1
|
Arroyo I, Cedeño R, Nour Eddine N, Alcaraz G, Pensec S, Bouteiller L, Naït-Abdelaziz M, Barrau S, Tahon JF, Fournier D, Fadel A, Takeshita M, Buntinx G, Aloïse S. Easy Processable Photomechanical Thin Film Involving a Photochromic Diarylethene and a Thermoplastic Elastomer in Supramolecular Interaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2402131. [PMID: 39152527 DOI: 10.1002/smll.202402131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/18/2024] [Indexed: 08/19/2024]
Abstract
A novel supramolecular photoactuator in the form of a thin film of centimetric size has been developed as an alternative to traditional liquid crystal elastomers (LCE) involving azobenzene (AZO) units or photochromic microcrystals. This thin film is produced through spin coating without the need for alignment or crosslinking. The photoactuator combines a photochromic dithienylethene (DTE) functionalized with ureidopyrimidinone (UPy) units, and a telechelic thermoplastic elastomer, also functionalized with UPy, allowing quadruple hydrogen bonding between the two components. Upon alternating ultraviolet (UV) and visible light exposure, the film exhibits reversible bending and color changes, studied using displacement and absorption tracking setups. For the first time, the photomechanical effect (PME) is quantitatively correlated with photochromism, showing that DTE units drive the movement under both UV (photocyclization) and visible (photoreversion) light. In situ illumination techniques reveal that the PME arises from photoinduced strain within 160 nm UPy-bonded DTE domains, which expand and contract by approximately 50% under UV and visible light, respectively. The semicrystalline nature of the elastomer and a robust supramolecular network connecting both components are critical in converting microscopic photostrain into macroscopic actuation.
Collapse
Affiliation(s)
- Ismael Arroyo
- Université de Lille, CNRS, UMR 8516 - LASIRE - Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Lille, 59000, France
| | - Rebeca Cedeño
- Université de Lille, Unité de Mécanique de Lille-Joseph Boussinesq ULR 7512, Lille, 59000, France
| | - Nour Nour Eddine
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, Rennes, F-35000, France
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, Paris, 75005, France
| | - Gilles Alcaraz
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, Rennes, F-35000, France
| | - Sandrine Pensec
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, Paris, 75005, France
| | - Laurent Bouteiller
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, Paris, 75005, France
| | - Moussa Naït-Abdelaziz
- Université de Lille, Unité de Mécanique de Lille-Joseph Boussinesq ULR 7512, Lille, 59000, France
| | - Sophie Barrau
- Université de Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, Lille, F-59000, France
| | - Jean-François Tahon
- Université de Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, Lille, F-59000, France
| | - David Fournier
- Université de Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, Lille, F-59000, France
| | - Alexandre Fadel
- Université de Lille, CNRS, INRAE, Centrale Lille, Univ. Artois, FR 2638 - IMEC - Institut Michel-Eugène Chevreul, Lille, F-59000, France
| | - Michinori Takeshita
- Department of Advanced Technology and Fusion, Graduate School of Science and Engineering, University of Saga, Saga, 840-8502, Japan
| | - Guy Buntinx
- Université de Lille, CNRS, UMR 8516 - LASIRE - Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Lille, 59000, France
| | - Stéphane Aloïse
- Université de Lille, CNRS, UMR 8516 - LASIRE - Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Lille, 59000, France
| |
Collapse
|
2
|
Ma S, Zhou Y, Wang L, Zhang H. Multifunctional UV-NIR Dual Light-Responsive Soft Actuators from a Main-Chain Azobenzene Semi-Crystalline Poly(ester-amide) Doped with Polydopamine Nanoparticles. Chemistry 2024; 30:e202303306. [PMID: 37965800 DOI: 10.1002/chem.202303306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/16/2023]
Abstract
The development of soft photoactuators with multifunctionality and improved performance is highly important for their broad applications. Herein, we report on a facile and efficient strategy for fabricating such photoactuators with UV-NIR dual light-responsivity, room-temperature 3D shape reprogrammability and reprocessability, and photothermal healability by doping polydopamine (PDA) nanoparticles into a main-chain azobenzene semi-crystalline poly(ester-amide) (PEA). The PEA/PDA nanoparticle composite was readily processed into free-standing films with enhanced mechanical and photomechanical properties compared with the blank PEA films. Its physically crosslinked uniaxially oriented films showed rapid and highly reversible photochemically induced bending/unbending under the UV/visible light irradiation at room temperature in both the air atmosphere and water. When exposed to the NIR light, they (and their bilayer films formed with a polyimide film) exhibited photothermally induced bending even at a temperature much lower than their crystalline-to-isotropic phase transition temperature based on a unique mechanism (involving photothermally induced polymer chain relaxation due to the disruption of their hydrogen bonds). The room-temperature 3D shape reprogrammability and reprocessability and photothermal healability of the composite polymer films were also demonstrated. Such multifunctional dual light-responsive photoactuators with well-balanced mechanical robustness, actuation stability, 3D shape reprogrammability/reprocessability and photothermal healability hold much promise in various photoactuating applications.
Collapse
Affiliation(s)
- Shengkui Ma
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yan Zhou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Lei Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Huiqi Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
3
|
Ube T, Suka I, Ogikubo S, Hashimoto G, Suda M, Yamamoto HM, Ikeda T. Inducing Motions of Polymers in Liquid Nitrogen with Light. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306402. [PMID: 37867200 DOI: 10.1002/adma.202306402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/02/2023] [Indexed: 10/24/2023]
Abstract
Polymer materials that show macroscopic deformation in response to external stimuli are feasible for novel soft actuators including microactuators. Incorporation of photochromic moieties, such as azobenzenes, into polymer networks enables macroscopic deformation under irradiation with light through photoisomerization. Under cryogenic conditions, however, it has been difficult to induce macroscopic deformation as polymers lose their soft nature due to the severe restrictions of molecular motions. Here, activation of molecular motions and macroscopic deformation in liquid nitrogen only with light for polymers containing photochromic moieties is reported. Photoinduced bending of polymer networks with normal azobenzenes in liquid nitrogen is enabled by preliminary UV irradiation at room temperature to produce cis-isomers. To realize photoinduced deformation directly in liquid nitrogen, polymer networks are functionalized with bridged azobenzenes, which exist as cis-isomers in thermodynamic equilibrium. The films with bridged azobenzenes exhibit reversible photoisomerization and bending upon irradiation with light in liquid nitrogen without the need of preliminary irradiation, implying that the change in conformation of polymer chains can be isothermally induced even under cryogenic conditions. Achievement of flexible motions under cryogenic conditions through isothermal processes will greatly expand the operating temperature range of soft actuators.
Collapse
Affiliation(s)
- Toru Ube
- Research & Development Initiative, Chuo University, Tokyo, 112-8551, Japan
| | - Ikumi Suka
- Graduate School of Science and Engineering, Chuo University, Tokyo, 112-8551, Japan
| | - Shunya Ogikubo
- Graduate School of Science and Engineering, Chuo University, Tokyo, 112-8551, Japan
| | - Gaku Hashimoto
- Graduate School of Science and Engineering, Chuo University, Tokyo, 112-8551, Japan
| | - Masayuki Suda
- Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | | | - Tomiki Ikeda
- Research & Development Initiative, Chuo University, Tokyo, 112-8551, Japan
| |
Collapse
|
4
|
Wu X, Yuan Y, Zhao S, Lei Y, Fu X, Lei J, Jiang L. The Synergistic Effects between Liquid Crystal and Crystalline Phase on Photo-Responsive Elastomers toward Quick Photo-Responsive Performance. Macromol Rapid Commun 2023; 44:e2300354. [PMID: 37572076 DOI: 10.1002/marc.202300354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/05/2023] [Indexed: 08/14/2023]
Abstract
Adopting only a small amount of azobenzene molecular to design liquid crystal photo-responsive materials capable of quick response and flexible adjustability is in high demand but is challenging. Herein, azobenzenemolecules into polyurethane elastomer containing crystalline structure for preparing azobenzene liquid-crystal elastomers (ALCEs) are demonstrated and this phenomenon of the synergistic effects between liquid crystal and crystalline phase is discovered. The key point of the work is that the synthetic ALCEs can utilize the reversible isomerism capability of azobenzene molecules under light irradiation, which can pry the motion of the macromolecular crystalline region in system to realize the large macroscopic deformation of the photo-responsive behavior. Obviously, the ALCEs sample containing azobenzene molecule and polyethylene glycol crystallization can quickly bend, illuminated by ultraviolet light and rapidly straighten under green light. Under the same ultraviolet irradiation, the bending speed, final bending angle, recovery rate and recovery ratio of ALCEs are larger than that of ALCEs without any crystalline structure. This ALCEs based on the synergistic effects between liquid crystal and crystalline phase can break through the current dilemma that the application of traditional azobenzene photo-responsive materials is limited by their concentration, greatly expanding the design thought and their scope of application.
Collapse
Affiliation(s)
- Xudong Wu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, P. R. China
| | - Ye Yuan
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, P. R. China
- Scientific Research Institute, Luzhou North Chemistry Industry Corporation, Luzhou, 646100, P. R. China
| | - Shiwei Zhao
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, P. R. China
| | - Yuan Lei
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, P. R. China
| | - Xiaowei Fu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, P. R. China
| | - Jingxin Lei
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, P. R. China
| | - Liang Jiang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
5
|
Kong S, Wang H, Ubba E, Xiao Y, Yu T, Huang W. Recent Developments of Photodeformable Polymers: From Materials to Applications. RESEARCH (WASHINGTON, D.C.) 2023; 6:0242. [PMID: 37779636 PMCID: PMC10540999 DOI: 10.34133/research.0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/11/2023] [Indexed: 10/03/2023]
Abstract
Photodeformable polymer materials have a far influence in the fields of flexibility and intelligence. The stimulation energy is converted into mechanical energy through molecular synergy. Among kinds of photodeformable polymer materials, liquid crystalline polymer (LCP) photodeformable materials have been a hot topic in recent years. Chromophores such as azobenzene, α-cyanostilbene, and 9,10-dithiopheneanthracene have been widely used in LCP, which are helpful for designing functional molecules to increase the penetration depth of light to change physical properties. Due to the various applications of photodeformable polymer materials, there are many excellent reports in intelligent field. In this review, we have systematized LCP containing azobenzene into 3 categories depending on the degree of crosslinking liquid crystalline elastomers, liquid crystalline networks, and linear LCPs. Other structural, typical polymer materials and their applications are discussed. Current issues faced and future directions to be developed for photodeformable polymer materials are also summarized.
Collapse
Affiliation(s)
- Shuting Kong
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi
Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Hailan Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi
Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Eethamukkala Ubba
- OMC Research Laboratory, Department of Chemistry,
School of Advanced Sciences, VITVellore, Tamilnadu, India
| | - Yuxin Xiao
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi
Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Tao Yu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi
Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi
Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM),
Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
- State Key Laboratory of Organic Electronics and Information Displays &Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
6
|
Ma S, Wang L, Zhou Y, Zhang H. Fully Room Temperature Reprogrammable, Recyclable, and Photomobile Soft Actuators from Physically Cross-Linked Main-Chain Azobenzene Liquid Crystalline Polymers. Molecules 2023; 28:molecules28104174. [PMID: 37241914 DOI: 10.3390/molecules28104174] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Fully room temperature three-dimensional (3D) shape-reprogrammable, recyclable, and photomobile azobenzene (azo) polymer actuators hold much promise in many photoactuating applications, but their development is challenging. Herein, we report on the efficient synthesis of a series of main-chain azo liquid crystalline polymers (LCPs) with such performances via Michael addition polymerization. They have both ester groups and two kinds of hydrogen bond-forming groups (i.e., amide and secondary amino groups) and different flexible spacer length in the backbones. Such poly(ester-amide-secondary amine)s (PEAsAs) show low glass transition temperatures (Tg ≤ 18.4 °C), highly ordered smectic liquid crystalline phases, and reversible photoresponsivity. Their uniaxially oriented fibers fabricated via the melt spinning method exhibit good mechanical strength and photoinduced reversible bending/unbending and large stress at room temperature, which are largely influenced by the flexible spacer length of the polymers. Importantly, all these fibers can be easily reprogrammed under strain at 25 °C into stable fiber springs capable of showing a totally different photomobile mode (i.e., unwinding/winding), mainly owing to the presence of low Tg and both dynamic hydrogen bonding and stable crystalline domains (induced by the uniaxial drawing during the fiber formation). They can also be recycled from a solution at 25 °C. This work not only presents the first azo LCPs with 3D shape reprogrammability, recyclability, and photomobility at room temperature, but also provides some important knowledge of their structure-property relationship, which is useful for designing more advanced photodeformable azo polymers.
Collapse
Affiliation(s)
- Shengkui Ma
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), and College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lei Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), and College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yan Zhou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), and College of Chemistry, Nankai University, Tianjin 300071, China
| | - Huiqi Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), and College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
7
|
Lei Y, Yuan Y, Zhao S, Yuan A, Zhou S, Xiao Y, lei J, Jiang L. Catalyst-free, highly sensitive and adjustable photo-responsive azobenzene liquid crystal elastomers based on dynamic multiple hydrogen bond. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
8
|
Chen Q, Ye J, Zhu L, Luo J, Cao X, Zhang Z. Organocatalytic multicomponent polymerization of bis(aziridine)s, diols, and tosyl isocyanate toward poly(sulfonamide urethane)s. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
9
|
Xue X, Liang K, Huang W, Yang H, Jiang L, Jiang Q, Jiang T, Lin B, Chen Y, Jiang B, Komarneni S. Molecular Engineering of Injectable, Fast Self-Repairing Hydrogels with Tunable Gelation Time: Characterization by Diffusing Wave Spectroscopy. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaoqiang Xue
- Industrial College of Carbon Fiber and New Materials, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, Jiangsu 213000, People’s Republic of China
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People’s Republic of China
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Soochow University, Suzhou 215006, People’s Republic of China
| | - Kang Liang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People’s Republic of China
| | - Wenyan Huang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People’s Republic of China
- Changzhou University Huaide College, Jingjiang 214500, People’s Republic of China
| | - Hongjun Yang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People’s Republic of China
- Changzhou University Huaide College, Jingjiang 214500, People’s Republic of China
| | - Li Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People’s Republic of China
- Changzhou University Huaide College, Jingjiang 214500, People’s Republic of China
| | - Qimin Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People’s Republic of China
- Changzhou University Huaide College, Jingjiang 214500, People’s Republic of China
| | - Tao Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People’s Republic of China
| | - Binzhe Lin
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People’s Republic of China
| | - Yangjing Chen
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People’s Republic of China
- Changzhou University Huaide College, Jingjiang 214500, People’s Republic of China
| | - Bibiao Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People’s Republic of China
- Changzhou University Huaide College, Jingjiang 214500, People’s Republic of China
| | - Sridhar Komarneni
- Materials Research Institute and Department of Ecosystem Science and Management, 204EEL, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
10
|
Lugger SJD, Verbroekken RMC, Mulder DJ, Schenning APHJ. Direct Ink Writing of Recyclable Supramolecular Soft Actuators. ACS Macro Lett 2022; 11:935-940. [PMID: 35802869 PMCID: PMC9301911 DOI: 10.1021/acsmacrolett.2c00359] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Direct ink writing (DIW) of liquid crystal elastomers
(LCEs) has
rapidly paved its way into the field of soft actuators and other stimuli-responsive
devices. However, currently used LCE systems for DIW require postprinting
(photo)polymerization, thereby forming a covalent network, making
the process time-consuming and the material nonrecyclable. In this
work, a DIW approach is developed for printing a supramolecular poly(thio)urethane
LCE to overcome these drawbacks of permanent cross-linking. The thermo-reversible
nature of the supramolecular cross-links enables the interplay between
melt-processable behavior required for extrusion and formation of
the network to fix the alignment. After printing, the actuators demonstrated
a reversible contraction of 12.7% or bending and curling motions when
printed on a passive substrate. The thermoplastic ink enables recyclability,
as shown by cutting and printing the actuators five times. However,
the actuation performance diminishes. This work highlights the potential
of supramolecular LCE inks for DIW soft circular actuators and other
devices.
Collapse
Affiliation(s)
- Sean J D Lugger
- Laboratory of Stimuli-Responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ruth M C Verbroekken
- Laboratory of Stimuli-Responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Dirk J Mulder
- Laboratory of Stimuli-Responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Albert P H J Schenning
- Laboratory of Stimuli-Responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology (TU/e), P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
11
|
Zhou Y, Wang L, Zhang H. Enhancing the performances of physically cross-linked photodeformable main-chain azobenzene poly(ester-amide)s via chemical structure engineering. Polym Chem 2022. [DOI: 10.1039/d2py00492e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of physically cross-linked photodeformable main-chain azobenzene poly(ester-amide)s with enhanced performances via chemical structure engineering and obtention of their detailed structure–property relationship are first described.
Collapse
Affiliation(s)
- Yan Zhou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), and College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lei Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), and College of Chemistry, Nankai University, Tianjin 300071, China
| | - Huiqi Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), and College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|