1
|
Tan Y, Sun Y, Huang W, Zhu D, Yan D, Wang D, Tang BZ. Thiophene π-bridge-based second near-infrared luminogens with aggregation-induced emission for biomedical applications. LUMINESCENCE 2024; 39:e4606. [PMID: 37807953 DOI: 10.1002/bio.4606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/23/2023] [Accepted: 10/01/2023] [Indexed: 10/10/2023]
Abstract
In the past 5 years, aggregation-induced emission luminogens (AIEgens) with emission in the second near-infrared (NIR-II) optical window have aroused great interest in bioimaging and disease phototheranostics, benefiting from the merits of deep penetration depth, reduced light scatting, high spatial resolution, and minimal photodamage. To construct NIR-II AIEgens, thiophene derivatives are frequently adopted as π-bridge by virtue of their electron-rich feature and good modifiability. Herein, we summarize the recent progress of NIR-II AIEgens by employing thiophene derivatives as π-bridge mainly compassing unsubstituted thiophene, alkyl thiophene, 3,4-ethylenedioxythiophene, and benzo[c]thiophene, with a discussion on their structure-property relationships and biomedical applications. Finally, a brief conclusion and perspective on this fascinating area are offered.
Collapse
Affiliation(s)
- Yonghong Tan
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Yan Sun
- Department of Chemistry, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Northeast Normal University, Changchun, China
| | - Weigeng Huang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Dongxia Zhu
- Department of Chemistry, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Northeast Normal University, Changchun, China
| | - Dingyuan Yan
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Molecular Aggregate Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
2
|
Zhao Z, Zhang L, Zhao Y, Li Y, Shi J, Zhi J, Dong Y. Helical Self-Assembly and Fe 3+ Detection of V-Shaped AIE-Active Chiral Tetraphenylbutadiene-Based Polyamides. Chemistry 2023; 29:e202301035. [PMID: 37200207 DOI: 10.1002/chem.202301035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/07/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Chiral aggregation-induced emission (AIE) molecules have drawn attention for their helical self-assembly and special optical properties. The helical self-assembly of AIE-active chiral non-linear main-chain polymers can produce some desired optical features. In this work, a series of V-shaped chiral AIE-active polyamides P1-C3, P1-C6, P1-C12 and linear P2-C3, P2-C6, bearing n-propyl/hexyl/dodecyl side-chains, based on tetraphenylbutadiene (TPB), were prepared. All target main-chain polymers exhibit distinct AIE characteristics. The polymer P1-C6 with moderate length alkyl chains shows better AIE properties. The V-shaped main-chains and the chiral induction of (1R,2R)-(+)-1,2-cyclohexanediamine in each repeating unit promote the polymer chains display helical conformation, and multiple helical polymer chains induce nano-fibers helicity when the polymer chains aggregate and self-assemble in THF/H2 O mixtures. Simultaneously, the helical conformation polymer chains and helical nano-fibers cause P1-C6 produce strong circular dichroism (CD) signals with positive Cotton effect. Moreover, P1-C6 could also occur fluorescence quenching response to Fe3+ selectively with a low detection limit of 3.48 μmol/L.
Collapse
Affiliation(s)
- Zixuan Zhao
- School of Chemistry and Chemical Engineering Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Lulu Zhang
- School of Chemistry and Chemical Engineering Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Ying Zhao
- School of Chemistry and Chemical Engineering Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Yanji Li
- School of Chemistry and Chemical Engineering Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Jianbing Shi
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Junge Zhi
- School of Chemistry and Chemical Engineering Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Yuping Dong
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| |
Collapse
|
3
|
Huang S, Wang E, Tong J, Shan GG, Liu S, Feng H, Qin C, Wang X, Su Z. Rational design of AIE-active biodegradable polycarbonates for high-performance WLED and selective detection of nitroaromatic explosives. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Intra- and Intermolecular Hydrogen Bonding in Miscible Blends of CO2/Epoxy Cyclohexene Copolymer with Poly(Vinyl Phenol). Int J Mol Sci 2022; 23:ijms23137018. [PMID: 35806022 PMCID: PMC9266814 DOI: 10.3390/ijms23137018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 02/06/2023] Open
Abstract
In this study, we synthesized a poly(cyclohexene carbonate) (PCHC) through alternative ring-opening copolymerization of CO2 with cyclohexene oxide (CHO) mediated by a binary LZn2OAc2 catalyst at a mild temperature. A two-dimensional Fourier transform infrared (2D FTIR) spectroscopy indicated that strong intramolecular [C–H···O=C] hydrogen bonding (H-bonding) occurred in the PCHC copolymer, thereby weakening its intermolecular interactions and making it difficult to form miscible blends with other polymers. Nevertheless, blends of PCHC with poly(vinyl phenol) (PVPh), a strong hydrogen bond donor, were miscible because intermolecular H-bonding formed between the PCHC C=O units and the PVPh OH units, as evidenced through solid state NMR and one-dimensional and 2D FTIR spectroscopic analyses. Because the intermolecular H-bonding in the PCHC/PVPh binary blends were relatively weak, a negative deviation from linearity occurred in the glass transition temperatures (Tg). We measured a single proton spin-lattice relaxation time from solid state NMR spectra recorded in the rotating frame [T1ρ(H)], indicating full miscibility on the order of 2–3 nm; nevertheless, the relaxation time exhibited a positive deviation from linearity, indicating that the hydrogen bonding interactions were weak, and that the flexibility of the main chain was possibly responsible for the negative deviation in the values of Tg.
Collapse
|
5
|
Hu R, Wang J, Qin A, Tang BZ. Aggregation-Induced Emission-Active Biomacromolecules: Progress, Challenges, and Opportunities. Biomacromolecules 2022; 23:2185-2196. [PMID: 35171563 DOI: 10.1021/acs.biomac.1c01516] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biomacromolecules featuring aggregation-induced-emission (AIE) characteristics generally present new properties and performances that are silent in the molecular state, providing endless possibilities for the evolution of biomedical applications. Tremendous achievements based on the research of AIE-active biomacromolecules have been made in synthetic exploration, material development, and practical applications. In this Perspective, we give a brief account in the development of AIE-active biomacromolecules. Remarkable progresses have been made in the exploration of AIE-active biomacromolecule preparation, structure-property relationships, and the relevant biomedical applications. The existing challenges and promising opportunities, as well as the future directions in AIE-active biomacromolecule research, are also discussed. It is expected that this Perspective can act as a trigger for the innovation of AIE-active biomacromolecule research and aggregate science.
Collapse
Affiliation(s)
- Rong Hu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology, 510641 Guangzhou, China.,School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Jia Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology, 510641 Guangzhou, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology, 510641 Guangzhou, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology, 510641 Guangzhou, China.,Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City 518172, Guangdong, China.,Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| |
Collapse
|
6
|
Wang M, Liu S, Chen X, Wang X, Wang F. Aldehyde end-capped CO 2-based polycarbonates: a green synthetic platform for site-specific functionalization. Polym Chem 2022. [DOI: 10.1039/d2py00129b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aldehyde end-capped CO2-based polycarbonates were prepared to serve as a green platform for the construction of diverse functional polymers.
Collapse
Affiliation(s)
- Molin Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Shunjie Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Fosong Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
7
|
Bao Y. Controlling Molecular Aggregation-Induced Emission by Controlled Polymerization. Molecules 2021; 26:6267. [PMID: 34684848 PMCID: PMC8540238 DOI: 10.3390/molecules26206267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
In last twenty years, the significant development of AIE materials has been witnessed. A number of small molecules, polymers and composites with AIE activity have been synthesized, with some of these exhibiting great potential in optoelectronics and biomedical applications. Compared to AIE small molecules, macromolecular systems-especially well-defined AIE polymers-have been studied relatively less. Controlled polymerization methods provide the efficient synthesis of well-defined AIE polymers with varied monomers, tunable chain lengths and narrow dispersity. In particular, the preparation of single-fluorophore polymers through AIE molecule-initiated polymerization enables the systematic investigation of the structure-property relationships of AIE polymeric systems. Here, the main polymerization techniques involved in these polymers are summarized and the key parameters that affect their photophysical properties are analyzed. The author endeavored to collect meaningful information from the descriptions of AIE polymer systems in the literature, to find connections by comparing different representative examples, and hopes eventually to provide a set of general guidelines for AIE polymer design, along with personal perspectives on the direction of future research.
Collapse
Affiliation(s)
- Yinyin Bao
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| |
Collapse
|
8
|
Wang M, Wang E, Cao H, Liu S, Wang X, Wang F. Construction of
Self‐Reporting
Biodegradable
CO
2
‐Based
Polycarbonates for the Visualization of Thermoresponsive Behavior with
Aggregation‐Induced
Emission Technology
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Molin Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Enhao Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Han Cao
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Shunjie Liu
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Fosong Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
9
|
Kalva N, Uthaman S, Lee SJ, Lim YJ, Augustine R, Huh KM, Park IK, Kim I. Degradable pH-responsive polymer prodrug micelles with aggregation-induced emission for cellular imaging and cancer therapy. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Diana R, Panunzi B. Zinc (II) and AIEgens: The "Clip Approach" for a Novel Fluorophore Family. A Review. Molecules 2021; 26:4176. [PMID: 34299451 PMCID: PMC8304007 DOI: 10.3390/molecules26144176] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/17/2022] Open
Abstract
Aggregation-induced emission (AIE) compounds display a photophysical phenomenon in which the aggregate state exhibits stronger emission than the isolated units. The common term of "AIEgens" was coined to describe compounds undergoing the AIE effect. Due to the recent interest in AIEgens, the search for novel hybrid organic-inorganic compounds with unique luminescence properties in the aggregate phase is a relevant goal. In this perspective, the abundant, inexpensive, and nontoxic d10 zinc cation offers unique opportunities for building AIE active fluorophores, sensing probes, and bioimaging tools. Considering the novelty of the topic, relevant examples collected in the last 5 years (2016-2021) through scientific production can be considered fully representative of the state-of-the-art. Starting from the simple phenomenological approach and considering different typological and chemical units and structures, we focused on zinc-based AIEgens offering synthetic novelty, research completeness, and relevant applications. A special section was devoted to Zn(II)-based AIEgens for living cell imaging as the novel technological frontier in biology and medicine.
Collapse
Affiliation(s)
| | - Barbara Panunzi
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| |
Collapse
|
11
|
Alagi P, Zapsas G, Hadjichristidis N, Hong SC, Gnanou Y, Feng X. All-Polycarbonate Graft Copolymers with Tunable Morphologies by Metal-Free Copolymerization of CO 2 with Epoxides. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00659] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Prakash Alagi
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - George Zapsas
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Nikos Hadjichristidis
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Sung Chul Hong
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747, Republic of Korea
| | - Yves Gnanou
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Xiaoshuang Feng
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
12
|
Liu S, Chen R, Zhang J, Li Y, He M, Fan X, Zhang H, Lu X, Kwok RTK, Lin H, Lam JWY, Qian J, Tang BZ. Incorporation of Planar Blocks into Twisted Skeletons: Boosting Brightness of Fluorophores for Bioimaging beyond 1500 Nanometer. ACS NANO 2020; 14:14228-14239. [PMID: 33001627 DOI: 10.1021/acsnano.0c07527] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The brightness of organic fluorescence materials determines their resolution and sensitivity in fluorescence display and detection. However, strategies to effectively enhance the brightness are still scarce. Conventional planar π-conjugated molecules display excellent photophysical properties as isolated species but suffer from aggregation-caused quenching effect when aggregated owing to the cofacial π-π interactions. In contrast, twisted molecules show high photoluminescence quantum yield (ΦPL) in aggregate while at the cost of absorption due to the breakage in conjugation. Therefore, it is challenging to integrate the strong absorption and high solid-state ΦPL, which are two main indicators of brightness, into one molecule. Herein, we propose a molecular design strategy to boost the brightness through the incorporation of planar blocks into twisted skeletons. As a proof-of-concept, twisted small-molecule TT3-oCB with larger π-conjugated dithieno[3,2-b:2',3'-d]thiophene unit displays superb brightness at the NIR-IIb (1500-1700 nm) than that of TT1-oCB and TT2-oCB with smaller thiophene and thienothiophene unit, respectively. Whole-body angiography using TT3-oCB nanoparticles presents an apparent vessel width of 0.29 mm. Improved NIR-IIb image resolution is achieved for femoral vessels with an apparent width of only 0.04 mm. High-magnification through-skull microscopic NIR-IIb imaging of cerebral vasculature gives an apparent width of ∼3.3 μm. Moreover, the deeply located internal organ such as bladder is identified with high clarity. The present molecular design philosophy embodies a platform for further development of in vivo bioimaging.
Collapse
Affiliation(s)
- Shunjie Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Runze Chen
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China
| | - Jianquan Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Yuanyuan Li
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Mubin He
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Haoke Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Xuefeng Lu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
- Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| |
Collapse
|