1
|
Do PT, Sbordone F, Kalmer H, Sokolova A, Zhang C, Thai LD, Golberg DV, Chapman R, Poad BLJ, Frisch H. Main chain selective polymer degradation: controlled by the wavelength and assembly. Chem Sci 2024; 15:12410-12419. [PMID: 39118612 PMCID: PMC11304539 DOI: 10.1039/d4sc02172j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/23/2024] [Indexed: 08/10/2024] Open
Abstract
The advent of reversible deactivation radical polymerization (RDRP) revolutionized polymer chemistry and paved the way for accessing synthetic polymers with controlled sequences based on vinylic monomers. An inherent limitation of vinylic polymers stems from their all-carbon backbone, which limits both function and degradability. Herein, we report a synthetic strategy utilizing radical ring-opening polymerization (rROP) of complementary photoreactive cyclic monomers in combination with RDRP to embed photoresponsive functionality into desired blocks of polyvinyl polymers. Exploiting different absorbances of photoreactive cyclic monomers, it becomes possible to degrade blocks selectively by irradiation with either UVB or UVA light. Translating such primary structures of polymer sequences into higher order assemblies, the hydrophobicity of the photodegradable monomers allowed for the formation of micelles in water. Upon exposure to light, the nondegradable blocks detached yielding a significant reduction in the micelle hydrodynamic diameter. As a result of the self-assembled micellar environment, telechelic oligomers with photoreactive termini (e.g., coumarin or styrylpyrene) resulting from the photodegradation of polymers in water underwent intermolecular photocycloaddition to photopolymerize, which usually only occurs efficiently at longer wavelengths and a much higher concentration of photoresponsive groups. The reported main chain polymer degradation is thus controlled by the irradiation wavelength and the assembly of the polymers.
Collapse
Affiliation(s)
- Phuong T Do
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Federica Sbordone
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Henrik Kalmer
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Anna Sokolova
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO) New Illawarra Road, Lucas Heights NSW 2234 Australia
| | - Chao Zhang
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Central Analytical Research Facility, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Linh Duy Thai
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Dmitri V Golberg
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Robert Chapman
- Centre for Advanced Macromolecular Design, School of Chemistry, UNSW Sydney Kensington NSW 2052 Australia
- School of Environmental and Life Sciences, University of Newcastle Callaghan NSW 2308 Australia
| | - Berwyck L J Poad
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Central Analytical Research Facility, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Hendrik Frisch
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| |
Collapse
|
2
|
Saha NK, Salvia WS, Konkolewicz D, Hartley CS. Transient Covalent Polymers through Carbodiimide-Driven Assembly. Angew Chem Int Ed Engl 2024; 63:e202404933. [PMID: 38772695 DOI: 10.1002/anie.202404933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/23/2024]
Abstract
Biochemical systems make use of out-of-equilibrium polymers generated under kinetic control. Inspired by these systems, many abiotic supramolecular polymers driven by chemical fuel reactions have been reported. Conversely, polymers based on transient covalent bonds have received little attention, even though they have the potential to complement supramolecular systems by generating transient structures based on stronger bonds and by offering a straightforward tuning of reaction kinetics. In this study, we show that simple aqueous dicarboxylic acids give poly(anhydrides) when treated with the carbodiimide EDC. Transient covalent polymers with molecular weights exceeding 15,000 are generated which then decompose over the course of hours to weeks. Disassembly kinetics can be controlled using simple substituent effects in the monomer design. The impact of solvent polarity, carbodiimide concentration, temperature, pyridine concentration, and monomer concentration on polymer properties and lifetimes has been investigated. The results reveal substantial control over polymer assembly and disassembly kinetics, highlighting the potential for fine-tuned kinetic control in nonequilibrium polymerization systems.
Collapse
Affiliation(s)
- Nirob K Saha
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, United States
| | - William S Salvia
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, United States
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, United States
| | - C Scott Hartley
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, United States
| |
Collapse
|
3
|
Pashley-Johnson F, Munaweera R, Hossain SI, Gauci SC, Delafresnaye L, Frisch H, O'Mara ML, Du Prez FE, Barner-Kowollik C. How molecular architecture defines quantum yields. Nat Commun 2024; 15:6033. [PMID: 39019945 PMCID: PMC11255304 DOI: 10.1038/s41467-024-50366-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
Understanding the intricate relationship between molecular architecture and function underpins most challenges at the forefront of chemical innovation. Bond-forming reactions are particularly influenced by the topology of a chemical structure, both on small molecule scale and in larger macromolecular frameworks. Herein, we elucidate the impact that molecular architecture has on the photo-induced cyclisations of a series of monodisperse macromolecules with defined spacers between photodimerisable moieties, and examine the relationship between propensity for intramolecular cyclisation and intermolecular network formation. We demonstrate a goldilocks zone of maximum reactivity between the sterically hindered and entropically limited regimes with a quantum yield of intramolecular cyclisation that is nearly an order of magnitude higher than the lowest value. As a result of the molecular design of trifunctional macromolecules, their quantum yields can be deconvoluted into the formation of two different cyclic isomers, as rationalised with molecular dynamics simulations. Critically, we visualise our solution-based studies with light-based additive manufacturing. We formulate four photoresists for microprinting, revealing that the precise positioning of functional groups is critical for resist performance, with lower intramolecular quantum yields leading to higher-quality printing in most cases.
Collapse
Affiliation(s)
- Fred Pashley-Johnson
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, Ghent, 9000, Belgium
| | - Rangika Munaweera
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Building 75, Cnr College Rd & Cooper Road, 4072, St Lucia, QLD, Australia
| | - Sheikh I Hossain
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Building 75, Cnr College Rd & Cooper Road, 4072, St Lucia, QLD, Australia
| | - Steven C Gauci
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Laura Delafresnaye
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
| | - Hendrik Frisch
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
| | - Megan L O'Mara
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Building 75, Cnr College Rd & Cooper Road, 4072, St Lucia, QLD, Australia.
| | - Filip E Du Prez
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, Ghent, 9000, Belgium.
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia.
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia.
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
4
|
Raji IO, Dodo OJ, Saha NK, Eisenhart M, Miller KM, Whitfield R, Anastasaki A, Konkolewicz D. Network Polymer Properties Engineered Through Polymer Backbone Dispersity and Structure. Angew Chem Int Ed Engl 2024; 63:e202315200. [PMID: 38546541 DOI: 10.1002/anie.202315200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Indexed: 04/24/2024]
Abstract
Dispersity (Ð or Mw/Mn) is an important parameter in material design and as such can significantly impact the properties of polymers. Here, polymer networks with independent control over the molecular weight and dispersity of the linear chains that form the material are developed. Using a RAFT polymerization approach, a library of polymers with dispersity ranging from 1.2-1.9 for backbone chain-length (DP) 100, and 1.4-3.1 for backbone chain-length 200 were developed and transformed to networks through post-polymerization crosslinking to form disulfide linkers. The tensile, swelling, and adhesive properties were explored, finding that both at DP 100 and DP 200 the swelling ratio, tensile strength, and extensibility were superior at intermediate dispersity (1.3-1.5 for DP 100 and 1.6-2.1 for DP 200) compared to materials with either substantially higher or lower dispersity. Furthermore, adhesive properties for materials with chains of intermediate dispersity at DP 200 revealed enhanced performance compared to the very low or high dispersity chains.
Collapse
Affiliation(s)
- Ibrahim O Raji
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, 45056, USA
| | - Obed J Dodo
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, 45056, USA
| | - Nirob K Saha
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, 45056, USA
| | - Mary Eisenhart
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, 45056, USA
| | - Kevin M Miller
- Department of Chemistry, Murray State University, Murray, KY 42071, USA
| | - Richard Whitfield
- Laboratory of Polymeric Materials, Department of Materials, ETH, Zurich, Vladimir-Prelog-Weg 5, Zurich, Switzerland
| | - Athina Anastasaki
- Laboratory of Polymeric Materials, Department of Materials, ETH, Zurich, Vladimir-Prelog-Weg 5, Zurich, Switzerland
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, 45056, USA
| |
Collapse
|
5
|
Reddy TS, Raja K, Mandapati KR, Goli SR, Babu MSS. Efficient Approach for the Synthesis of Aryl Vinyl Ketones and Its Synthetic Application to Mimosifoliol with DFT and Autodocking Studies. Molecules 2023; 28:6214. [PMID: 37687043 PMCID: PMC10488981 DOI: 10.3390/molecules28176214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023] Open
Abstract
An efficient and elegant method was developed for the preparation of substituted phenyl vinyl ketones using low-cost and commercially available ethyl chloroformate and diisopropylethylamine as reagents. This methodology was also applied to the synthesis of natural products such as mimosifoliol and quinolines. Frontier molecular orbital (FMO) studies on mimosifoliol were carried out to understand its chemical reactivity. Electron localization function (ELF) and localized orbital locator (LOL) analysis gave information about localized and delocalized electrons. Reduced density gradient (RDG) analysis gave information on steric, van der Waals, and hydrogen-bonding interactions. Molecular electrostatic potential (MEP) and Fukui functions gave information about nucleophilic and electrophilic attack. Nonlinear optical (NLO) analysis represented the mimosifoliol good NLO material. Molecular docking showed that the mimosifoliol compound had effectively inhibited the aspulvinone dimethylallyltransferase enzyme.
Collapse
Affiliation(s)
- Tummuri Sudheer Reddy
- Department of Chemistry, GITAM University Hyderabad Campus, Hyderabad 502329, Telangana, India;
| | - Karreddula Raja
- Department of Chemistry, Rajeev Gandhi Memorial College of Engineering and Technology (Autonomous), Nandyal 518501, Andhra Pradesh, India;
| | - Kishore Reddy Mandapati
- Synaptics Labs Private Limited, Kurmannapalem, Matrusri Nagar, Gajuwaka, Visakhapatnam 530026, Andhra Pradesh, India
| | - Srinivasa Reddy Goli
- Synaptics Labs Private Limited, Kurmannapalem, Matrusri Nagar, Gajuwaka, Visakhapatnam 530026, Andhra Pradesh, India
| | | |
Collapse
|
6
|
Chae JH, Choi M, Son S, Ko SM, Lee IH. Living Cationic Ring-Opening Polymerization of Hetero Diels-Alder Adducts to Give Multifactor-Controlled and Fast-Photodegradable Vinyl Polymers. Angew Chem Int Ed Engl 2023; 62:e202305414. [PMID: 37259631 DOI: 10.1002/anie.202305414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/02/2023]
Abstract
Precise control of multiple structural parameters associated with vinyl polymers is important for producing materials with the desired properties and functions. While the development of living polymerization methods has provided a way to control the various structural parameters of vinyl polymers, the concomitant control of their sequence and regioregularity remains a challenging task. To overcome this challenge, herein, we report the living cationic ring-opening polymerization of hetero Diels-Alder adducts. The scalable and modular synthesis of the cyclic monomers was achieved by a one-step protocol using readily available vinyl precursors. Subsequently, living polymerization of the cyclic monomers was examined, allowing the synthesis of vinyl polymers while controlling multiple factors, including molecular weight, dispersity, alternating sequence, head-to-head regioregularity, and end-group functionality. The living characteristics of the developed method were further demonstrated by block copolymerization. The synthesized vinyl polymers exhibited unique thermal properties and underwent fast photodegradation even under sunlight.
Collapse
Affiliation(s)
- Ju-Hyung Chae
- Department of Energy System Research, Ajou University, 16499, Suwon, Republic of Korea
| | - Minyeong Choi
- Department of Energy System Research, Ajou University, 16499, Suwon, Republic of Korea
| | - Semin Son
- Department of Energy System Research, Ajou University, 16499, Suwon, Republic of Korea
| | - Su-Min Ko
- Department of Energy System Research, Ajou University, 16499, Suwon, Republic of Korea
| | - In-Hwan Lee
- Department of Chemistry, Ajou University, 16499, Suwon, Republic of Korea
| |
Collapse
|
7
|
Tierno D, Azzalini E, Farra R, Drioli S, Felluga F, Lazzarino M, Grassi G, Dapas B, Bonin S. Nanomechanical Characterization of Ovarian Cancer Cell Lines as a Marker of Response to 2c Treatment. Int J Mol Sci 2023; 24:ijms24087230. [PMID: 37108391 PMCID: PMC10139025 DOI: 10.3390/ijms24087230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Epithelial ovarian cancers (EOCs) are a heterogeneous group of tumors with different molecular and clinical features. In past decades, few improvements have been achieved in terms of EOC management and treatment efficacy, such that the 5-year survival rate of patients remained almost unchanged. A better characterization of EOCs' heterogeneity is needed to identify cancer vulnerabilities, stratify patients and adopt proper therapies. The mechanical features of malignant cells are emerging as new biomarkers of cancer invasiveness and drug resistance that can further improve our knowledge of EOC biology and allow the identification of new molecular targets. In this study, we determined the inter and intra-mechanical heterogeneity of eight ovarian cancer cell lines and their association with tumor invasiveness and resistance to an anti-tumoral drug with cytoskeleton depolymerization activity (2c).
Collapse
Affiliation(s)
- Domenico Tierno
- Department of Medical Sciences (DSM), University of Trieste, 34149 Trieste, Italy
| | - Eros Azzalini
- Department of Medical Sciences (DSM), University of Trieste, 34149 Trieste, Italy
| | - Rossella Farra
- Department of Life Sciences (DSV), University of Trieste, 34128 Trieste, Italy
| | - Sara Drioli
- Department of Chemical and Pharmaceutical Sciences (DSCF), University of Trieste, 34127 Trieste, Italy
| | - Fulvia Felluga
- Department of Chemical and Pharmaceutical Sciences (DSCF), University of Trieste, 34127 Trieste, Italy
| | - Marco Lazzarino
- Consiglio Nazionale delle Ricerche, Istituto Officina dei Materiali (IOM), 34149 Trieste, Italy
| | - Gabriele Grassi
- Department of Life Sciences (DSV), University of Trieste, 34128 Trieste, Italy
| | - Barbara Dapas
- Department of Life Sciences (DSV), University of Trieste, 34128 Trieste, Italy
| | - Serena Bonin
- Department of Medical Sciences (DSM), University of Trieste, 34149 Trieste, Italy
| |
Collapse
|
8
|
Bellotti V, Parkatzidis K, Wang HS, De Alwis Watuthanthrige N, Orfano M, Monguzzi A, Truong NP, Simonutti R, Anastasaki A. Light-accelerated depolymerization catalyzed by Eosin Y. Polym Chem 2023; 14:253-258. [PMID: 36760607 PMCID: PMC9843692 DOI: 10.1039/d2py01383e] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Retrieving the starting monomers from polymers synthesized by reversible deactivation radical polymerization has recently emerged as an efficient way to increase the recyclability of such materials and potentially enable their industrial implementation. To date, most methods have primarily focused on utilizing high temperatures (typically from 120 °C to 180 °C) to trigger an efficient depolymerization reaction. In this work, we show that, in the presence of Eosin Y under light irradiation, a much faster depolymerization of polymers made by reversible addition-fragmentation chain-transfer (RAFT) polymerization can be triggered even at a lower temperature (i.e. 100 °C). For instance, green light, in conjunction with ppm amounts of Eosin Y, resulted in the accelerated depolymerization of poly(methyl methacrylate) from 16% (thermal depolymerization at 100 °C) to 37% within 1 hour, and finally 80% depolymerization after 8 hours, as confirmed by both 1H-NMR and SEC analyses. The enhanced depolymerization rate was attributed to the activation of a macroCTA by Eosin Y, thus resulting in a faster macroradical generation. Notably, this method was found to be compatible with different wavelengths (e.g. blue, red and white light irradiation), solvents, and RAFT agents, thus highlighting the potential of light to significantly improve current depolymerization approaches.
Collapse
Affiliation(s)
- Valentina Bellotti
- Department of Material Science, University of Milano-Bicocca Via R. Cozzi 55 20125 Milan Italy
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir-Prelog-Weg-5 Zurich Switzerland
| | - Kostas Parkatzidis
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir-Prelog-Weg-5 Zurich Switzerland
| | - Hyun Suk Wang
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir-Prelog-Weg-5 Zurich Switzerland
| | | | - Matteo Orfano
- Department of Material Science, University of Milano-Bicocca Via R. Cozzi 55 20125 Milan Italy
| | - Angelo Monguzzi
- Department of Material Science, University of Milano-Bicocca Via R. Cozzi 55 20125 Milan Italy
| | - Nghia P Truong
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir-Prelog-Weg-5 Zurich Switzerland
| | - Roberto Simonutti
- Department of Material Science, University of Milano-Bicocca Via R. Cozzi 55 20125 Milan Italy
| | - Athina Anastasaki
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir-Prelog-Weg-5 Zurich Switzerland
| |
Collapse
|
9
|
Wang S, Wang Y, Hu K, Wang K, Zhou X. Controllable carbonyl-assisted C(sp 3)–C(sp 3) bond reduction and reorganization. Org Chem Front 2023. [DOI: 10.1039/d2qo01981g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Unprecedentedly preferential reduction of unstrained C(sp3)–C(sp3) bond over ketone, hydrogenative [2+2+2]-cycloreversion of 2,4-diacylcyclohexanols, and cyclizative degradation of poly(vinylketone) have been achieved by organolanthanide catalysis.
Collapse
Affiliation(s)
- Shengke Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Yitu Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Kun Hu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Kai Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Xigeng Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
- State Key Laboratory of Organometallic Chemistry, Shanghai 200032, China
| |
Collapse
|
10
|
Kearns MM, Morley CN, Parkatzidis K, Whitfield R, Sponza AD, Chakma P, De Alwis Watuthanthrige N, Chiu M, Anastasaki A, Konkolewicz D. A general model for the ideal chain length distributions of polymers made with reversible deactivation. Polym Chem 2022. [DOI: 10.1039/d1py01331a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A general model is developed for the distribution of polymers made with reversible deactivation. The model is applied to a range of experimental systems including RAFT, cationic and ATRP.
Collapse
Affiliation(s)
- Madison M. Kearns
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Colleen N. Morley
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Kostas Parkatzidis
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Richard Whitfield
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Alvaro D. Sponza
- Stony Brook University, Department of Chemistry, Stony Brook, NY, 11794 USA
| | - Progyateg Chakma
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | | | - Melanie Chiu
- Stony Brook University, Department of Chemistry, Stony Brook, NY, 11794 USA
| | - Athina Anastasaki
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| |
Collapse
|
11
|
|
12
|
Nwoko T, De Alwis Watuthanthrige N, Parnitzke B, Yehl K, Konkolewicz D. Tuning the molecular weight distributions of vinylketone-based polymers using RAFT photopolymerization and UV photodegradation. Polym Chem 2021. [DOI: 10.1039/d1py01129d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The choice and mixture of chain transfer agent in reversible addition/fragmentation chain transfer polymerization has been used to modulate the dispersity and architecture of vinyl ketone polymers and their copolymers.
Collapse
Affiliation(s)
- Tochukwu Nwoko
- Department of Chemistry and Biochemistry, Miami University, 651 E High St., Oxford, OH, USA
| | | | - Bryan Parnitzke
- Department of Chemistry and Biochemistry, Miami University, 651 E High St., Oxford, OH, USA
| | - Kevin Yehl
- Department of Chemistry and Biochemistry, Miami University, 651 E High St., Oxford, OH, USA
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, 651 E High St., Oxford, OH, USA
| |
Collapse
|