lacking. Recently, phase-change nanodroplets were proposed for proton range verification, demonstrating a reproducible relationship between the proton range and generated ultrasound contrast after radiation-induced vaporization at 25°C. In this study, previous findings are extended with proton irradiations at different temperatures, including the physiological temperature of 37°C, for a novel nanodroplet formulation. Moreover, the potential to modulate the linear energy transfer (LET) threshold for vaporization by varying the degree of superheat is investigated, where the aim is to demonstrate vaporization of nanodroplets directly by primary protons. METHODS Perfluorobutane nanodroplets with a shell made of polyvinyl alcohol (PVA-PFB) or 10,12-pentacosadyinoic acid (PCDA-PFB) were dispersed in polyacrylamide hydrogels and irradiated with 62 MeV passively scattered protons at temperatures of 37°C and 50°C. Nanodroplet transition into echogenic microbubbles was assessed using ultrasound imaging (gray value and attenuation analysis) and optical images. The proton range was measured independently and compared to the generated contrast. RESULTS Nanodroplet design proved crucial to ensure thermal stability, as PVA-shelled nanodroplets dramatically outperformed their PCDA-shelled counterpart. At body temperature, a uniform radiation response proximal to the Bragg peak is attributed to nuclear reaction products interacting with PVA-PFB nanodroplets, with the 50% drop in ultrasound contrast being 0.17 mm ± 0.20 mm (mean ± standard deviation) in front of the proton range. Also at 50°C, highly reproducible ultrasound contrast profiles were obtained with shifts of -0.74 mm ± 0.09 mm (gray value analysis), -0.86 mm ± 0.04 mm (attenuation analysis) and -0.64 mm ± 0.29 mm (optical analysis). Moreover, a strong contrast enhancement was observed near the Bragg peak, suggesting that nanodroplets were sensitive to primary protons. CONCLUSIONS By varying the degree of superheat of the nanodroplets' core, one can modulate the intensity of the generated ultrasound contrast. Moreover, a submillimeter reproducible relationship between the ultrasound contrast and the proton range was obtained, either indirectly via the visualization of secondary reaction products or directly through the detection of primary protons, depending on the degree of superheat. The potential of PVA-PFB nanodroplets for in vivo proton range verification was confirmed by observing a reproducible radiation response at physiological temperature, and further studies aim to assess the nanodroplets' performance in a physiological environment. Ultimately, cost-effective online or offline ultrasound imaging of radiation-induced nanodroplet vaporization could facilitate the reduction of safety margins in treatment planning and enable adaptive proton therapy.
Collapse
Affiliation(s)
- Sophie V Heymans
- Department of Physics, KU Leuven Campus Kulak, Kortrijk, Belgium
| | - Bram Carlier
- Department of Oncology, KU Leuven, Leuven, Belgium.,Molecular Small Animal Imaging Center, KU Leuven, Leuven, Belgium
| | - Yosra Toumia
- Department of Chemical Sciences and Technology, University of Rome Tor Vergata, Rome, Italy
| | - Sjoerd Nooijens
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Marcus Ingram
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | | | | | | | | | - Gaio Paradossi
- Department of Chemical Sciences and Technology, University of Rome Tor Vergata, Rome, Italy
| | - Uwe Himmelreich
- Molecular Small Animal Imaging Center, KU Leuven, Leuven, Belgium.,Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | - Jan D'hooge
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
12
|
Boerner P, Nevozhay D, Hatamimoslehabadi M, Chawla HS, Zvietcovich F, Aglyamov S, Larin KV, Sokolov KV. Repetitive optical coherence elastography measurements with blinking nanobombs. BIOMEDICAL OPTICS EXPRESS 2020; 11:6659-6673. [PMID: 33282515 PMCID: PMC7687956 DOI: 10.1364/boe.401734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/19/2020] [Accepted: 10/06/2020] [Indexed: 05/04/2023]
Abstract
Excitation of dye-loaded perfluorocarbon nanoparticles (nanobombs) can generate highly localized axially propagating longitudinal shear waves (LSW) that can be used to quantify tissue mechanical properties without transversal scanning of the imaging beam. In this study, we used repetitive excitations of dodecafluoropentane (C5) and tetradecafluorohexane (C6) nanobombs by a nanosecond-pulsed laser to produce multiple LSWs from a single spot in a phantom. A 1.5 MHz Fourier-domain mode-locked laser in combination with a phase correction algorithm was used to perform elastography. Multiple nanobomb activations were also monitored by detecting photoacoustic signals. Our results demonstrate that C6 nanobombs can be used for repetitive generation of LSW from a single spot for the purpose of material elasticity assessment. This study opens new avenues for continuous quantification of tissue mechanical properties using single delivery of the nanoparticles.
Collapse
Affiliation(s)
- Paul Boerner
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
- Equal contribution
| | - Dmitry Nevozhay
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Equal contribution
| | | | | | - Fernando Zvietcovich
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
| | - Salavat Aglyamov
- Department of Mechanical Engineering, University of Houston, Houston, Texas 77204, USA
| | - Kirill V Larin
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
| | - Konstantin V Sokolov
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Department of Bioengineering, Rice University, Houston, Texas 77030, USA
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street, Austin, Texas 78712, USA
| |
Collapse
|
13
|
|
14
|
Han Y, Xu X, Liu F, Wei W, Liu Z. Study of the theory of microbubble bursting to obtain bio-inspired alginate nanoparticles. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
15
|
Carlier B, Heymans SV, Nooijens S, Toumia Y, Ingram M, Paradossi G, D’Agostino E, Himmelreich U, D’hooge J, Van Den Abeele K, Sterpin E. Proton range verification with ultrasound imaging using injectable radiation sensitive nanodroplets: a feasibility study. ACTA ACUST UNITED AC 2020; 65:065013. [DOI: 10.1088/1361-6560/ab7506] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Khan AH, Dalvi SV. Kinetics of albumin microbubble dissolution in aqueous media. SOFT MATTER 2020; 16:2149-2163. [PMID: 32016261 DOI: 10.1039/c9sm01516g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The effectiveness of microbubbles as ultrasound contrast agents and targeted drug delivery vehicles depends on their persistence in blood. It is therefore necessary to understand the dissolution behavior of microbubbles in an aqueous medium. While there are several reports available in the literature on the dissolution of lipid microbubbles, there are no reports available on the dissolution kinetics of protein microbubbles. Moreover, shell parameters such as interfacial tension, shell resistance and shell elasticity/stiffness which characterize microbubble shells, have been reported for lipid shells but no such data are available for protein shells. Accordingly, this work was focused on capturing the dissolution behavior of protein microbubbles and estimation of shell parameters such as surface tension, shell resistance and shell elasticity. Bovine serum albumin (BSA) was used as a model protein and microbubbles were synthesized using sonication. During dissolution, a large portion of the protein shell was found to disengage from the gas-liquid interface after a stagnant dissolution phase, leading to a sudden disappearance of the microbubbles due to complete dissolution. In order to estimate shell parameters, microbubble dissolution kinetic data (radius vs. time) was fit numerically to a mass transfer model describing a microbubble dissolution process. Analysis of the results shows that the interfacial tension increases drastically and the shell resistance reduces significantly, as protein molecules leave the gas-liquid interface. Furthermore, the effect of processing conditions such as preheating temperature, microbubble size, and core gas and shell composition on the protein shell parameters was also evaluated.
Collapse
Affiliation(s)
- Aaqib H Khan
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India.
| | - Sameer V Dalvi
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
17
|
Paris JL, Vallet-Regí M. Ultrasound-Activated Nanomaterials for Therapeutics. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190346] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Juan L. Paris
- Department of Life Sciences, Nano4Health Unit, Nanomedicine Group. International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - María Vallet-Regí
- Dpto. Química en Ciencias Farmacéuticas (Unidad Docente de Química Inorgánica y Bioinorgánica), Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28040-Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| |
Collapse
|
18
|
Yaqiong LP, Ruiqing LMD, Shaobo DMD, Lianzhong ZMD. Advances in Targeted Tumor Diagnosis and Therapy Based on Ultrasound-Responsive Nanodroplets. ADVANCED ULTRASOUND IN DIAGNOSIS AND THERAPY 2020. [DOI: 10.37015/audt.2020.200043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|