1
|
Li Q, Yan F, Texter J. Polymerized and Colloidal Ionic Liquids─Syntheses and Applications. Chem Rev 2024; 124:3813-3931. [PMID: 38512224 DOI: 10.1021/acs.chemrev.3c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The breadth and importance of polymerized ionic liquids (PILs) are steadily expanding, and this review updates advances and trends in syntheses, properties, and applications over the past five to six years. We begin with an historical overview of the genesis and growth of the PIL field as a subset of materials science. The genesis of ionic liquids (ILs) over nano to meso length-scales exhibiting 0D, 1D, 2D, and 3D topologies defines colloidal ionic liquids, CILs, which compose a subclass of PILs and provide a synthetic bridge between IL monomers (ILMs) and micro to macro-scale PIL materials. The second focus of this review addresses design and syntheses of ILMs and their polymerization reactions to yield PILs and PIL-based materials. A burgeoning diversity of ILMs reflects increasing use of nonimidazolium nuclei and an expanding use of step-growth chemistries in synthesizing PIL materials. Radical chain polymerization remains a primary method of making PILs and reflects an increasing use of controlled polymerization methods. Step-growth chemistries used in creating some CILs utilize extensive cross-linking. This cross-linking is enabled by incorporating reactive functionalities in CILs and PILs, and some of these CILs and PILs may be viewed as exotic cross-linking agents. The third part of this update focuses upon some advances in key properties, including molecular weight, thermal properties, rheology, ion transport, self-healing, and stimuli-responsiveness. Glass transitions, critical solution temperatures, and liquidity are key thermal properties that tie to PIL rheology and viscoelasticity. These properties in turn modulate mechanical properties and ion transport, which are foundational in increasing applications of PILs. Cross-linking in gelation and ionogels and reversible step-growth chemistries are essential for self-healing PILs. Stimuli-responsiveness distinguishes PILs from many other classes of polymers, and it emphasizes the importance of segmentally controlling and tuning solvation in CILs and PILs. The fourth part of this review addresses development of applications, and the diverse scope of such applications supports the increasing importance of PILs in materials science. Adhesion applications are supported by ionogel properties, especially cross-linking and solvation tunable interactions with adjacent phases. Antimicrobial and antifouling applications are consequences of the cationic nature of PILs. Similarly, emulsion and dispersion applications rely on tunable solvation of functional groups and on how such groups interact with continuous phases and substrates. Catalysis is another significant application, and this is an historical tie between ILs and PILs. This component also provides a connection to diverse and porous carbon phases templated by PILs that are catalysts or serve as supports for catalysts. Devices, including sensors and actuators, also rely on solvation tuning and stimuli-responsiveness that include photo and electrochemical stimuli. We conclude our view of applications with 3D printing. The largest components of these applications are energy related and include developments for supercapacitors, batteries, fuel cells, and solar cells. We conclude with our vision of how PIL development will evolve over the next decade.
Collapse
Affiliation(s)
- Qi Li
- Department of Materials Science, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, PR China
| | - Feng Yan
- Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, PR China
| | - John Texter
- Strider Research Corporation, Rochester, New York 14610-2246, United States
- School of Engineering, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| |
Collapse
|
2
|
Sarkar R, Majumdar S, Kuil S, Mallens J, van der Tol JJB, Sijbesma RP, Heuts JPA, Palmans ARA. Dynamic covalent networks with tunable dynamicity by mixing acylsemicarbazides and thioacylsemicarbazides. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20230068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Ramkrishna Sarkar
- Supramolecular Chemistry and Catalysis, Laboratory of Macromolecular and Organic Chemistry & Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 Eindhoven 5600 MB The Netherlands
- Department of Chemistry Indian Institute of Technology (IIT) Kanpur Kanpur 208016 India
| | - Soumabrata Majumdar
- Supramolecular Polymer Chemistry, Laboratory of Macromolecular and Organic Chemistry & Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 Eindhoven 5600 MB The Netherlands
| | - Sierd Kuil
- Supramolecular Chemistry and Catalysis, Laboratory of Macromolecular and Organic Chemistry & Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 Eindhoven 5600 MB The Netherlands
| | - Jorg Mallens
- Supramolecular Chemistry and Catalysis, Laboratory of Macromolecular and Organic Chemistry & Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 Eindhoven 5600 MB The Netherlands
| | - Joost J. B. van der Tol
- Supramolecular Chemistry and Catalysis, Laboratory of Macromolecular and Organic Chemistry & Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 Eindhoven 5600 MB The Netherlands
| | - Rint P. Sijbesma
- Supramolecular Polymer Chemistry, Laboratory of Macromolecular and Organic Chemistry & Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 Eindhoven 5600 MB The Netherlands
| | - Johan P. A. Heuts
- Supramolecular Polymer Chemistry, Laboratory of Macromolecular and Organic Chemistry & Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 Eindhoven 5600 MB The Netherlands
| | - Anja R. A. Palmans
- Supramolecular Chemistry and Catalysis, Laboratory of Macromolecular and Organic Chemistry & Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 Eindhoven 5600 MB The Netherlands
| |
Collapse
|
3
|
Pascual-Jose B, De la Flor S, Serra A, Ribes-Greus A. Analysis of Poly(thiourethane) Covalent Adaptable Network through Broadband Dielectric Spectroscopy. ACS APPLIED POLYMER MATERIALS 2023; 5:1125-1134. [PMID: 36817338 PMCID: PMC9926874 DOI: 10.1021/acsapm.2c01543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
The dielectric spectra of the poly(thiourethane) network, HDI-S3, have been analyzed to know the nature and the cooperativity of each of the six dielectric processes observed. At low temperatures, γ1, γ2, and β dielectric relaxations were attributed to noncooperative local motions in the glassy state, in which apparent activation energies are 30, 36, and 60 kJ·mol-1, respectively. At higher temperatures, three dielectric relaxations are observed (αTg, α*, ρ). The αTg relaxation is attributed to the glass transition, and it is overlapped with the α* relaxation. The molecular origin of α* relaxation is associated with the bond exchange reaction. Finally, the ρ relaxation is ascribed to the heterogeneity of the sample although its origin is uncertain. The DC conductivity (σDC) is found to be an appropriate variable to analyze the bond exchange reaction. Accordingly, the HDI-S3 has a molecular exchange mechanism of dissociative nature.
Collapse
Affiliation(s)
- B. Pascual-Jose
- Institute
of Technology of Materials (ITM), Universitat
Politècnica de València (UPV), Camí de Vera, s/n, 46022València, Spain
| | - S. De la Flor
- Department
of Mechanical Engineering, Universitat Rovira
i Virgili (URV), Av. Països Catalans, 26, 43007Tarragona, Spain
| | - A. Serra
- Department
of Analytical and Organic Chemistry, Universitat
Rovira i Virgili (URV), C/ Marcel·lí Domingo 1, 43007Tarragona, Spain
| | - A. Ribes-Greus
- Institute
of Technology of Materials (ITM), Universitat
Politècnica de València (UPV), Camí de Vera, s/n, 46022València, Spain
| |
Collapse
|
4
|
Van Lijsebetten F, De Bruycker K, Van Ruymbeke E, Winne JM, Du Prez FE. Characterising different molecular landscapes in dynamic covalent networks. Chem Sci 2022; 13:12865-12875. [PMID: 36519055 PMCID: PMC9645389 DOI: 10.1039/d2sc05528g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/20/2022] [Indexed: 11/10/2023] Open
Abstract
Dynamic covalent networks present a unique opportunity to exert molecular-level control on macroscopic material properties, by linking their thermal behaviour to the thermodynamics and kinetics of the underlying chemistry. Yet, existing methods do not allow for the extraction and analysis of the influence of local differences in chemical reactivity caused by available reactants, catalysts, or additives. In this context, we present a rheological paradigm that allows us to correlate the composition of a reactive polymer segment to a faster or slower rate of network rearrangement. We discovered that a generalised Maxwell model could separate and quantify the dynamic behaviour of each type of reactive segment individually, which was crucial to fully comprehend the mechanics of the final material. More specifically, Eyring and Van 't Hoff analysis were used to relate possible bond catalysis and dissociation to structural changes by combining statistical modelling with rheology measurements. As a result, precise viscosity changes could be measured, allowing for accurate comparison of various dynamic covalent network materials, including vitrimers and dissociative networks. The herein reported method therefore facilitated the successful analysis of virtually any type of rate-enhancing effect and will allow for the design of functional and fast (re)processable materials, as well as improve our ability to predict and engineer their properties for future applications.
Collapse
Affiliation(s)
- Filip Van Lijsebetten
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC) and Laboratory of Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University Krijgslaan 281-S4 Ghent 9000 Belgium
| | - Kevin De Bruycker
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC) and Laboratory of Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University Krijgslaan 281-S4 Ghent 9000 Belgium
| | - Evelyne Van Ruymbeke
- Bio and Soft Matter, Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain Croix du Sud 1 Louvain-la-Neuve 1348 Belgium
| | - Johan M Winne
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC) and Laboratory of Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University Krijgslaan 281-S4 Ghent 9000 Belgium
| | - Filip E Du Prez
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC) and Laboratory of Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University Krijgslaan 281-S4 Ghent 9000 Belgium
| |
Collapse
|
5
|
Robinson LL, Taddese ES, Self JL, Bates CM, Read de Alaniz J, Geng Z, Hawker CJ. Neighboring Group Participation in Ionic Covalent Adaptable Networks. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lindsay L. Robinson
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Eden S. Taddese
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Jeffrey L. Self
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Christopher M. Bates
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, California 93106, United States
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
- California NanoSystems Institute, University of California, Santa Barbara, California 93106, United States
| | - Zhishuai Geng
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Craig J. Hawker
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, California 93106, United States
- California NanoSystems Institute, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
6
|
Bakkali-Hassani C, Berne D, Ladmiral V, Caillol S. Transcarbamoylation in Polyurethanes: Underestimated Exchange Reactions? Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Dimitri Berne
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | | |
Collapse
|
7
|
Hu S, Chen X, Bin Rusayyis MA, Purwanto NS, Torkelson JM. Reprocessable polyhydroxyurethane networks reinforced with reactive polyhedral oligomeric silsesquioxanes (POSS) and exhibiting excellent elevated temperature creep resistance. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Zhang G, Tian C, Feng H, Tan T, Wang R, Zhang L. Thermal Reprocessing and Closed‐Loop Chemical Recycling of Styrene‐Butadiene Rubber Enabled by Exchangeable and Cleavable Acetal Linkages. Macromol Rapid Commun 2022; 43:e2100887. [DOI: 10.1002/marc.202100887] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/26/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Ganggang Zhang
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing 100029 P. R. China
- No.15 North Third Ring Road East Chaoyang District Beijing 100029 China
| | - Chenru Tian
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing 100029 P. R. China
- No.15 North Third Ring Road East Chaoyang District Beijing 100029 China
| | - Haoran Feng
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing 100029 P. R. China
- No.15 North Third Ring Road East Chaoyang District Beijing 100029 China
| | - Tianwei Tan
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing 100029 P. R. China
- No.15 North Third Ring Road East Chaoyang District Beijing 100029 China
| | - Runguo Wang
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing 100029 P. R. China
- No.15 North Third Ring Road East Chaoyang District Beijing 100029 China
| | - Liqun Zhang
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing 100029 P. R. China
- No.15 North Third Ring Road East Chaoyang District Beijing 100029 China
| |
Collapse
|
9
|
Oba Y, Kimura T, Hayashi M, Yamamoto K. Correlation between Self-Assembled Nanostructures and Bond Exchange Properties for Polyacrylate-Based Vitrimer-like Materials with a Trans- N-Alkylation Bond Exchange Mechanism. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02406] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yuta Oba
- Department of Life Science and Applied Chemistry, Graduated School of Engineering,Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Takahiro Kimura
- Department of Life Science and Applied Chemistry, Graduated School of Engineering,Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Mikihiro Hayashi
- Department of Life Science and Applied Chemistry, Graduated School of Engineering,Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Katsuhiro Yamamoto
- Department of Life Science and Applied Chemistry, Graduated School of Engineering,Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
10
|
Van Lijsebetten F, De Bruycker K, Spiesschaert Y, Winne JM, Du Prez FE. Suppressing Creep and Promoting Fast Reprocessing of Vitrimers with Reversibly Trapped Amines. Angew Chem Int Ed Engl 2022; 61:e202113872. [PMID: 34981887 DOI: 10.1002/anie.202113872] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Indexed: 12/31/2022]
Abstract
We report a straightforward chemical strategy to tackle current challenges of irreversible deformation in low Tg vitrimers at operating temperature. In particular, vinylogous urethane (VU) vitrimers were prepared where reactive free amines, necessary for material flow, were temporarily shielded inside the network backbone, by adding a small amount of dibasic ester to the curing mixture. The amines could be released as reactive chain ends from the resulting dicarboxamide bonds via thermally reversible cyclisation to an imide moiety. Indeed, (re)generation of the required nucleophilic amines as network defects ensured reprocessing and rapid material flow at higher temperature, where exchange dynamics are (re)activated. As a result, VU vitrimers were obtained with limited creep at service temperature, yet with good reprocessability at elevated temperatures. Thus, by exerting strong control on the molecular level over the availability of exchangeable functional groups, a remarkable improvement of VU properties was obtained.
Collapse
Affiliation(s)
- Filip Van Lijsebetten
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC) and Laboratory of Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, 9000, Ghent, Belgium
| | - Kevin De Bruycker
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC) and Laboratory of Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, 9000, Ghent, Belgium
| | - Yann Spiesschaert
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC) and Laboratory of Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, 9000, Ghent, Belgium
| | - Johan M Winne
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC) and Laboratory of Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, 9000, Ghent, Belgium
| | - Filip E Du Prez
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC) and Laboratory of Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, 9000, Ghent, Belgium
| |
Collapse
|
11
|
Van Lijsebetten F, De Bruycker K, Spiesschaert Y, Winne JM, Du Prez FE. Suppressing Creep and Promoting Fast Reprocessing of Vitrimers with Reversibly Trapped Amines. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Filip Van Lijsebetten
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC) and Laboratory of Organic Synthesis Department of Organic and Macromolecular Chemistry Faculty of Sciences Ghent University Krijgslaan 281-S4 9000 Ghent Belgium
| | - Kevin De Bruycker
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC) and Laboratory of Organic Synthesis Department of Organic and Macromolecular Chemistry Faculty of Sciences Ghent University Krijgslaan 281-S4 9000 Ghent Belgium
| | - Yann Spiesschaert
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC) and Laboratory of Organic Synthesis Department of Organic and Macromolecular Chemistry Faculty of Sciences Ghent University Krijgslaan 281-S4 9000 Ghent Belgium
| | - Johan M. Winne
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC) and Laboratory of Organic Synthesis Department of Organic and Macromolecular Chemistry Faculty of Sciences Ghent University Krijgslaan 281-S4 9000 Ghent Belgium
| | - Filip E. Du Prez
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC) and Laboratory of Organic Synthesis Department of Organic and Macromolecular Chemistry Faculty of Sciences Ghent University Krijgslaan 281-S4 9000 Ghent Belgium
| |
Collapse
|
12
|
Holloway JO, Taplan C, Du Prez F. Combining vinylogous urethane and β-amino ester chemistry for dynamic material design. Polym Chem 2022. [DOI: 10.1039/d2py00026a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study combines vinylogous urethane (VU) and beta-amino ester chemistry for the synthesis of covalent adaptable networks (CANs). The resulting CANs are synthesised using a range of diacetoacetates and commercially...
Collapse
|
13
|
Berne D, Coste G, Morales-Cerrada R, Boursier M, Pinaud J, Ladmiral V, Caillol S. Taking advantage of β-hydroxy amine enhanced reactivity and functionality for the synthesis of dual covalent adaptable networks. Polym Chem 2022. [DOI: 10.1039/d2py00274d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This study highlights the potential of β-hydroxy amines as building blocks for aza-Michael CANs.
Collapse
Affiliation(s)
- Dimitri Berne
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Guilhem Coste
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | | | - Julien Pinaud
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | | |
Collapse
|
14
|
Van Lijsebetten F, Spiesschaert Y, Winne JM, Du Prez FE. Reprocessing of Covalent Adaptable Polyamide Networks through Internal Catalysis and Ring-Size Effects. J Am Chem Soc 2021; 143:15834-15844. [PMID: 34525304 DOI: 10.1021/jacs.1c07360] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Here, we report the introduction of internally catalyzed amide bonds to obtain covalent adaptable polyamide networks that rely on the dissociation equilibrium between dicarboxamides and imides. While amide bonds are usually considered to be robust and thermally stable, the present study shows that their dynamic character can be activated by a smart choice of available building blocks without the addition of any external catalyst or other additives. Hence, a range of polyamide-based dynamic networks with variable mechanical and viscoelastic properties have been obtained in a systematic study, using a straightforward curing process of dibasic ester and amine compounds. Since the dissociation process involves a cyclic imide formation, the correlation between ring size and the thermomechanical viscosity profile was studied for five- to seven-membered ring intermediates, depending on the chosen dibasic ester monomer. This resulted in a marked temperature response with activation energies in the range of 116-197 kJ mol-1, yielding a sharp transition between elastic and viscous behavior. Moreover, the ease and versatility of this chemistry platform were demonstrated by selecting a variety of amines, resulting in densely cross-linked dynamic networks with Tg values ranging from -20 to 110 °C. With this approach, it is possible to design amorphous polyamide networks with an acute temperature response, allowing for good reprocessability and, simultaneously, high resistance to irreversible deformation at elevated temperatures.
Collapse
Affiliation(s)
- Filip Van Lijsebetten
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, Ghent 9000, Belgium
| | - Yann Spiesschaert
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, Ghent 9000, Belgium
| | - Johan M Winne
- Organic Synthesis Group, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, Ghent 9000, Belgium
| | - Filip E Du Prez
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, Ghent 9000, Belgium
| |
Collapse
|
15
|
Taplan C, Guerre M, Du Prez FE. Covalent Adaptable Networks Using β-Amino Esters as Thermally Reversible Building Blocks. J Am Chem Soc 2021; 143:9140-9150. [PMID: 34121401 DOI: 10.1021/jacs.1c03316] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this study, β-amino esters, prepared by the aza-Michael addition of an amine to an acrylate moiety, are investigated as building blocks for the formation of dynamic covalent networks. While such amino esters are usually considered as thermally nondynamic adducts, the kinetic model studies presented here show that dynamic covalent exchange occurs via both dynamic aza-Michael reaction and catalyst-free transesterification. This knowledge is transferred to create β-amino ester-based covalent adaptable networks (CANs) with coexisting dissociative and associative covalent dynamic exchange reactions. The ease, robustness, and versatility of this chemistry are demonstrated by using a variety of readily available multifunctional acrylates and amines. The presented CANs are reprocessed via either a dynamic aza-Michael reaction or a catalyst-free transesterification in the presence of hydroxyl moieties. This results in reprocessable, densely cross-linked materials with a glass transition temperature (Tg) ranging from -60 to 90 °C. Moreover, even for the low Tg materials, a high creep resistance was demonstrated at elevated temperatures up to 80 °C. When additional β-hydroxyl group-containing building blocks are applied during the network design, an enhanced neighboring group participation effect allows reprocessing of materials up to 10 times at 150 °C within 30 min while maintaining their material properties.
Collapse
Affiliation(s)
- Christian Taplan
- Polymer Chemistry Research Group, Center of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Science, Ghent University, Krijgslaan 281 S4-bis, Ghent B-9000, Belgium
| | - Marc Guerre
- Polymer Chemistry Research Group, Center of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Science, Ghent University, Krijgslaan 281 S4-bis, Ghent B-9000, Belgium.,Laboratoire des IMRCP, Université de Toulouse, CNRS UMR5623, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Filip E Du Prez
- Polymer Chemistry Research Group, Center of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Science, Ghent University, Krijgslaan 281 S4-bis, Ghent B-9000, Belgium
| |
Collapse
|
16
|
Maassen EEL, Heuts JPA, Sijbesma RP. Reversible crosslinking and fast stress relaxation in dynamic polymer networks via transalkylation using 1,4-diazabicyclo[2.2.2] octane. Polym Chem 2021. [DOI: 10.1039/d1py00292a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A dynamic covalent network using transalkylation of benzyl-DABCO crosslinkers features fast relaxation with a very strong temperature dependence. The network is de-crosslinked by an excess of DABCO.
Collapse
Affiliation(s)
- Eveline E. L. Maassen
- Supramolecular Polymer Chemistry group
- Department of Chemical Engineering and Chemistry
- and Institute for Complex Molecular Systems
- Eindhoven University of Technology
- 5600 MB Eindhoven
| | - Johan P. A. Heuts
- Supramolecular Polymer Chemistry group
- Department of Chemical Engineering and Chemistry
- and Institute for Complex Molecular Systems
- Eindhoven University of Technology
- 5600 MB Eindhoven
| | - Rint P. Sijbesma
- Supramolecular Polymer Chemistry group
- Department of Chemical Engineering and Chemistry
- and Institute for Complex Molecular Systems
- Eindhoven University of Technology
- 5600 MB Eindhoven
| |
Collapse
|