1
|
Kumar N, Sahu S, Paul H, Rout MK, De J, Pal SK, Mishra P, Nayak A. Temperature-Induced Nanoarchitectonics of Monolayer Self-Assembly of Heterocoronene-Based Discotic Liquid Crystals. J Phys Chem B 2024; 128:7912-7919. [PMID: 39105702 DOI: 10.1021/acs.jpcb.4c03460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Enhancing molecular self-assembly at the monolayer level offers significant potential for various applications. For monolayers made of π-conjugated discotic liquid crystal (DLC) molecule nanowires, achieving precise separation and alignment of these nanowires has been a long-standing challenge. This research explores an approach using the manipulation of subphase temperature and surface pressure within a Langmuir trough to control molecular nanowire separation. We observe notable temperature-dependent behavior: as the temperature increases from 5 to 30 °C, the monolayer collapse pressure rises steadily. In contrast, temperatures from 35 to 50 °C exhibit an initial small plateau with a nonzero slope that becomes more distinct with rising temperature. Our study of Langmuir-Blodgett (LB) films provides crucial insights into the monolayer's structure. At lower temperatures, the LB films show coalesced molecular nanowires, whereas at higher temperatures, the DLC nanowires separate and form an interconnected network. Remarkably, upon compression, this network transforms into a compact, highly uniform monolayer. To explain these temperature-dependent behaviors, we examine the area relaxation curves, which indicate a two-step molecular loss mechanism involving desorption and monolayer collapse due to the nucleation and growth of critical nuclei. This extensive study offers valuable insights into the dynamic interaction of the temperature, surface pressure, and molecular assembly, enhancing our understanding of the fundamental processes in monolayer self-assembly.
Collapse
Affiliation(s)
- Nishant Kumar
- Department of Physics, Indian Institute of Technology (IIT) Patna, Patna, Bihar 801106, India
| | - Subhasish Sahu
- Department of Physics, Indian Institute of Technology (IIT) Patna, Patna, Bihar 801106, India
| | - Himangshu Paul
- Department of Physics, Indian Institute of Technology (IIT) Patna, Patna, Bihar 801106, India
| | - Mukesh Kumar Rout
- Department of Physics, Indian Institute of Technology (IIT) Patna, Patna, Bihar 801106, India
| | - Joydip De
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab 140306, India
| | - Santanu Kumar Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab 140306, India
| | - Puneet Mishra
- Department of Physics, Central University of South Bihar, Gaya, Bihar 824236, India
| | - Alpana Nayak
- Department of Physics, Indian Institute of Technology (IIT) Patna, Patna, Bihar 801106, India
| |
Collapse
|
2
|
Martin A, Tempra C, Yu Y, Liekkinen J, Thakker R, Lee H, de Santos Moreno B, Vattulainen I, Rossios C, Javanainen M, Bernardino de la Serna J. Exposure to Aldehyde Cherry e-Liquid Flavoring and Its Vaping Byproduct Disrupt Pulmonary Surfactant Biophysical Function. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1495-1508. [PMID: 38186267 PMCID: PMC10809783 DOI: 10.1021/acs.est.3c07874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/09/2024]
Abstract
Over the past decade, there has been a significant rise in the use of vaping devices, particularly among adolescents, raising concerns for effects on respiratory health. Pressingly, many recent vaping-related lung injuries are unexplained by current knowledge, and the overall implications of vaping for respiratory health are poorly understood. This study investigates the effect of hydrophobic vaping liquid chemicals on the pulmonary surfactant biophysical function. We focus on the commonly used flavoring benzaldehyde and its vaping byproduct, benzaldehyde propylene glycol acetal. The study involves rigorous testing of the surfactant biophysical function in Langmuir trough and constrained sessile drop surfactometer experiments with both protein-free synthetic surfactant and hydrophobic protein-containing clinical surfactant models. The study reveals that exposure to these vaping chemicals significantly interferes with the synthetic and clinical surfactant biophysical function. Further atomistic simulations reveal preferential interactions with SP-B and SP-C surfactant proteins. Additionally, data show surfactant lipid-vaping chemical interactions and suggest significant transfer of vaping chemicals to the experimental subphase, indicating a toxicological mechanism for the alveolar epithelium. Our study, therefore, reveals novel mechanisms for the inhalational toxicity of vaping. This highlights the need to reassess the safety of vaping liquids for respiratory health, particularly the use of aldehyde chemicals as vaping flavorings.
Collapse
Affiliation(s)
- Alexia Martin
- National
Heart and Lung Institute, Imperial College
London, Sir Alexander Fleming Building, London SW7 2AZ, U.K.
| | - Carmelo Tempra
- Institute
of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague 6 160 00, Czech Republic
| | - Yuefan Yu
- National
Heart and Lung Institute, Imperial College
London, Sir Alexander Fleming Building, London SW7 2AZ, U.K.
| | - Juho Liekkinen
- Department
of Physics, University of Helsinki, Helsinki 00560, Finland
| | - Roma Thakker
- National
Heart and Lung Institute, Imperial College
London, Sir Alexander Fleming Building, London SW7 2AZ, U.K.
| | - Hayoung Lee
- National
Heart and Lung Institute, Imperial College
London, Sir Alexander Fleming Building, London SW7 2AZ, U.K.
| | - Berta de Santos Moreno
- National
Heart and Lung Institute, Imperial College
London, Sir Alexander Fleming Building, London SW7 2AZ, U.K.
| | - Ilpo Vattulainen
- Department
of Physics, University of Helsinki, Helsinki 00560, Finland
| | - Christos Rossios
- National
Heart and Lung Institute, Imperial College
London, Sir Alexander Fleming Building, London SW7 2AZ, U.K.
| | - Matti Javanainen
- Institute
of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague 6 160 00, Czech Republic
- Institute
of Biotechnology, University of Helsinki, Helsinki 00790, Finland
| | - Jorge Bernardino de la Serna
- National
Heart and Lung Institute, Imperial College
London, Sir Alexander Fleming Building, London SW7 2AZ, U.K.
| |
Collapse
|
3
|
Kumar N, Samal PP, Mahapatra A, De J, Pal SK, Mishra P, Nayak A. Deciphering pressure-induced nanoarchitectonics in a monolayer of heterocoronene-based discotics at air-water and air-solid interfaces. SOFT MATTER 2023; 19:1513-1522. [PMID: 36727296 DOI: 10.1039/d2sm01317g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Understanding and control of molecular alignment at the nanoscale in self-assembled supramolecular structures is a prerequisite for the subsequent exploitation of molecules in functional devices. Here, we have clarified the surface-pressure induced molecular nanoarchitectures in a monolayer of a heterocoronene-based discotic liquid crystal (DLC) at air-water and air-solid interfaces using surface manometry, real-time Brewster angle microscopy, and real-space atomic force microscopy (AFM). Chloroform-spread DLCs at a concentration of ∼108 μM exhibit floating domains at the air-water interface comprising small aggregates of edge-on stacked molecules interacting via peripheral alkyl chains. Detailed analysis of surface manometry and relaxation measurements reveal that, upon compression, these domains coalesce to form a coherent monolayer which then undergoes irreversible structural transformations via mechanisms such as monolayer loss due to desorption and localized nucleation of defects. AFM images of the films transferred on a hydrophilic substrate reveal that with increasing surface-pressure, the nanoscale structure of the monolayer transforms from randomly oriented nanowires to tightly-packed nanowire domains, and finally to fragmented wire segments which diffuse locally above the film. These results provide a facile method for the preparation of compact, two-dimensional films of ambipolar DLC molecules with a tunable nanoarchitecture which will be crucial for their applications in nanoscale electronic devices.
Collapse
Affiliation(s)
- Nishant Kumar
- Department of Physics, Indian Institute of Technology Patna, Patna, India.
| | | | - Anwesha Mahapatra
- Department of Physics, Indian Institute of Technology Patna, Patna, India.
| | - Joydip De
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Manauli, Punjab, India
| | - Santanu Kumar Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Manauli, Punjab, India
| | - Puneet Mishra
- Department of Physics, Central University of South Bihar, Gaya, India.
| | - Alpana Nayak
- Department of Physics, Indian Institute of Technology Patna, Patna, India.
| |
Collapse
|
4
|
Abstract
The application of surface rheology and Brewster angle microscopy on mixed monolayers of DPPC and polymeric nanoparticles (cationic and anionic) showed that the sign of the particle charge affects the dynamic properties of the monolayers less than the nanoparticles’ ability to aggregate. Under almost physiological conditions, the effect of nanoparticles on the elasticity of DPPC monolayer is insignificant. However, the particles prevent the surface tension from decreasing to extremely low values. This effect could affect the functionality of pulmonary surfactants.
Collapse
|
5
|
Fluid Films as Models for Understanding the Impact of Inhaled Particles in Lung Surfactant Layers. COATINGS 2022. [DOI: 10.3390/coatings12020277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pollution is currently a public health problem associated with different cardiovascular and respiratory diseases. These are commonly originated as a result of the pollutant transport to the alveolar cavity after their inhalation. Once pollutants enter the alveolar cavity, they are deposited on the lung surfactant (LS) film, altering their mechanical performance which increases the respiratory work and can induce a premature alveolar collapse. Furthermore, the interactions of pollutants with LS can induce the formation of an LS corona decorating the pollutant surface, favoring their penetration into the bloodstream and distribution along different organs. Therefore, it is necessary to understand the most fundamental aspects of the interaction of particulate pollutants with LS to mitigate their effects, and design therapeutic strategies. However, the use of animal models is often invasive, and requires a careful examination of different bioethics aspects. This makes it necessary to design in vitro models mimicking some physico-chemical aspects with relevance for LS performance, which can be done by exploiting the tools provided by the science and technology of interfaces to shed light on the most fundamental physico-chemical bases governing the interaction between LS and particulate matter. This review provides an updated perspective of the use of fluid films of LS models for shedding light on the potential impact of particulate matter in the performance of LS film. It should be noted that even though the used model systems cannot account for some physiological aspects, it is expected that the information contained in this review can contribute on the understanding of the potential toxicological effects of air pollution.
Collapse
|
6
|
Gravel-Tatta L, DeWolf C, Badia A. Are Plant-Based Carbohydrate Nanoparticles Safe for Inhalation? Investigating Their Interactions with the Pulmonary Surfactant Using Langmuir Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12365-12376. [PMID: 34644076 DOI: 10.1021/acs.langmuir.1c01906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanoparticle carriers show promise for drug delivery, including by inhalation, where the first barrier for uptake in the lungs is the monolayer pulmonary surfactant membrane that coats the air/alveoli interface and is critical to breathing. It is imperative to establish the fate of potential nanocarriers and their effects on the biophysical properties of the pulmonary surfactant. To this end, the impact of the nanoparticle surface charge on the lateral organization, thickness, and recompressibility of Langmuir monolayers of model phospholipid-only and phospholipid-protein mixtures was investigated using native and modified forms of nanophytoglycogen, a carbohydrate-based dendritic polymer extracted from corn as monodisperse nanoparticles. We show that the native (quasi-neutral) and anionic nanophytoglycogens have little impact on the phase behavior and film properties. By contrast, cationic nanophytoglycogen alters the film morphology and increases the hysteresis associated with the work of breathing due to its electrostatic interaction with the anionic phospholipids in the model systems. These findings specifically highlight the importance of surface charge as a selection criterion for inhaled nanoformulations.
Collapse
Affiliation(s)
- Laurianne Gravel-Tatta
- Département de Chimie, Université de Montréal, Complexe des Sciences, C.P. 6128, Succursale Centre-ville, Montréal, Quebec H3C 3J7, Canada
- FRQNT Centre Québécois sur les Matériaux Fonctionnels-Quebec Centre for Advanced Materials, McGill University, 845 Sherbrooke Street West, Montréal, Quebec H3A 0G4, Canada
| | - Christine DeWolf
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke Street West, Montréal, Quebec H4B 1R6, Canada
- FRQNT Centre Québécois sur les Matériaux Fonctionnels-Quebec Centre for Advanced Materials, McGill University, 845 Sherbrooke Street West, Montréal, Quebec H3A 0G4, Canada
| | - Antonella Badia
- Département de Chimie, Université de Montréal, Complexe des Sciences, C.P. 6128, Succursale Centre-ville, Montréal, Quebec H3C 3J7, Canada
- FRQNT Centre Québécois sur les Matériaux Fonctionnels-Quebec Centre for Advanced Materials, McGill University, 845 Sherbrooke Street West, Montréal, Quebec H3A 0G4, Canada
| |
Collapse
|
7
|
Ravera F, Miller R, Zuo YY, Noskov BA, Bykov AG, Kovalchuk VI, Loglio G, Javadi A, Liggieri L. Methods and models to investigate the physicochemical functionality of pulmonary surfactant. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101467] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Chaudhury A, Debnath K, Bu W, Jana NR, Basu JK. Penetration and preferential binding of charged nanoparticles to mixed lipid monolayers: interplay of lipid packing and charge density. SOFT MATTER 2021; 17:1963-1974. [PMID: 33427839 DOI: 10.1039/d0sm01945c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Designing of nanoparticles (NPs) for biomedical applications or mitigating their cytotoxic effects requires microscopic understanding of their interactions with cell membranes. Such insight is best obtained by studying model biomembranes which, however, need to replicate actual cell membranes, especially their compositional heterogeneity and charge. In this work we have investigated the role of lipid charge density and packing of phase separated Langmuir monolayers in the penetration and phase specificity of charged quantum dot (QD) binding. Using an ordered and anionic charged lipid in combination with uncharged but variable stiffness lipids we demonstrate how the subtle interplay of zwitterionic lipid packing and anionic lipid charge density can affect cationic nanoparticle penetration and phase specific binding. Under identical subphase pH, the membrane with higher anionic charge density displays higher NP penetration. We also observe coalescence of charged lipid rafts floating amidst a more fluidic zwitterionic lipid matrix due to the phase specificity of QD binding. Our results suggest effective strategies which can be used to design NPs for diverse biomedical applications as well as to devise remedial actions against their harmful cytotoxic effects especially against respiratory diseases.
Collapse
Affiliation(s)
- Anurag Chaudhury
- Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| | - Koushik Debnath
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata-700032, India
| | - Wei Bu
- NSF's ChemMatCARS, University of Chicago, Chicago, IL 60637, USA
| | - Nikhil R Jana
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata-700032, India
| | - Jaydeep Kumar Basu
- Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
9
|
Waku T, Kasai A, Kobori A, Tanaka N. Investigation on the Interactions between Self-Assembled β-Sheet Peptide Nanofibers and Model Cell Membranes. Int J Mol Sci 2020; 21:ijms21249518. [PMID: 33327660 PMCID: PMC7765088 DOI: 10.3390/ijms21249518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 11/16/2022] Open
Abstract
Self-assembled peptide nanofibers (NFs) obtained from β-sheet peptides conjugated with drugs, including antigenic peptides, have recently attracted significant attention. However, extensive studies on the interactions of β-sheet peptide NFs with model cell membranes have not been reported. In this study, we investigated the interactions between three types of NFs, composed of PEG-peptide conjugates with different ethylene glycol (EG) lengths (6-, 12- and 24-mer), and dipalmitoylphosphatidylcholine (DPPC) Langmuir membranes. When increasing the EG chain length, those interactions significantly decreased considering measurements in the presence of the NFs of: (i) changes in surface pressure of the DPPC Langmuir monolayers and (ii) surface pressure-area (π-A) compression isotherms of DPPC. Because the observed trend was similar to the EG length dependency with regard to cellular association and cytotoxicity of the NFs that was reported previously, the interaction of NFs with phospholipid membranes represented a crucial factor to determine the cellular association and toxicity of the NFs. In contrast to NFs, no changes were observed with varying EG chain length on the interaction of the building block peptide with the DPPC membrane. The results obtained herein can provide a design guideline on the formulation of β-sheet peptide NFs, which may broaden its potential.
Collapse
|