1
|
Deng Y, Wang R, Ma Z, Zuo W, Zhu M. Synthesis and Fabrication of Betulin-Derived Polysulfide and Polysulfoxide Electrospun Fibers for Fruit Preservation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18857-18864. [PMID: 37994873 DOI: 10.1021/acs.jafc.3c07117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Plant-derived biocompounds play a crucial role in the field of renewable materials due to their sustainability as they can be converted into monomers for polymerization, comparable to numerous monomers obtained from petroleum. In this work, betulin, a triterpene derivative with antibacterial properties obtained from birch tree bark, was esterified to produce two varieties of α,ω-diene derivatives with different lengths of methylene spacers. These derivatives were then copolymerized with 2,2'-(ethylenedioxy)diethanethiol using thiol-ene photopolymerization. We optimized and confirmed the polymerization parameters such as solvents, catalysts, and monomer concentrations. These analyses allowed for the obtainment of polysulfides with a high molar mass of up to 38.9 kg/mol under the optimized conditions. Furthermore, the polysulfides were converted into polysulfoxides by using a dilute hydrogen peroxide solution. Thermal analysis of the obtained polymers revealed excellent thermal stability (up to 300 °C) and tunable glass transition temperatures depending on their molar mass and composition. We successfully produced fibers with a diameter of approximately 3.9 μm by using the electrospinning technique. The morphology and hydrophobicity of the fibers were analyzed by using scanning electron microscopy and water contact angle analysis. Plant-derived polymeric fibers exhibited good cellular biocompatibility and broad-spectrum antibacterial activity, making them promising candidates for applications in fruit preservation.
Collapse
Affiliation(s)
- Yiding Deng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Ruili Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Zhiyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Weiwei Zuo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| |
Collapse
|
2
|
Elgoyhen J, Pirela V, Müller AJ, Tomovska R. Synthesis and Crystallization of Waterborne Thiol-ene Polymers: Toward Innovative Oxygen Barrier Coatings. ACS APPLIED POLYMER MATERIALS 2023; 5:8845-8858. [PMID: 37970532 PMCID: PMC10644330 DOI: 10.1021/acsapm.3c01128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 11/17/2023]
Abstract
The synthesis of waterborne thiol-ene polymer dispersions is challenging due to the high reactivity of thiol monomers and the premature thiol-ene polymerization that leads to high irreproducibility. By turning this challenge into an advantage, a synthesis approach of high solid content film-forming waterborne poly(thioether) prepolymers is reported based on initiator-free step growth sonopolymerization. Copolymerization of bifunctional thiol and ene monomers diallyl terephthalate, glycol dimercaptoacetate, glycol dimercaptopropionate, and 2,2-(ethylenedioxy)diethanethiol gave rise to linear poly(thioether) functional chains with molar mass ranging between 7 and 23 kDa when synthesized at 30% solid content and between 1 and 9 kDa at increased solid content of 50%. To further increase the polymers' molar mass, an additional photopolymerization step was performed in the presence of a water-soluble photoinitiator, i.e., lithium phenyl-2,4,6-trimethylbenzoylphosphinate, leading to high molar mass chains of up to 200 kDa, the highest reported so far for step grown poly(thioethers). The polymer dispersions presented good film-forming ability at room temperature, yielding semicrystalline films with a high potential for barrier coating applications. Nevertheless, affected by the polymer chemical repeating structure, which includes an aromatic ring, these thiol-ene chains can only crystallize very slowly from the molten state. Herein, for the first time, we present the successful implementation of a self-nucleation (SN) procedure for these types of poly(thioethers), which effectively accelerates their crystallization kinetics.
Collapse
Affiliation(s)
- Justine Elgoyhen
- POLYMAT
and Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country UPV/EHU, Avda Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Valentina Pirela
- POLYMAT
and Department of Polymers and Advanced Materials: Physics Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain
| | - Alejandro J. Müller
- POLYMAT
and Department of Polymers and Advanced Materials: Physics Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Radmila Tomovska
- POLYMAT
and Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country UPV/EHU, Avda Tolosa 72, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
3
|
Diprima D, Gemoets H, Bonciolini S, Van Aken K. Selective and scalable oxygenation of heteroatoms using the elements of nature: air, water, and light. Beilstein J Org Chem 2023; 19:1146-1154. [PMID: 37560135 PMCID: PMC10407787 DOI: 10.3762/bjoc.19.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/18/2023] [Indexed: 08/11/2023] Open
Abstract
Sustainable oxidation protocols aim to provide an environmentally friendly and cost-effective method for the production of various chemicals and materials. The development of such protocols can lead to reduced energy consumption, fewer harmful byproducts, and increased efficiency in industrial processes. As such, this field of research is of great importance and interest to both academia and industry. This work showcases a sustainable and catalyst-free oxidation method for heteroatoms (e.g., S, P, and Se) using only air, water and light. An additional reaction pathway is proposed in which the incorporated oxygen on the heteroatoms originates from water. Furthermore, the addition of certain additives enhances productivity by affecting kinetics. The industrial potential is demonstrated by conveniently transferring the batch protocol to continuous flow using the HANU flow reactor, indicating scalability and improving safety.
Collapse
Affiliation(s)
- Damiano Diprima
- Ecosynth, Industrielaan 12, 9800 Deinze, Belgium
- Flow Chemistry Group, Van ’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | | | - Stefano Bonciolini
- Flow Chemistry Group, Van ’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | | |
Collapse
|
4
|
Hobiger V, Koler A, Kotek J, Krajnc P. Emulsion templated poly(thiol-enes): Selective oxidation improves mechanical properties. REACT FUNCT POLYM 2023. [DOI: 10.1016/j.reactfunctpolym.2023.105551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
5
|
Jiang S, Huang H. Mechanism-Guided Design of Chain-Growth Click Polymerization Based on a Thiol-Michael Reaction. Angew Chem Int Ed Engl 2023; 62:e202217895. [PMID: 36734515 DOI: 10.1002/anie.202217895] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 02/04/2023]
Abstract
The development of chain-growth click polymerization is challenging yet desirable in modern polymer chemistry. In this work, we reported a novel chain-growth click polymerization based on the thiol-Michael reaction. This polymerization could be performed efficiently under ambient conditions and spatiotemporally regulated by ultraviolet light, allowing the synthesis of sulfur-containing polymers in excellent yields and high molecular weights. Density functional theory calculations indicated that the thiolate addition to the Michael acceptor is the rate-determining step, and introducing the phenyl group could facilitate the chain-growth process. This polymerization is a new type of chain-growth click polymerization, which will provide a unique approach to creating functional polymers.
Collapse
Affiliation(s)
- Suqiu Jiang
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hanchu Huang
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
6
|
Bessif B, Heck B, Pfohl T, Le CMQ, Chemtob A, Pirela V, Elgoyhen J, Tomovska R, Müller AJ, Reiter G. Nucleation Assisted through the Memory of a Polymer Melt: A Different Polymorph Emerging from the Melt of Another One. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Brahim Bessif
- Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3, Freiburg 79104, Germany
| | - Barbara Heck
- Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3, Freiburg 79104, Germany
| | - Thomas Pfohl
- Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3, Freiburg 79104, Germany
| | - Cuong Minh Quoc Le
- Institut de Sciences des Matériaux de Mulhouse (IS2M), UMR CNRS 7361, Université de Haute-Alsace, 15 Rue Jean Starcky, Mulhouse, Cedex 68057, France
| | - Abraham Chemtob
- Institut de Sciences des Matériaux de Mulhouse (IS2M), UMR CNRS 7361, Université de Haute-Alsace, 15 Rue Jean Starcky, Mulhouse, Cedex 68057, France
| | - Valentina Pirela
- Polymat and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Justine Elgoyhen
- Polymat and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Radmila Tomovska
- Polymat and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Alejandro J. Müller
- Polymat and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Günter Reiter
- Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3, Freiburg 79104, Germany
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
7
|
Cetina-Mancilla E, Reyes-García GA, Rodríguez-Molina M, Zolotukhin MG, Vivaldo-Lima E, Ortencia González-Díaz M, Ramos-Ortiz G. Room temperature, simple and efficient synthesis and functionalization of aromatic poly(arylene sulfide)s, poly(arylene sulfoxide)s and poly(arylene sulfone)s. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Yang X, Zhang W, Huang HY, Dai J, Wang MY, Fan HZ, Cai Z, Zhang Q, Zhu JB. Stereoselective Ring-Opening Polymerization of Lactones with a Fused Ring Leading to Semicrystalline Polyesters. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xing Yang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Wei Zhang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Hao-Yi Huang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Jiang Dai
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Meng-Yuan Wang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Hua-Zhong Fan
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Zhongzheng Cai
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Qi Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Jian-Bo Zhu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| |
Collapse
|
9
|
Infante Teixeira L, Landfester K, Thérien-Aubin H. Nanoconfinement in miniemulsion increases reaction rates of thiol–ene photopolymerization and yields high molecular weight polymers. Polym Chem 2022. [DOI: 10.1039/d2py00350c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Photoinitiated thiol–ene polymerization was performed in bulk and miniemulsion. We show that the compartmentalization of the reaction inside nanodroplets led to faster reaction kinetics and yielded polymers with higher molecular weight.
Collapse
Affiliation(s)
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Héloïse Thérien-Aubin
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department of Chemistry, Memorial University of Newfoundland, St John's, Newfoundland and Labrador A1B 3X7, Canada
| |
Collapse
|