1
|
Gan D, Liu Y, Hu T, Fan S, Cui L, Liao G, Xie Z, Zhu X, Yang K. Pseudo-Eutectic of Isodimorphism to Design Biaxially-Oriented Bio-Based PA56/512 with High Strength, Toughness and Barrier Performances. Polymers (Basel) 2024; 16:1176. [PMID: 38675095 PMCID: PMC11053481 DOI: 10.3390/polym16081176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
The biaxially-oriented PA56/512 has excellent mechanical strength, extensibility and water-oxygen barrier properties and has broad application prospects in green packaging, lithium battery diaphragm and medical equipment materials. The correlation between the aggregation structure evolution and macroscopic comprehensive properties of copolymer PA56/512 under biaxial stretching has been demonstrated in this work. The structure of the random copolymerization sequence was characterized by 13C Nuclear magnetic resonance (NMR). The typical isodimorphism behavior of the co-crystallization system of PA56/512 and its BOPA-56/512 films was revealed by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) tests. And the aggregation structure, including the hydrogen bond arrangement, crystal structure and crystal morphology of PA56/512 before and after biaxial stretching, was investigated by XRD, Fourier-transform infrared spectroscopy (FTIR) and polarized optical microscopy (POM) tests. Furthermore, the effect of the biaxially-oriented stretching process on the mechanical properties of PA56/512 has been demonstrated. In addition, a deep insight into the influence of the structure on the crystallization process and physical-mechanical performance has been presented. The lowest melting point at a 512 content of 60 mol% is regarded as a "eutectic" point of the isodimorphism system. Due to the high disorder of the structural units in the polymer chain, the transition degree of the folded chain (gauche conformation) is relatively lowest when it is straightened to form an extended chain (trans conformation) during biaxially-oriented stretching, and part of the folded chain can be retained. This explains why biaxially stretched PA56/512 has high strength, outstanding toughness and excellent barrier properties at the pseudo-eutectic point. In this study, using the unique multi-scale aggregation structure characteristics of a heterohomodymite polyamide at the pseudo-eutectic point, combined with the new material design scheme and the idea of biaxial-stretching processing, a new idea for customized design of high-performance multifunctional polyamide synthetic materials is provided.
Collapse
Affiliation(s)
- Diansong Gan
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China; (D.G.); (S.F.); (L.C.); (G.L.); (Z.X.); (X.Z.)
- Zhuzhou Times Engineering Plastics Industrial Co., Ltd., Zhuzhou 412008, China;
| | - Yuejun Liu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China; (D.G.); (S.F.); (L.C.); (G.L.); (Z.X.); (X.Z.)
| | - Tianhui Hu
- Zhuzhou Times Engineering Plastics Industrial Co., Ltd., Zhuzhou 412008, China;
| | - Shuhong Fan
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China; (D.G.); (S.F.); (L.C.); (G.L.); (Z.X.); (X.Z.)
| | - Lingna Cui
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China; (D.G.); (S.F.); (L.C.); (G.L.); (Z.X.); (X.Z.)
| | - Guangkai Liao
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China; (D.G.); (S.F.); (L.C.); (G.L.); (Z.X.); (X.Z.)
| | - Zhenyan Xie
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China; (D.G.); (S.F.); (L.C.); (G.L.); (Z.X.); (X.Z.)
| | - Xiaoyu Zhu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China; (D.G.); (S.F.); (L.C.); (G.L.); (Z.X.); (X.Z.)
| | - Kejian Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
2
|
Ding M, Ni L, Xia J, Zheng Y, Yu C, Shan G, Bao Y, Pan P. Linearly-Changed Thermal Behavior and Depressed Brill Transition in Long-Chain Polyamides Substituted by Methyl Side Groups. ACS Macro Lett 2024; 13:354-360. [PMID: 38451171 DOI: 10.1021/acsmacrolett.4c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Side substitution is an effective way of functionalizing and modifying the properties of polyamides. Meanwhile, side substitution would significantly influence the crystallization kinetics and polymorphic phase transition of polyamides, which, however, has not been well elucidated. Herein, we synthesized the side-substituted long-chain polyamides with various content of methyl pendent groups and investigated their crystallization and phase transition behaviors. We find that the thermal parameters of side-substituted polyamides vary linearly with the side group content, analogous to the isomorphic crystallization of random copolymers. All the solution-crystallized polyamides experience the α-γ Brill transition during heating, with the Brill transition temperature linearly decreasing as the side group content increases. Intriguingly, the γ-α transition of polyamides during cooling is suppressed with the presence of side methyl groups due to the difficulty in H-bond reorganization and gauche-trans conformational changes. This work has demonstrated the critical role of side substitution in the polymorphic crystallization and phase transition of long-chain polyamides.
Collapse
Affiliation(s)
- Mengru Ding
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Lingling Ni
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jianfei Xia
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Ying Zheng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| | - Chengtao Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| | - Guorong Shan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| | - Yongzhong Bao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| | - Pengju Pan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| |
Collapse
|
3
|
Śmigiel-Gac N, Smola-Dmochowska A, Jelonek K, Musiał-Kulik M, Barczyńska-Felusiak R, Rychter P, Lewicka K, Dobrzyński P. Bactericidal Biodegradable Linear Polyamidoamines Obtained with the Use of Endogenous Polyamines. Int J Mol Sci 2024; 25:2576. [PMID: 38473823 DOI: 10.3390/ijms25052576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
The work presents the synthesis of a series of linear polyamidoamines by polycondensation of sebacoyl dichloride with endogenous polyamines: putrescine, spermidine, spermine, and norspermidine-a biogenic polyamine not found in the human body. During the synthesis carried out via interfacial reaction, hydrophilic, semi-crystalline polymers with an average viscosity molecular weight of approximately 20,000 g/mol and a melting point of approx. 130 °C were obtained. The structure and composition of the synthesized polymers were confirmed based on NMR and FTIR studies. The cytotoxicity tests performed on human fibroblasts and keratinocytes showed that the polymers obtained with spermine and norspermidine were strongly cytotoxic, but only in high concentrations. All the other examined polymers did not show cytotoxicity even at concentrations of 2000 µg/mL. Simultaneously, the antibacterial activity of the obtained polyamides was confirmed. These polymers are particularly active against E. Coli, and virtually all the polymers obtained demonstrated a strong inhibitory effect on the growth of cells of this strain. Antimicrobial activity of the tested polymer was found against strains like Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa. The broadest spectrum of bactericidal action was demonstrated by polyamidoamines obtained from spermine, which contains two amino groups in the repeating unit of the chain. The obtained polymers can be used as a material for forming drug carriers and other biologically active compounds in the form of micro- and nanoparticles, especially as a component of bactericidal creams and ointments used in dermatology or cosmetology.
Collapse
Affiliation(s)
- Natalia Śmigiel-Gac
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland
| | - Anna Smola-Dmochowska
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland
| | - Katarzyna Jelonek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland
| | - Monika Musiał-Kulik
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland
| | - Renata Barczyńska-Felusiak
- Faculty of Science and Technology, Jan Długosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| | - Piotr Rychter
- Faculty of Science and Technology, Jan Długosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| | - Kamila Lewicka
- Faculty of Science and Technology, Jan Długosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| | - Piotr Dobrzyński
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland
- Faculty of Science and Technology, Jan Długosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| |
Collapse
|
4
|
Ma X, Wang X, Sun C, Wang B, Yu C, Shan G, Bao Y, Zheng Y, Pan P. Crystal Polymorphism of Isodimorphic Polyesters Tuned by cis- and trans-C═C Comonomer Units. ACS Macro Lett 2023; 12:1629-1635. [PMID: 37967041 DOI: 10.1021/acsmacrolett.3c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Polymorphism is ubiquitous in polymer crystallization due to the diversified chain conformations and interchain packings in polymer crystals. Controlling chain conformation is effective in tailoring the crystal polymorphism of polymers, which, however, is challenging at the molecular level. Herein, we have synthesized poly(butylene adipate) (PBA)-based copolymers containing C═C units and demonstrated the important role of trans/cis-C═C units in tuning the chain conformation and crystal polymorphism of polymers. Both PBA-based trans- and cis-copolymers show isodimorphic crystallization behavior with the partial inclusion of C═C units in PBA crystals. The presence of trans-C═C units favors the formation of metastable β-crystals of PBA and retards the β-to-α crystal transition upon heating due to the highly conformational matching between trans-C═C units and β-crystals. Conversely, the incorporation of cis-C═C units destroys the regularity of the trans conformation and favors the growth of α-crystals of PBA. This work has elucidated the crucial role of local chain conformation in the crystal polymorphism of polymers.
Collapse
Affiliation(s)
- Xuekuan Ma
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xuanbo Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Chenxuan Sun
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Bao Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| | - Chengtao Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| | - Guorong Shan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| | - Yongzhong Bao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| | - Ying Zheng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| | - Pengju Pan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| |
Collapse
|
5
|
Wen T, Gao Y, Zhou J, Qiu J, Wang S, Loos J, Wang D, Dong X. Fast Fabrication of Porous Amphiphilic Polyamides via Nonconventional Evaporation Induced Phase Separation. ACS Macro Lett 2023:697-702. [PMID: 37191637 DOI: 10.1021/acsmacrolett.3c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In the present work, we report a facile approach for the fast fabrication of porous films and coatings of long-chain polyamides through a nonconventional evaporation induced phase separation. Because of its amphiphilic nature, polyamide 12 can be dissolved in the mixture of a high-polarity solvent and a low-polarity solvent, while it could not be dissolved in either solvent solely. The sequential and fast evaporation of the solvents leads to the formation of porous structures within 1 min. Moreover, we have investigated the dependence of the pore structures on composition of the solutions, and have demonstrated that our approach can be applied to other long-chain polycondensates, too. Our findings can provide insight on the fabrication of porous materials by using amphiphilic polymers.
Collapse
Affiliation(s)
- Tao Wen
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China 510640
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, China 510640
| | - Yuting Gao
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China 510640
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, China 510640
| | - Jiajia Zhou
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China 510640
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, China 510640
| | - Jie Qiu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China 510640
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, China 510640
| | - Shuo Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China 510640
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, China 510640
| | - Joachim Loos
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China 510640
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, China 510640
| | - Dujin Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China 100190
| | - Xia Dong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China 100190
| |
Collapse
|
6
|
Zhang L, Dong W, Yao Y, Chen C, Li X, Yin B, Li H, Zhang Y. Analysis and Research on Starch Content and Its Processing, Structure and Quality of 12 Adzuki Bean Varieties. Foods 2022; 11:3381. [PMID: 36359994 PMCID: PMC9656587 DOI: 10.3390/foods11213381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 10/17/2023] Open
Abstract
Investigating starch properties of different adzuki beans provides an important theoretical basis for its application. A comparative study was conducted to evaluate the starch content, processing, digestion, and structural quality of 12 adzuki bean varieties. The variation ranges of the 12 adzuki bean varieties with specific analyzed parameters, including the amylose/amylopectin (AM/AP) ratio, bean paste rate, water separation rate, solubility, swelling power and resistant starch (RS) content level, were 5.52-39.05%, 44.7-68.2%, 45.56-54.29%, 6.79-12.07%, 11.83-15.39%, and 2.02-14.634%, respectively. The crystallinity varied from 20.92 to 37.38%, belonging to type BC(The starch crystal type is mainly type C, supplemented by type B). In correlation analysis, red and blue represent positive and negative correlation, respectively. Correlation analysis indicated that the termination temperature of adzuki bean starch was positively correlated with AM/AP ratio. Therefore, the higher the melting temperature, the better the freeze-thaw stability. The 12 varieties were divided into Class I, Class II, and Class III by cluster analysis, based on application field. Class I was unsuitable for the diabetics' diet; Class II was suitable for a stabilizer; and Class III was suitable for bean paste, mixtures, and thickeners. The present study could provide a theoretical basis for their application in the nutritional and nutraceutical field.
Collapse
Affiliation(s)
- Lei Zhang
- Hebei Province Crop Growth Control Laboratory, Hebei Agricultural University, Baoding 071001, China
| | - Weixin Dong
- Teaching Support Department, Hebei Open University, Shijiazhuang 050080, China
| | - Yaya Yao
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Congcong Chen
- Hebei Province Crop Growth Control Laboratory, Hebei Agricultural University, Baoding 071001, China
| | - Xiangling Li
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao 066600, China
| | - Baozhong Yin
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Huijing Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Yuechen Zhang
- Hebei Province Crop Growth Control Laboratory, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
7
|
Wang Y, Shao J, Zhu P, Wang L, Wang D, Dong X. Brill Transition in Polyamide 1012 Multiblock Poly(tetramethylene oxide) Copolymers: The Effect of Composition on Hydrogen-Bonding Organization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yu Wang
- CAS Key Laboratory of Engineer Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jianming Shao
- CAS Key Laboratory of Engineer Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ping Zhu
- CAS Key Laboratory of Engineer Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lei Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dujin Wang
- CAS Key Laboratory of Engineer Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Dong
- CAS Key Laboratory of Engineer Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Li X, Li X, Wang Y, Zhu P, Wang D, Müller AJ, Dong X. Effect of Initial Molecular Weight on the Structural Evolution of Polyamide 1012 during High-Temperature Thermal Treatments as Revealed by Successive Self-Nucleation and Annealing. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xuan Li
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xueting Li
- Shandong Guangyin New Material Co., Ltd., Zibo, Shandong Province 255022, P. R. China
| | - Yu Wang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Ping Zhu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Dujin Wang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Alejandro J. Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| | - Xia Dong
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
9
|
Ma GQ, Sun ZB, Ren JY, Zeng Y, Jia DZ, Li Y, Guan B, Zhong GJ, Li ZM. Reorganization of Hydrogen Bonding in Biobased Polyamide 5,13 under the Thermo-Mechanical Field: Hierarchical Microstructure Evolution and Achieving Excellent Mechanical Performance. Biomacromolecules 2022; 23:3990-4003. [PMID: 35960547 DOI: 10.1021/acs.biomac.2c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hierarchical microstructure evolution of an emerging biobased odd-odd polyamide 5,13 (PA5,13) films under the thermo-mechanical field, stepping from hydrogen bond (H-bond) arrangement to the crystalline morphology, has been investigated systematically. It is found that the reorganization of H-bonds under the thermo-mechanical field plays a crucial role in the crystallization of PA5,13. Especially, it is revealed that the crystallization process under the thermo-mechanical field develops along the chain axis direction, while lamellar fragmentation occurs perpendicular to the chain axis. Consequently, a stable and well-organized H-bond arrangement and lengthened lamellae with significant orientation have been constructed. Laudably, an impressive tensile strength of about 500 MPa and modulus of about 4.7 GPa are thus achieved. The present study could provide important guidance for the industrial-scale manufacture of high-performance biobased odd-odd PAs with long polymethylene segment in the dicarboxylic unit combined with a large difference between the polymethylene segments in the dicarboxylic and diamine units.
Collapse
Affiliation(s)
- Guo-Qi Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Zhao-Bo Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Jia-Yi Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Ying Zeng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - De-Zhuang Jia
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Yue Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Bing Guan
- Cathay Biotech Inc., Shanghai 201203, People's Republic of China
| | - Gan-Ji Zhong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| |
Collapse
|
10
|
Xia J, Xu S, Zheng Y, Zhou J, Yu C, Shan G, Bao Y, Pan P. Isodimorphic Crystallization and Tunable γ–α Phase Transition in Aliphatic Copolyamides: Critical Roles of Comonomer Defects and Conformational Evolution. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jianfei Xia
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shanshan Xu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ying Zheng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institue of Zhejiang University−Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Jian Zhou
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institue of Zhejiang University−Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Chengtao Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institue of Zhejiang University−Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Guorong Shan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institue of Zhejiang University−Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Yongzhong Bao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institue of Zhejiang University−Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Pengju Pan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institue of Zhejiang University−Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| |
Collapse
|
11
|
Pérez-Camargo RA, Liu G, Meabe L, Zhao Y, Sardon H, Müller AJ, Wang D. Using Successive Self-Nucleation and Annealing to Detect the Solid–Solid Transitions in Poly(hexamethylene carbonate) and Poly(octamethylene carbonate). Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ricardo Arpad Pérez-Camargo
- CAS Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Guoming Liu
- CAS Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leire Meabe
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián 20018, Spain
| | - Ying Zhao
- CAS Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haritz Sardon
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián 20018, Spain
| | - Alejandro J. Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián 20018, Spain
- IKESBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| | - Dujin Wang
- CAS Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|