1
|
Du R, Li X, Fielding LA. Investigating the Formation of Polymer-Nanoparticle Complex Coacervate Hydrogels Using Polymerization-Induced Self-Assembly-Derived Nanogels with a Succinate-Functional Core. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20648-20656. [PMID: 39291829 PMCID: PMC11447913 DOI: 10.1021/acs.langmuir.4c02626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
This paper reports polymer-nanoparticle-based complex coacervate (PNCC) hydrogels prepared by mixing anionic nanogels synthesized by polymerization-induced self-assembly (PISA) and cationic branched poly(ethylenimine) (bPEI). Specifically, poly(3-sulfopropyl methacrylate)58-b-poly(2-(methacryloyloxy)ethyl succinate)500 (PKSPMA58-PMES500) nanogels were prepared by reversible addition-fragmentation chain-transfer (RAFT)-mediated PISA. These nanogels swell on increasing the solution pH and form free-standing hydrogels at 20% w/w and pH ≥ 7.5. However, the addition of bPEI significantly improves the gel properties through the formation of PNCCs. Diluted bPEI/nanoparticle mixtures were analyzed by dynamic light scattering (DLS) and aqueous electrophoresis to examine the mechanism of PNCC formation. The influence of pH and the bPEI-to-nanogel mass ratio (MR) on the formation of these PNCC hydrogels was subsequently investigated. A maximum gel strength of 1300 Pa was obtained for 20% w/w bPEI/PKSPMA58-PMES500 PNCC hydrogels prepared at pH 9 with an MR of 0.1, and shear-thinning behavior was observed in all cases. After the removal of shear, these PNCC gels recovered rapidly, with the recovery efficiency being pH-dependent.
Collapse
Affiliation(s)
- Ruiling Du
- Department
of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Henry
Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Xueyuan Li
- Department
of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Henry
Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Lee A. Fielding
- Department
of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Henry
Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
2
|
Baksi A, Zerze H, Agrawal A, Karim A, Zerze GH. The molecular picture of the local environment in a stable model coacervate. Commun Chem 2024; 7:222. [PMID: 39349768 PMCID: PMC11442467 DOI: 10.1038/s42004-024-01304-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024] Open
Abstract
Complex coacervates play essential roles in various biological processes and applications. Although substantial progress has been made in understanding the molecular interactions driving complex coacervation, the mechanisms stabilizing coacervates against coalescence remain experimentally challenging and not fully elucidated. We recently showed that polydiallyldimethylammonium chloride (PDDA) and adenosine triphosphate (ATP) coacervates stabilize upon their transfer to deionized (DI) water. Here, we perform molecular dynamics simulations of PDDA-ATP coacervates in supernatant and DI water, to understand the ion dynamics and structure within stable coacervates. We found that transferring the coacervates to DI water results in an immediate ejection of a significant fraction of small ions (Na+ and Cl-) from the surface of the coacervates to DI water. We also observed a notable reduction in the mobility of these counterions in coacervates when in DI water, both in the cluster-forming and slab simulations, together with a lowered displacement of PDDA and ATP. These results suggest that the initial ejection of the ions from the coacervates in DI water may induce an interfacial skin layer formation, inhibiting further mobility of ions in the skin layer.
Collapse
Affiliation(s)
- Atanu Baksi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204, USA
| | - Hasan Zerze
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204, USA
| | - Aman Agrawal
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204, USA
- Department of Chemistry and Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Alamgir Karim
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204, USA
| | - Gül H Zerze
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
3
|
Roy PS. Complex Coacervate-Based Materials for Biomedicine: Recent Advancements and Future Prospects. Ind Eng Chem Res 2024; 63:5414-5487. [DOI: 10.1021/acs.iecr.3c03830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Partha Sarathi Roy
- Division of Pharmaceutical Sciences, Health Sciences Building, University of Missouri─Kansas City, 2464 Charlotte St., Kansas City, Missouri 64108-2718, United States
- Department of Pharmaceutics/Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, 751 Brookside Rd., Stockton, California 95211, United States
| |
Collapse
|
4
|
Rumyantsev AM, Zhulina EB, Borisov OV. Surface-Immobilized Interpolyelectrolyte Complexes Formed by Polyelectrolyte Brushes. ACS Macro Lett 2023; 12:1727-1732. [PMID: 38061050 DOI: 10.1021/acsmacrolett.3c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
A scaling theory of interaction and complex formation between planar polyelectrolyte (PE) brush and oppositely charged mobile linear PEs is developed. Counterion release is found to be the main driving force for the complexation. An interpolyelectrolyte coacervate complex (IPEC) between the brush and oppositely charged mobile PEs is formed at moderate grafting density and low salt concentration. At higher grafting density mobile chains penetrate the brush, but the brush structure is controlled by the balance between entropic elasticity and nonelectrostatic short-range interactions, as happens in a neutral brush. An increase in salt concentration beyond the theoretically predicted threshold leads to the release of the guest polyions from the brush. For brushes with moderate grafting density, complexation with oppositely charged guest polyions is predicted to trigger lateral microphase separation and formation of the finite-size surface IPEC clusters. Power law dependencies for the cluster dimensions on the brush grafting density, PE length, and salt concentration are provided.
Collapse
Affiliation(s)
- Artem M Rumyantsev
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Ekaterina B Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | - Oleg V Borisov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
- CNRS, Université de Pau et des Pays de l'Adour UMR 5254, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, 64053 Pau, France
| |
Collapse
|
5
|
Edwards CER, Lakkis KL, Luo Y, Helgeson ME. Coacervate or precipitate? Formation of non-equilibrium microstructures in coacervate emulsions. SOFT MATTER 2023; 19:8849-8862. [PMID: 37947798 DOI: 10.1039/d3sm00901g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Non-equilibrium processing of aqueous polyelectrolyte complex (PEC) coacervates is critical to many applications. In particular, many coacervate-forming systems are known to become trapped in out-of-equilibrium states (e.g., precipitation). The mechanism and conditions under which these states form, and whether they age, is not clearly understood. Here, we elucidate the influence of processing on the PEC coarsening mechanism as it varies with flow during mixing for a model system of poly(allylamine hydrochloride) and poly(acrylic acid sodium salt) in water. We demonstrate that flow conditions can be used to toggle the formation of rough, precipitate-like aggregates of micron-scale PEC structures. These structures form at compositions with viscous-dominant equilibrium rheology, and observations of their formation via optical microscopy suggest that they comprise colloidal aggregates of PEC coacervate droplets. We further show that these aggregates exhibit micron-scale coarsening, with a mixing time-dependent characteristic aging time scale. The results show that the formation of precipitate-like structures is not solely determined by composition, but is instead highly sensitive to mass transport and colloidal instability effects. Our observations suggest that the details of mixing flow can provide non-equilibrium structural control of a broad range of PEC coacervate materials orthogonally to structure-property inspired polymeric design. We anticipate that these findings will open the door for future studies on the control of non-equilibrium PEC formation and structure.
Collapse
Affiliation(s)
- Chelsea E R Edwards
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106-5080, USA.
- Materials Research Laboratory, University of California, Santa Barbara, USA
| | - Kareem L Lakkis
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106-5080, USA.
| | - Yimin Luo
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106-5080, USA.
- Materials Research Laboratory, University of California, Santa Barbara, USA
| | - Matthew E Helgeson
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106-5080, USA.
- Materials Research Laboratory, University of California, Santa Barbara, USA
| |
Collapse
|
6
|
Malhotra I, Potoyan DA. Re-entrant transitions of locally stiff RNA chains in the presence of polycations leads to gelated architectures. SOFT MATTER 2023. [PMID: 37449795 PMCID: PMC10369498 DOI: 10.1039/d3sm00320e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The liquid-liquid phase separation of protein and nucleic acid mixtures drives the formation of numerous membraneless compartments in cells. Temperature variation is commonly used for mapping condensate phase diagrams, which often display unique upper critical temperatures. Recent report on peptide-RNA mixtures has shown the existence of lower and upper critical solution temperatures, highlighting the importance of temperature-dependent solvent and ion-mediated forces. In the present work, we employ residue-level coarse-grained models of RNA and polycation peptide chains for simulating temperature-induced re-entrant transitions and shedding light on the role played by mobile ions, temperature-dependent dielectric permittivity, and local chain stiffness. We show that differences in bending rigidity can significantly modulate condensate topology leading to the formation of gelated or fibril like architectures. The study also finds that temperature dependence of water permittivity is generally sufficient for recapitulating experimentally observed closed loop and LCST phase diagrams of highly charged protein-RNA mixtures. However, we find that similar-looking closed-loop phase diagrams can correspond to vastly different condensate topologies.
Collapse
Affiliation(s)
- Isha Malhotra
- Department of Chemistry, Iowa State University, Ames, Iowa 50014, USA.
| | - Davit A Potoyan
- Department of Chemistry, Iowa State University, Ames, Iowa 50014, USA.
| |
Collapse
|
7
|
Rumyantsev AM, Borisov OV, de Pablo JJ. Structure and Dynamics of Hybrid Colloid-Polyelectrolyte Coacervates. Macromolecules 2023; 56:1713-1730. [PMID: 36874532 PMCID: PMC9979655 DOI: 10.1021/acs.macromol.2c02464] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/28/2023] [Indexed: 02/16/2023]
Abstract
We develop a scaling theory for the structure and dynamics of "hybrid" complex coacervates formed from linear polyelectrolytes (PEs) and oppositely charged spherical colloids, such as globular proteins, solid nanoparticles, or spherical micelles of ionic surfactants. At low concentrations, in stoichiometric solutions, PEs adsorb at the colloids to form electrically neutral finite-size complexes. These clusters attract each other through bridging between the adsorbed PE layers. Above a threshold concentration, macroscopic phase separation sets in. The coacervate internal structure is defined by (i) the adsorption strength and (ii) the ratio of the resulting shell thickness to the colloid radius, H/R. A scaling diagram of different coacervate regimes is constructed in terms of the colloid charge and its radius for Θ and athermal solvents. For high charges of the colloids, the shell is thick, H ≫ R, and most of the volume of the coacervate is occupied by PEs, which determine its osmotic and rheological properties. The average density of hybrid coacervates exceeds that of their PE-PE counterparts and increases with nanoparticle charge, Q. At the same time, their osmotic moduli remain equal, and the surface tension of hybrid coacervates is lower, which is a consequence of the shell's inhomogeneous density decreasing with the distance from the colloid surface. When charge correlations are weak, hybrid coacervates remain liquid and follow Rouse/reptation dynamics with a Q-dependent viscosity, η Rouse ∼ Q 4/5 and η rep ∼ Q 28/15 for a Θ solvent. For an athermal solvent, these exponents are equal to 0.89 and 2.68, respectively. The diffusion coefficients of colloids are predicted to be strongly decreasing functions of their radius and charge. Our results on how Q affects the threshold coacervation concentration and colloidal dynamics in condensed phases are consistent with experimental observations for in vitro and in vivo studies of coacervation between supercationic green fluorescent proteins (GFPs) and RNA.
Collapse
Affiliation(s)
- Artem M. Rumyantsev
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Oleg V. Borisov
- Institut
des Sciences Analytiques et de Physico-Chimie pour l’Environnement
et les Matériaux, UMR 5254 CNRS UPPA, Pau 64053, France
| | - Juan J. de Pablo
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
8
|
Rheology and Gelation of Hyaluronic Acid/Chitosan Coacervates. Biomolecules 2022; 12:biom12121817. [PMID: 36551245 PMCID: PMC9775361 DOI: 10.3390/biom12121817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Hyaluronic acid (HA) and chitosan (CHI) are biopolyelectrolytes which are interesting for both the medical and polymer physics communities due to their biocompatibility and semi-flexibility, respectively. In this work, we demonstrate by rheology experiments that the linear viscoelasticity of HA/CHI coacervates depends strongly on the molecular weight of the polymers. Moduli for coacervates were found significantly higher than those of individual HA and CHI physical gels. A remarkable 1.5-fold increase in moduli was noted when catechol-conjugated HA and CHI were used instead. This was attributed to the conversion of coacervates to chemical gels by oxidation of 3,4-dihydroxyphenylalanine (DOPA) groups in HA and CHI to di-DOPA crosslinks. These rheological results put HA/CHI coacervates in the category of strong candidates as injectable tissue scaffolds or medical adhesives.
Collapse
|
9
|
Effect of glutraldehyde and halloysite on gelatin-carboxymethyl cellulose gel formed via phase separation: Potential application in removal of methylene blue from waste water. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
10
|
Schröder HC, Neufurth M, Zhou H, Wang S, Wang X, Müller WEG. Inorganic Polyphosphate: Coacervate Formation and Functional Significance in Nanomedical Applications. Int J Nanomedicine 2022; 17:5825-5850. [PMID: 36474526 PMCID: PMC9719705 DOI: 10.2147/ijn.s389819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/03/2022] [Indexed: 12/07/2024] Open
Abstract
Inorganic polyphosphates (polyP) are long-chain polymers of orthophosphate residues, which, depending on the external conditions, can be present both physiologically and synthetically in either soluble, nanoparticulate or coacervate form. In recent years, these polymers have received increasing attention due to their unprecedented ability to exhibit both morphogenetic and metabolic energy delivering properties. There are no other physiological molecules that contain as many metabolically utilizable, high-energy bonds as polyP, making these polymers of particular medical interest as components of advanced hydrogel scaffold materials for potential applications in ATP-dependent tissue regeneration and repair. However, these polymers show physiological activity only in soluble form and in the coacervate phase, but not as stable metal-polyP nanoparticles. Therefore, understanding the mechanisms of formation of polyP coacervates and nanoparticles as well as their transformations is important for the design of novel materials for tissue implants, wound healing, and drug delivery and is discussed here.
Collapse
Affiliation(s)
- Heinz C Schröder
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Huan Zhou
- School of Health Sciences and Biomedical Engineering, Heibei University of Technology, Tianjin, People’s Republic of China
| | - Shunfeng Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Werner E G Müller
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
11
|
Pitch GM, Matsushima LN, Kraemer Y, Dailing EA, Ayzner AL. Energy Transfer in Aqueous Light Harvesting Antennae Based on Brush-like Inter-Conjugated Polyelectrolyte Complexes. Macromolecules 2022; 55:10302-10311. [DOI: 10.1021/acs.macromol.2c01291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/13/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Gregory M. Pitch
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California95064, United States
| | - Levi N. Matsushima
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California95064, United States
| | - Yannick Kraemer
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California95064, United States
| | - Eric A. Dailing
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Alexander L. Ayzner
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California95064, United States
| |
Collapse
|
12
|
Li Y, Li X, Liang ZP, Chang XY, Li FT, Wang XQ, Lian XJ. Progress of Microencapsulated Phycocyanin in Food and Pharma Industries: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185854. [PMID: 36144588 PMCID: PMC9505125 DOI: 10.3390/molecules27185854] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 12/22/2022]
Abstract
Phycocyanin is a blue fluorescent protein with multi-bioactive functions. However, the multi-bioactivities and spectral stability of phycocyanin are susceptible to external environmental conditions, which limit its wide application. Here, the structure, properties, and biological activity of phycocyanin were discussed. This review highlights the significance of the microcapsules' wall materials which commonly protect phycocyanin from environmental interference and summarizes the current preparation principles and characteristics of microcapsules in food and pharma industries, including spray drying, electrospinning, electrospraying, liposome delivery, sharp-hole coagulation baths, and ion gelation. Moreover, the major technical challenge and corresponding countermeasures of phycocyanin microencapsulation are also appraised, providing insights for the broader application of phycocyanin.
Collapse
|
13
|
Chen S, Wang ZG. Driving force and pathway in polyelectrolyte complex coacervation. Proc Natl Acad Sci U S A 2022; 119:e2209975119. [PMID: 36037377 PMCID: PMC9457374 DOI: 10.1073/pnas.2209975119] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022] Open
Abstract
There is notable discrepancy between experiments and coarse-grained model studies regarding the thermodynamic driving force in polyelectrolyte complex coacervation: experiments find the free energy change to be dominated by entropy, while simulations using coarse-grained models with implicit solvent usually report a large, even dominant energetic contribution in systems with weak to intermediate electrostatic strength. Here, using coarse-grained, implicit-solvent molecular dynamics simulation combined with thermodynamic analysis, we study the potential of mean force (PMF) in the two key stages on the coacervation pathway for symmetric polyelectrolyte mixtures: polycation-polyanion complexation and polyion pair-pair condensation. We show that the temperature dependence in the dielectric constant of water gives rise to a substantial entropic contribution in the electrostatic interaction. By accounting for this electrostatic entropy, which is due to solvent reorganization, we find that under common conditions (monovalent ions, room temperature) for aqueous systems, both stages are strongly entropy-driven with negligible or even unfavorable energetic contributions, consistent with experimental results. Furthermore, for weak to intermediate electrostatic strengths, this electrostatic entropy, rather than the counterion-release entropy, is the primary entropy contribution. From the calculated PMF, we find that the supernatant phase consists predominantly of polyion pairs with vanishingly small concentration of bare polyelectrolytes, and we provide an estimate of the spinodal of the supernatant phase. Finally, we show that prior to contact, two neutral polyion pairs weakly attract each other by mutually induced polarization, providing the initial driving force for the fusion of the pairs.
Collapse
Affiliation(s)
- Shensheng Chen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
14
|
Rumyantsev AM, Johner A, Tirrell MV, de Pablo JJ. Unifying Weak and Strong Charge Correlations within the Random Phase Approximation: Polyampholytes of Various Sequences. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Artem M. Rumyantsev
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Albert Johner
- Institut Charles Sadron, Université de Strasbourg, CNRS UPR22, Strasbourg 67034, France
| | - Matthew V. Tirrell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Juan J. de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
15
|
Debais G, Tagliazucchi M. Two Sides of the Same Coin: A Unified Theoretical Treatment of Polyelectrolyte Complexation in Solution and Layer-by-Layer Films. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gabriel Debais
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica Analítica y Química Física, Universidad de Buenos Aires, C1053ABH Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE)CONICET- Universidad de Buenos Aires, C1053ABH Buenos Aires, Argentina
| | - Mario Tagliazucchi
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica Analítica y Química Física, Universidad de Buenos Aires, C1053ABH Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE)CONICET- Universidad de Buenos Aires, C1053ABH Buenos Aires, Argentina
| |
Collapse
|
16
|
Zhang P, Wang ZG. Supernatant Phase in Polyelectrolyte Complex Coacervation: Cluster Formation, Binodal, and Nucleation. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pengfei Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
17
|
Ghasemi M, Larson RG. Future Directions in Physiochemical Modeling of the Thermodynamics of Polyelectrolyte Coacervates (
PECs
). AIChE J 2022. [DOI: 10.1002/aic.17646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mohsen Ghasemi
- Department of Chemical Engineering University of Michigan Ann Arbor Michigan USA
| | - Ronald G. Larson
- Department of Chemical Engineering University of Michigan Ann Arbor Michigan USA
| |
Collapse
|
18
|
Bobbili SV, Milner ST. Closed-Loop Phase Behavior of Nonstoichiometric Coacervates in Coarse-Grained Simulations. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Sai Vineeth Bobbili
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Scott T. Milner
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
19
|
Ylitalo AS, Balzer C, Zhang P, Wang ZG. Electrostatic Correlations and Temperature-Dependent Dielectric Constant Can Model LCST in Polyelectrolyte Complex Coacervation. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c02000] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Andrew S. Ylitalo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Christopher Balzer
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Pengfei Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
20
|
Affiliation(s)
- Pengfei Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
21
|
Friedowitz S, Qin J. Reversible ion binding for polyelectrolytes with adaptive conformations. AIChE J 2021. [DOI: 10.1002/aic.17426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Sean Friedowitz
- Department of Chemical Engineering Stanford University Stanford California USA
| | - Jian Qin
- Department of Chemical Engineering Stanford University Stanford California USA
| |
Collapse
|
22
|
Le ML, Rawlings D, Danielsen SPO, Kennard RM, Chabinyc ML, Segalman RA. Aqueous Formulation of Concentrated Semiconductive Fluid Using Polyelectrolyte Coacervation. ACS Macro Lett 2021; 10:1008-1014. [PMID: 35549124 DOI: 10.1021/acsmacrolett.1c00354] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Conjugated polyelectrolytes (CPEs), which combine π-conjugated backbones with ionic side chains, are intrinsically soluble in polar solvents and have demonstrated tunability with respect to solution processability and optoelectronic performance. However, this class of polymers often suffers from limited solubility in water. Here, we demonstrate how polyelectrolyte coacervation can be utilized for aqueous processing of conjugated polymers at extremely high polymer loading. Sampling various mixing conditions, we identify compositions that enable the formation of complex coacervates of an alkoxysulfonate-substituted PEDOT (PEDOT-S) with poly(3-methyl-1-propylimidazolylacrylamide) (PA-MPI). The resulting coacervate is a viscous fluid containing 50% w/v polymer and can be readily blade-coated into films of 4 ± 0.5 μm thick. Subsequent acid doping of the film increased the electrical conductivity of the coacervate to twice that of a doped film of neat PEDOT-S. This higher conductivity of the doped coacervate film suggests an enhancement in charge carrier transport along PEDOT-S backbone, in agreement with spectroscopic data, which shows an enhancement in the conjugation length of PEDOT-S upon coacervation. This study illustrates the utilization of electrostatic interactions in aqueous processing of conjugated polymers, which will be useful in large-scale industrial processing of semiconductive materials using limited solvent and with added enhancements to optoelectronic properties.
Collapse
Affiliation(s)
- My Linh Le
- Materials Department, University of California, Santa Barbara, California 93106, United States
| | - Dakota Rawlings
- Chemical Engineering Department, University of California, Santa Barbara, California 93106, United States
| | - Scott P. O. Danielsen
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Rhiannon M. Kennard
- Materials Department, University of California, Santa Barbara, California 93106, United States
| | - Michael L. Chabinyc
- Materials Department, University of California, Santa Barbara, California 93106, United States
| | - Rachel A. Segalman
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Chemical Engineering Department, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
23
|
Neitzel A, Fang YN, Yu B, Rumyantsev AM, de Pablo JJ, Tirrell MV. Polyelectrolyte Complex Coacervation across a Broad Range of Charge Densities. Macromolecules 2021; 54:6878-6890. [PMID: 34334816 PMCID: PMC8320234 DOI: 10.1021/acs.macromol.1c00703] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/19/2021] [Indexed: 01/02/2023]
Abstract
Polyelectrolyte complex coacervates of homologous (co)polyelectrolytes with a near-ideally random distribution of a charged and neutral ethylene oxide comonomer were synthesized. The unique platform provided by these building blocks enabled an investigation of the phase behavior across charge fractions 0.10 ≤ f ≤ 1.0. Experimental phase diagrams for f = 0.30-1.0 were obtained from thermogravimetric analysis of complex and supernatant phases and contrasted with molecular dynamics simulations and theoretical scaling laws. At intermediate to high f, a dependence of polymer weight fraction in the salt-free coacervate phase (w P,c) of w P,c ∼ f 0.37±0.01 was extracted; this trend was in good agreement with accompanying simulation predictions. Below f = 0.50, w P,c was found to decrease more dramatically, qualitatively in line with theory and simulations predicting an exponent of 2/3 at f ≤ 0.25. Preferential salt partitioning to either coacervate or supernatant was found to be dictated by the chemistry of the constituent (co)polyelectrolytes.
Collapse
Affiliation(s)
- Angelika
E. Neitzel
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Argonne
National Laboratory, Materials Science Division, Lemont, Illinois 60439, United States
| | - Yan N. Fang
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Boyuan Yu
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Artem M. Rumyantsev
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Juan J. de Pablo
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Argonne
National Laboratory, Materials Science Division, Lemont, Illinois 60439, United States
| | - Matthew V. Tirrell
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Argonne
National Laboratory, Materials Science Division, Lemont, Illinois 60439, United States
| |
Collapse
|
24
|
Zheng J, Gao Q, Ge G, Wu J, Tang CH, Zhao M, Sun W. Heteroprotein Complex Coacervate Based on β-Conglycinin and Lysozyme: Dynamic Protein Exchange, Thermodynamic Mechanism, and Lysozyme Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7948-7959. [PMID: 34240870 DOI: 10.1021/acs.jafc.1c02204] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Heteroprotein complex coacervate (HPCC) is a liquid-like protein concentrate produced by liquid-liquid phase separation. We revealed the protein dynamic exchange and thermodynamic mechanism of β-conglycinin/lysozyme coacervate, and clarified the effect of HPCC on protein structure and activity. β-conglycinin and lysozyme assembled into coacervate at pH 5.75-6.5 and assembled into amorphous precipitates at higher pH. As the pH dropped from 8 to 6, the number of binding sites of the complex decreased in half, and the desolvation degree corresponding to the entropy gain was greatly reduced, conducing to the formation of coacervates rather than precipitates. The coacervates achieved the unique dynamic exchange by exchanging proteins with the diluted phase, making the uniform distribution of proteins in coacervates. The lysozyme activity was completely retained in β-conglycinin/lysozyme coacervates. These results proved that β-conglycinin-based heteroprotein complex coacervate is a feasible method to encapsulate and enrich active proteins in a purely aqueous environment.
Collapse
Affiliation(s)
- Jiabao Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Qing Gao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Ge Ge
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jihong Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Chuan-He Tang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China
| | - Weizheng Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
25
|
Rumyantsev AM, Jackson NE, Johner A, de Pablo JJ. Scaling Theory of Neutral Sequence-Specific Polyampholytes. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Artem M. Rumyantsev
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Nicholas E. Jackson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Albert Johner
- Institut Charles Sadron, Université de Strasbourg, CNRS UPR22, 23 Rue du Loess, Strasbourg, 67034 Cedex 2, France
| | - Juan J. de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|