1
|
Mai S, Zhang W, Mu X, Cao J. Structural Decoration of Porphyrin/Phthalocyanine Photovoltaic Materials. CHEMSUSCHEM 2024; 17:e202400217. [PMID: 38494448 DOI: 10.1002/cssc.202400217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Porphyrin/phthalocyanine compounds with fascinating molecular structures have attracted widespread attention in the field of solar cells in recent years. In this review, we focus on the pivotal role of porphyrin and phthalocyanine compounds in enhancing the efficiency of solar cells. The review seamlessly integrates the intricate molecular structures of porphyrins and phthalocyanines with their proficiency in absorbing visible light and facilitating electron transfer, key processes in converting sunlight into electricity. By delving into the nuances of intramolecular regulation, aggregated states, and surface/interface structure manipulation, it elucidates how various levels of molecular modifications enhance solar cell efficiency through improved charge transfer, stability, and overall performance. This comprehensive exploration provides a detailed understanding of the complex relationship between molecular design and solar cell performance, discussing current advancements and potential future applications of these molecules in solar energy technology.
Collapse
Affiliation(s)
- Sibei Mai
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Weilun Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Xijiao Mu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jing Cao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
2
|
Sánchez Vergara ME, Sandoval Plata EI, Ballinas Indili R, Salcedo R, Álvarez Toledano C. Structural determination, characterization and computational studies of doped semiconductors base silicon phthalocyanine dihydroxide and dienynoic acids. Heliyon 2024; 10:e25518. [PMID: 38356521 PMCID: PMC10864961 DOI: 10.1016/j.heliyon.2024.e25518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
The chemical doping of silicon phthalocyanine dihydroxide (SiPc(OH)2), with (2E, 4Z)-5, 7-diphenylhepta-2, 4-dien-6-ynoic acids (DAc) with electron-withdrawing (BrDAc) and electron-donating (MeODAc) substituents is the main purpose of this work. Theoretical calculations were carried out on Gaussian16 software, with geometrical optimization of all involved species, and obtention of the highest occupied molecule orbital (HOMO), lowest unoccupied molecular orbital (LUMO), and the respective energy gaps. The theoretical calculations show two hydrogen bridge formations: the first one as a peripheral interaction between the terminal oxygen atoms from the acid unit and hydrogen atoms from the phthalocyanine aromatic rings. The second one as the interaction at the nitrogen atoms of the phthalocyanine, which are compelled to form a new flat plane far from the original flat phthalocyanine deck. These organic semiconductors were deposited as thin films and characterized by IR spectroscopy, atomic force microscopy (AFM), and the optical parameters were gathered from UV-Vis studies. The indirect and direct optical band gap, the onset gap and the Urbach energy were obtained. In order to compare the effect of the acids as dopants of the silicon phthalocyanine, the SiPc(OH)2-DAc films were electrically characterized. The SiPc(OH)2-DAc films exhibit an ambipolar electrical behavior, which is influenced by the incidence of different lighting conditions at voltages above 0.3V. The glass/ITO/SiPc(OH)2-MeODAc/Ag reaches a maximum current of 5.68 × 10-5 A for natural light condition, while the glass/ITO/SiPc(OH)2-BrDAc/Ag, reaches a maximum current of 9.21 × 10-9 A for white illumination condition.
Collapse
Affiliation(s)
- María Elena Sánchez Vergara
- Facultad de Ingeniería, Universidad Anáhuac México, Avenida Universidad Anáhuac 46, Col. Lomas Anáhuac, Huixquilucan, 52786, Estado de México, Mexico
| | - Emilio I. Sandoval Plata
- Facultad de Ingeniería, Universidad Anáhuac México, Avenida Universidad Anáhuac 46, Col. Lomas Anáhuac, Huixquilucan, 52786, Estado de México, Mexico
| | - Ricardo Ballinas Indili
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n. C.U., Delegación Coyoacán, C.P. 04510, Ciudad de México, Mexico
| | - Roberto Salcedo
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - Cecilio Álvarez Toledano
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n. C.U., Delegación Coyoacán, C.P. 04510, Ciudad de México, Mexico
| |
Collapse
|
3
|
Zambrano-Angulo M, Cárdenas-Jirón G. Toward the search for new photosensitizers for DSSCs: theoretical study of both substituted Zn(II) and Si(IV) phthalocyanines. Phys Chem Chem Phys 2024; 26:6164-6179. [PMID: 38300136 DOI: 10.1039/d3cp04417c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
We report a density functional theory (DFT) study performed for a set of 66 compounds based on zinc(II) and silicon(IV) phthalocyanines (Pcs) with potential applications in dye-sensitized solar cells (DSSCs). The effect of the metal center (Zn, Si), periplanar and axial substituents, and anchor groups like anhydrous, carboxyl, and catechol on the electronic, optical, photovoltaics, and adsorption properties is investigated. Using the TD-DFT methodology and M06 and CAM-B3LYP functionals, we calculated the absorption spectra on optimized structures and in the solution phase but not on structures relaxed in the solvent. We obtained a strong Q band and a weak Soret band in the UV-Vis region, which are attributed to the transitions of type π-π* as described by the Gouterman orbitals. Q bands calculated show absorption up to 667 nm for ZnPcs and up to 769 nm for SiPcs, suggesting an essential role of the metal atom. The systems have a bathochromic effect in the order of secondary amine > primary amine > hydroxyl > amide > ester. We also found that the anhydrous and carboxyl groups favor absorption at longer wavelengths than the catechol group. The ZnPc systems show a slightly larger electron injection ΔGinj (∼1.1 eV) than SiPcs (∼0.9 eV), with similar values for the three anchor groups. The interaction energies (Eint) between ZnPcs/SiPcs and TiO2 in molecular and periodic configuration and corrected by the counterpoise method indicate that SiPcs predict more negative values than ZnPcs. The anchor group effect is relevant; the carboxyl moiety leads to stronger interactions than the anhydrous moiety. The strategies used could help to identify new photosensitizers for DSSCs.
Collapse
Affiliation(s)
- Michael Zambrano-Angulo
- Laboratory of Theoretical Chemistry, Faculty of Chemistry and Biology, University of Santiago de Chile (USACH), Santiago, Chile.
| | - Gloria Cárdenas-Jirón
- Laboratory of Theoretical Chemistry, Faculty of Chemistry and Biology, University of Santiago de Chile (USACH), Santiago, Chile.
| |
Collapse
|
4
|
Gara R, Zouaghi MO, Arfaoui Y. Porphyrin and phthalocyanine heavy metal removal: overview of theoretical investigation for heterojunction organic solar cell applications. J Mol Model 2023; 29:259. [PMID: 37470876 DOI: 10.1007/s00894-023-05659-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
CONTEXT Heavy metals are highly noxious, and their presence can cause diverse effects on living organisms and the environment. Crown ether porphyrins and phthalocyanines are known to effectively extract these pollutants and are also used in photovoltaic devices. This study aims to evaluate various factors that govern intramolecular charge transfer (ICT) and photo-injection processes, including maximum absorption wavelength (λmax), density of states (DOS), charge transfer dipole (μCT), light harvesting efficiency (LHE), open-circuit voltage (Voc), and free energy change of electron injection (ΔGinj) in order to investigate the performance of different compounds designed from metalloporphyrins for bulk-heterojunction organic solar cell (BHJ-OSC) applications. The porphyrin complex showed the best optoelectronic properties, with remarkable LHE values and CT amounts compared to phthalocyanine derivatives. The central metal played a significant role in optimizing the optical properties of the materials for use in solar cells. HgPr4O and CdPr4O were found to have optimal Voc values, resulting in effective injection, high electron, and hole mobilities, making them ideal materials for highly efficient BHJ-OSC devices. METHODS Density functional theory (DFT) approach was employed with the B3LYP functional and the def2TZVP basis set as implemented in the Gaussian 16 revision C.01 program to investigate the designed complexes and to compute geometrical parameters, frontier molecular orbitals (FMOs), and natural bond orbital (NBO). Furthermore, the time-dependent density functional theory (TD-DFT) method was used to analyze the optical properties and photovoltaic characteristics of selected metalloporphyrins by examining the UV-Vis spectra. In summary, the study presents a thorough description of the structural and electronic properties of the investigated complexes and provides insights into their potential use in photovoltaic applications.
Collapse
Affiliation(s)
- Rayene Gara
- Laboratory of Characterizations, Applications & Modeling of Materials (LR18ES08), Department of Chemistry, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Mohamed Oussama Zouaghi
- Laboratory of Characterizations, Applications & Modeling of Materials (LR18ES08), Department of Chemistry, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Youssef Arfaoui
- Laboratory of Characterizations, Applications & Modeling of Materials (LR18ES08), Department of Chemistry, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia.
| |
Collapse
|
5
|
Sundaresan C, Vebber MC, Brusso JL, Tao Y, Alem S, Lessard BH. Low-Cost Silicon Phthalocyanine as a Non-Fullerene Acceptor for Flexible Large Area Organic Photovoltaics. ACS OMEGA 2023; 8:1588-1596. [PMID: 36643570 PMCID: PMC9835793 DOI: 10.1021/acsomega.2c07131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
We demonstrate large-area (1 cm2) organic photovoltaic (OPVs) devices based on bis(tri-n-butylsilyl oxide) silicon phthalocyanine (3BS)2-SiPc as a non-fullerene acceptor (NFA) with low synthetic complexity paired with poly(3-hexylthiophene) (P3HT) as a donor polymer. Environment-friendly nonhalogenated solvents were used to process large area OPVs on flexible indium tin oxide (ITO)-coated polyethylene terephthalate (PET) substrates. An alternate sequentially (Alt-Sq) blade-coated active layer with bulk heterojunction-like morphology is obtained when using (3BS)2-SiPc processing with o-xylene/1,3,5-trimethylbenzene solvents. The sequential (Sq) active layer is prepared by first blade-coating (3BS)2-SiPc solution followed by P3HT coated on the top without any post-treatment. The conventional sequentially (Sq) blade-coated active layer presents very low performance due to the (3BS)2-SiPc bottom layer being partially washed off by processing the top layer of P3HT. In contrast, alternate sequentially (Alt-Sq) blade-coated layer-by-layer film shows even better device performance compared to the bulk heterojunction (BHJ) active layer. Time-of-flight secondary ion mass spectroscopy (TOF-SIMS) and atomic force microscopy (AFM) reveal that the Alt-Sq processing of the active layer leads to a BHJ-like morphology with a well-intermixed donor-acceptor component in the active layer while providing a simpler processing approach to low-cost and large-scale OPV production.
Collapse
Affiliation(s)
- Chithiravel Sundaresan
- Department
of Chemical & Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ONK1N 6N5, Canada
- Advanced
Electronics and Photonics Research Centre, National Research Council of Canada, Ottawa, ONK1A
0R6, Canada
| | - Mário C. Vebber
- Department
of Chemical & Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ONK1N 6N5, Canada
| | - Jaclyn L. Brusso
- Department
of Chemistry and Biomolecular Science, University
of Ottawa, 150 Louis-Pasteur Pvt, Ottawa, ONK1N 6N5, Canada
| | - Ye Tao
- Advanced
Electronics and Photonics Research Centre, National Research Council of Canada, Ottawa, ONK1A
0R6, Canada
| | - Salima Alem
- Advanced
Electronics and Photonics Research Centre, National Research Council of Canada, Ottawa, ONK1A
0R6, Canada
| | - Benoît H. Lessard
- Department
of Chemical & Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ONK1N 6N5, Canada
- School
of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward AvenueOttawa, ONK1N 6N5, Canada
| |
Collapse
|
6
|
Lin L, Xu CJ, Wang XD, Lee DJ. High-Temperature Wetting and Dewetting Dynamics of Silver Droplets on Molybdenum Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1135-1144. [PMID: 36622857 DOI: 10.1021/acs.langmuir.2c02884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The wetting and dewetting behaviors of Ag droplets on Mo(100), Mo(110), and Mo(111) surfaces were investigated over 1200-2000 K via molecular dynamics simulations. We used the diffusion energy barriers of Ag droplets on the three surfaces to analyze the phenomenon of different precursor films and adsorption layers on the different surfaces. Alloying enabled the Mo(111) surface better wettability in both Mo(110) and Mo(111) surfaces, where there were significant precursor films. We observed that the dewetting rate was the fastest on the surface with the densest adsorption layer. Simulations proved that the same molecular kinetic theory model was applicable to not only the wetting process but also the dewetting process on the same surface. We also provided evidence to support the fact that an increased temperature could reduce the time to reach equilibrium for the wetting and dewetting processes.
Collapse
Affiliation(s)
- Lin Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing100083, People's Republic of China
| | - Chuan-Jiang Xu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing100083, People's Republic of China
| | - Xiao-Dong Wang
- Research Center of Engineering Thermophysics, North China Electric Power University, Beijing102206, People's Republic of China
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing102206, People's Republic of China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong999077, Hong Kong Special Administrative Region of the People's Republic of China
| |
Collapse
|
7
|
Sundaresan C, Josse P, Vebber MC, Brusso J, Lu J, Tao Y, Alem S, Lessard BH. Design of ternary additive for organic photovoltaics: a cautionary tale. RSC Adv 2022; 12:10029-10036. [PMID: 35424912 PMCID: PMC8965687 DOI: 10.1039/d2ra00540a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/18/2022] [Indexed: 11/21/2022] Open
Abstract
Silicon phthalocyanines as ternary additives are a promising way to increase the performance of organic photovoltaics. The miscibility of the additive and the donor polymer plays a significant role in the enhancement of the device performance, therefore, ternary additives can be designed to better interact with the conjugated polymer. We synthesized N-9′-heptadecanyl-2,7-carbazole functionalized SiPc ((CBzPho)2-SiPc), a ternary additive with increased miscibility in poly[N-90-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT). The resulting additive was included into PCDTBT and [6,6]-phenyl C71 butyric acid methyl ester as bulk (PC71BM) heterojunction OPV devices as a ternary additive. While the (CBzPho)2-SiPc demonstrated strong EQE >30% contribution in the range of 650–730 nm, the overall performance was reduced because (CBzPho)2-SiPc acted as a hole trap due to its high-lying HOMO energy level. This study demonstrates the importance of the solubility, miscibility, and energy level engineering of the ternary additive when designing organic photovoltaic devices. Silicon phthalocyanines with carbazole axial functional groups were synthesized to improve the miscibility in PCDTBT and for use as ternary additives in organic photovoltaics.![]()
Collapse
Affiliation(s)
- Chithiravel Sundaresan
- Department of Chemical & Biological Engineering, University of Ottawa 161 Louis Pasteur Ottawa ON K1N 6N5 Canada .,Advanced Electronics and Photonics Research Centre, National Research Council of Canada Ottawa ON K1A 0R6 Canada
| | - Pierre Josse
- Department of Chemical & Biological Engineering, University of Ottawa 161 Louis Pasteur Ottawa ON K1N 6N5 Canada .,Department of Chemistry and Biomolecular Science, University of Ottawa 150 Louis-Pasteur Pvt Ottawa ON K1N 6N5 Canada
| | - Mário C Vebber
- Department of Chemical & Biological Engineering, University of Ottawa 161 Louis Pasteur Ottawa ON K1N 6N5 Canada
| | - Jaclyn Brusso
- Department of Chemistry and Biomolecular Science, University of Ottawa 150 Louis-Pasteur Pvt Ottawa ON K1N 6N5 Canada
| | - Jianping Lu
- Advanced Electronics and Photonics Research Centre, National Research Council of Canada Ottawa ON K1A 0R6 Canada
| | - Ye Tao
- Advanced Electronics and Photonics Research Centre, National Research Council of Canada Ottawa ON K1A 0R6 Canada
| | - Salima Alem
- Advanced Electronics and Photonics Research Centre, National Research Council of Canada Ottawa ON K1A 0R6 Canada
| | - Benoît H Lessard
- Department of Chemical & Biological Engineering, University of Ottawa 161 Louis Pasteur Ottawa ON K1N 6N5 Canada .,School of Electrical Engineering and Computer Science, University of Ottawa 800 King Edward Ave. Ottawa ON K1N 6N5 Canada
| |
Collapse
|
8
|
Faure MM, Dindault C, Rice NA, Lessard BH. Layer-by-Layer Organic Photovoltaic Solar Cells Using a Solution-Processed Silicon Phthalocyanine Non-Fullerene Acceptor. ACS OMEGA 2022; 7:7541-7549. [PMID: 35284724 PMCID: PMC8908506 DOI: 10.1021/acsomega.1c05715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/10/2022] [Indexed: 05/22/2023]
Abstract
Silicon phthalocyanines (SiPcs) are promising, inexpensive, and easy to synthesize non-fullerene acceptor (NFA) candidates for all-solution sequentially processed layer-by-layer (LbL) organic photovoltaic (OPV) devices. Here, we report the use of bis(tri-n-butylsilyl oxide) SiPc ((3BS)2-SiPc) paired with poly(3-hexylthiophene) (P3HT) and poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione))] (PBDB-T) donors in an LbL OPV structure. Using a direct architecture, P3HT/(3BS)2-SiPc LbL devices show power conversion efficiencies (PCEs) up to 3.0%, which is comparable or better than the corresponding bulk heterojunction (BHJ) devices with either (3BS)2-SiPc or PC61BM. PBDB-T/(3BS)2-SiPc LbL devices resulted in PCEs up to 3.3%, with an impressive open-circuit voltage (V oc) as high as 1.06 V, which is among the highest V oc obtained employing the LbL approach. We also compared devices incorporating vanadium oxide (VOx) or poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) as a hole transporting layer and found that VOx modified the donor layer morphology and led to improved V oc. Probing the composition as a function of film layer depths revealed a similar distribution of active material for both BHJ and LbL structures when using (3BS)2-SiPc as an NFA. These findings suggest that (3BS)2-SiPc is a promising NFA that can be processed using the LbL technique, an inherently easier fabrication methodology for large-area production of OPVs.
Collapse
Affiliation(s)
- Marie
D. M. Faure
- Department
of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5
| | - Chloé Dindault
- Department
of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5
| | - Nicole A. Rice
- Department
of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5
| | - Benoît H. Lessard
- Department
of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5
- School
of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward Ave., Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
9
|
Farajzadeh N, Güler Kuşçulu N, Yenilmez HY, Bahar D, Altuntas Bayir Z. Anticancer and Biological Properties of New Axially Disubstituted Silicon Phthalocyanines. Dalton Trans 2022; 51:7539-7550. [DOI: 10.1039/d2dt01033j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study reports the synthesis of three novel axially disubstituted silicon phthalocyanines (1-3-Si) and their quaternized phthalocyanines (1-3-QSi). The resulting compounds were characterized by applying spectroscopic techniques including 1H NMR,...
Collapse
|
10
|
Szawiola A, Lessard BH, Raboui H, Bender TP. Use of Piers-Rubinsztajn Chemistry to Access Unique and Challenging Silicon Phthalocyanines. ACS OMEGA 2021; 6:26857-26869. [PMID: 34693107 PMCID: PMC8529611 DOI: 10.1021/acsomega.1c02738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/15/2021] [Indexed: 05/22/2023]
Abstract
Axial functionalization is one mode that enables the solubility of silicon phthalocyanines (SiPcs). Our group observed that the use of typical axial functionalization methodologies on reaction of Cl2SiPc with the chlorotriphenyl silane reagent unexpectedly resulted in the equal formation of triphenyl silyloxy silicon tetrabenzotriazacorrole ((3PS)-SiTbc) and the desired bis(tri-phenyl siloxy)-silicon phthalocyanine ((3PS)2-SiPc). The formation of a (3PS)-SiTbc was unexpected, and the separation of (3PS)-SiTbc and (3PS)2-SiPc was difficult. Therefore, in this study, we investigated the use of Piers-Rubinsztajn (PR) chemistry as an alternative method to functionalize the axial position of a SiPc to avoid the generation of a Tbc derivative. PR chemistry is a novel method to form a Si-O bond starting with a Si-H-based reactant and a -OH-based nucleophile enabled by tris(pentafluorophenyl)borane as a catalyst. The PR chemistry was screened on several fronts on how it can be applied to SiPcs. It was found that the process needs to be run in nitrobenzene at a molar ratio and at a particular temperature. To this end, the triphenylsiloxy derivative (3PS)2-SiPc was produced and fully characterized, without the production of a Tbc derivative. In addition, we explored and outlined that the PR chemistry method can enable the formation of other SiPc derivatives that are inaccessible utilizing other established axial substitution chemistry methods such as (TM3)2-SiPc and (MDM)2-SiPc. These additional materials were also physically characterized. The main conclusion is that the PR chemistry method can be applied to SiPcs and yield several alternative derivatives and has the potential to apply to additional macrocyclic compounds for unique derivative formation.
Collapse
Affiliation(s)
- Anjuli
M. Szawiola
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Benoit H. Lessard
- Department
of Chemical & Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - Hasan Raboui
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Timothy P. Bender
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
- Department
of Materials Science and Engineering, University
of Toronto, 184 College
Street, Toronto, Ontario M5S 3E4, Canada
| |
Collapse
|
11
|
Vebber MC, Rice NA, Brusso JL, Lessard BH. Variance-resistant PTB7 and axially-substituted silicon phthalocyanines as active materials for high-Voc organic photovoltaics. Sci Rep 2021; 11:15347. [PMID: 34321540 PMCID: PMC8319386 DOI: 10.1038/s41598-021-94704-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/15/2021] [Indexed: 11/09/2022] Open
Abstract
While the efficiency of organic photovoltaics (OPVs) has improved drastically in the past decade, such devices rely on exorbitantly expensive materials that are unfeasible for commercial applications. Moreover, examples of high voltage single-junction devices, which are necessary for several applications, particularly low-power electronics and rechargeable batteries, are lacking in literature. Alternatively, silicon phthalocyanines (R2-SiPc) are inexpensive, industrially scalable organic semiconductors, having a minimal synthetic complexity (SC) index, and are capable of producing high voltages when used as acceptors in OPVs. In the present work, we have developed high voltage OPVs composed of poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl] thieno [3,4 b]thiophenediyl}) (PTB7) and an SiPc derivative ((3BS)2-SiPc). While changes to the solvent system had a strong effect on performance, interestingly, the PTB7:(3BS)2-SiPc active layer were robust to spin speed, annealing and components ratio. This invariance is a desirable characteristic for industrial production. All PTB7:(3BS)2-SiPc devices produced high open circuit voltages between 1.0 and 1.07 V, while maintaining 80% of the overall efficiency, when compared to their fullerene-based counterpart.
Collapse
Affiliation(s)
- Mario C Vebber
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, K1N 6N5, Canada
| | - Nicole A Rice
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, K1N 6N5, Canada
| | - Jaclyn L Brusso
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 150 Louis Pasteur, Ottawa, ON, K1N 6N5, Canada
| | - Benoît H Lessard
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, K1N 6N5, Canada.
- School of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
12
|
Lessard BH. The Rise of Silicon Phthalocyanine: From Organic Photovoltaics to Organic Thin Film Transistors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31321-31330. [PMID: 34197065 DOI: 10.1021/acsami.1c06060] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Silicon phthalocyanines are emerging n-type semiconductors for use in organic photovoltaics (OPVs) and organic thin-film transistors (OTFTs). Their low synthetic complexity paired with their versatile axial group facilitates the fine-tuning of their chemical properties, solution properties and processing characteristics without significantly affecting their frontier orbital levels or their absorption properties. The crystal engineering and film forming characteristics of silicon phthalocyanine semiconductors can be tuned through appropriate axial group functionalization, therefore facilitating their integration into both OTFTs and OPVs by solution processing or vapor deposition. This Spotlight on Applications will discuss recent advances in the integration of this exciting class of phthalocyanine into OTFTs and OPVs and highlights their promising future.
Collapse
Affiliation(s)
- Benoît H Lessard
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5
- School of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
13
|
Torimtubun AA, Follana-Berná J, Sánchez JG, Pallarès J, Sastre-Santos Á, Marsal LF. Fluorinated Zinc and Copper Phthalocyanines as Efficient Third Components in Ternary Bulk Heterojunction Solar Cells. ACS APPLIED ENERGY MATERIALS 2021; 4:5201-5211. [PMID: 36426379 PMCID: PMC9677599 DOI: 10.1021/acsaem.1c00734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Fluorinated zinc and copper metallophthalocyanines MPcF48 are synthesized and incorporated as third component small molecules in ternary organic solar cells (TOSCs). To enable the high performance of TOSCs, maximizing short-circuit current density (J SC) is crucial. Ternary bulk heterojunction blends, consisting of a polymer donor PTB7-Th, fullerene acceptors PC70BM, and a third component MPcF48, are formulated to fabricate TOSCs with a device architecture of ITO/PFN/active layer/V2O5/Ag. Employing copper as metal atom substitution in the third component of TOSCs enhances J SC as a result of complementary absorption spectra in the near-infrared region. In combination with J SC enhancement, suppressed charge recombination, improved exciton dissociation and charge carrier collection efficiency, and better morphology lead to a slightly improved fill factor (FF), resulting in a 7% enhancement of PCE than those of binary OSCs. In addition to the increased PCE, the photostability of TOSCs has also been improved by the appropriate addition of CuPcF48. Detailed studies imply that metal atom substitution in phthalocyanines is an effective way to improve J SC, FF, and thus the performance and photostability of TOSCs.
Collapse
Affiliation(s)
- Alfonsina
Abat Amelenan Torimtubun
- Department
of Electric, Electronic and Automatic Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, Tarragona 43007, Spain
| | - Jorge Follana-Berná
- Área
de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Av. de la Universidad s/n, Elche 03202, Spain
| | - José G. Sánchez
- Department
of Electric, Electronic and Automatic Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, Tarragona 43007, Spain
| | - Josep Pallarès
- Department
of Electric, Electronic and Automatic Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, Tarragona 43007, Spain
| | - Ángela Sastre-Santos
- Área
de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Av. de la Universidad s/n, Elche 03202, Spain
| | - Lluis F. Marsal
- Department
of Electric, Electronic and Automatic Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, Tarragona 43007, Spain
| |
Collapse
|
14
|
Feng C, Wang X, Chen G, Zhang B, He Z, Cao Y. Mechanism of the Alcohol-Soluble Ionic Organic Interlayer in Organic Solar Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4347-4354. [PMID: 33797928 DOI: 10.1021/acs.langmuir.1c00413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this article combining density functional theory (DFT) calculations and corresponding experimental measurements, the adsorption behaviors and working mechanism of the alcohol-soluble ionic organic interlayer on different electrode substrates were studied. The results suggest that, when the ionic organic bipyridine salt interlayer (FPyBr) is adsorbed on the Ag surface, Br- will break away from molecule chains and form new chemical bonds with the Ag substrate, as confirmed by both the X-ray photoelectron spectroscopy (XPS) study and DFT study for the first time. Charges are further found to transfer to the Ag substrate from the new interlayer molecular structure without Br-, resulting in adsorption dipoles directed from Ag to the interlayer. Moreover, the direction of the intrinsic dipole of the molecule itself on the Ag substrate is also verified, which is the same as that of the adsorption dipole. Subsequently, the superposition of the two dipoles results in a large reduction of the Ag substrate work function. In addition, the dipole formation mechanism of the interlayer on the ITO surface was also studied. The change in the work function of the ITO substrate by this interlayer is found to be smaller than that of Ag as confirmed by both a DFT study and scanning Kelvin probe microscopy (SKPM) results, which is mainly due to the reversed direction of the molecular intrinsic dipole with respect to the interfacial dipole. The worst device performance of organic solar cells based on the ITO-FPyBr substrate is considered to be one of the consequences of the feature. The findings here are of great importance for the study of the mechanism of the ionic organic interlayer in organic electronic devices, providing insightful understandings on how to further improve the material and device performance.
Collapse
Affiliation(s)
- Chuang Feng
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xiaojing Wang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Guiting Chen
- School of Chemistry and Environment, Jiaying University, Meizhou 514015, P. R. China
| | - Bin Zhang
- Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Zhicai He
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yong Cao
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
15
|
Cranston RR, Vebber MC, Berbigier JF, Rice NA, Tonnelé C, Comeau ZJ, Boileau NT, Brusso JL, Shuhendler AJ, Castet F, Muccioli L, Kelly TL, Lessard BH. Thin-Film Engineering of Solution-Processable n-Type Silicon Phthalocyanines for Organic Thin-Film Transistors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1008-1020. [PMID: 33370100 DOI: 10.1021/acsami.0c17657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metal and metalloid phthalocyanines are an abundant and established class of materials widely used in the dye and pigment industry as well as in commercial photoreceptors. Silicon phthalocyanines (SiPcs) are among the highest-performing n-type semiconductor materials in this family when used in organic thin-film transistors (OTFTs) as their performance and solid-state arrangement are often increased through axial substitution. Herein, we study eight axially substituted SiPcs and their integration into solution-processed n-type OTFTs. Electrical characterization of the OTFTs, combined with atomic force microscopy (AFM), determined that the length of the alkyl chain affects device performance and thin-film morphology. The effects of high-temperature annealing and spin coating time on film formation, two key processing steps for fabrication of OTFTs, were investigated by grazing-incidence wide-angle X-ray scattering (GIWAXS) and X-ray diffraction (XRD) to elucidate the relationship between thin-film microstructure and device performance. Thermal annealing was shown to change both film crystallinity and SiPc molecular orientation relative to the substrate surface. Spin time affected film crystallinity, morphology, and interplanar d-spacing, thus ultimately modifying device performance. Of the eight materials studied, bis(tri-n-butylsilyl oxide) SiPc exhibited the greatest electron field-effect mobility (0.028 cm2 V-1 s-1, a threshold voltage of 17.6 V) of all reported solution-processed SiPc derivatives.
Collapse
Affiliation(s)
- Rosemary R Cranston
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, Canada K1N 6N5
| | - Mário C Vebber
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, Canada K1N 6N5
| | - Jônatas Faleiro Berbigier
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK, Canada S7N 5C9
| | - Nicole A Rice
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, Canada K1N 6N5
| | - Claire Tonnelé
- Donostia International Physics Center, 4 Paseo Manuel de Lardizabal, 20018 Donostia, Euskadi, Spain
| | - Zachary J Comeau
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, Canada K1N 6N5
- Department of Chemistry & Biomolecular Sciences, University of Ottawa, 150 Louis Pasteur, Ottawa, ON, Canada K1N 6N5
| | - Nicholas T Boileau
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, Canada K1N 6N5
| | - Jaclyn L Brusso
- Department of Chemistry & Biomolecular Sciences, University of Ottawa, 150 Louis Pasteur, Ottawa, ON, Canada K1N 6N5
| | - Adam J Shuhendler
- Department of Chemistry & Biomolecular Sciences, University of Ottawa, 150 Louis Pasteur, Ottawa, ON, Canada K1N 6N5
| | - Frédéric Castet
- Institut des Sciences Moléculaires, Université de Bordeaux, 351 Cours de la Libération, 33405 Talence, France
| | - Luca Muccioli
- Institut des Sciences Moléculaires, Université de Bordeaux, 351 Cours de la Libération, 33405 Talence, France
- Department of Industrial Chemistry, University of Bologna, 4 Viale Risorgimento, 40136 Bologna, Italy
| | - Timothy L Kelly
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK, Canada S7N 5C9
| | - Benoît H Lessard
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, Canada K1N 6N5
- School of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward Ave. Ottawa, ON, Canada K1N 6N5
| |
Collapse
|
16
|
Mitra K, Hartman MCT. Silicon phthalocyanines: synthesis and resurgent applications. Org Biomol Chem 2021; 19:1168-1190. [DOI: 10.1039/d0ob02299c] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Their unique axial bonds and NIR optical properties have made silicon phthalocyanines (SiPcs) valuable compounds. Herein, we present key synthetic strategies and emerging applications of SiPcs over the past decade.
Collapse
Affiliation(s)
- Koushambi Mitra
- Department of Chemistry
- Virginia Commonwealth University
- Richmond
- USA
- Massey Cancer Center
| | - Matthew C. T. Hartman
- Department of Chemistry
- Virginia Commonwealth University
- Richmond
- USA
- Massey Cancer Center
| |
Collapse
|