1
|
Heo J, Seo S, Yun H, Ku KH. Stimuli-responsive nanoparticle self-assembly at complex fluid interfaces: a new insight into dynamic surface chemistry. NANOSCALE 2024; 16:3951-3968. [PMID: 38319675 DOI: 10.1039/d3nr05990a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The self-assembly of core/shell nanoparticles (NPs) at fluid interfaces is a rapidly evolving area with tremendous potential in various fields, including biomedicine, display devices, catalysts, and sensors. This review provides an in-depth exploration of the current state-of-the-art in the programmed design of stimuli-responsive NP assemblies, with a specific focus on inorganic core/organic shell NPs below 100 nm for their responsive adsorption properties at fluid and polymer interfaces. The interface properties, such as ligands, charge, and surface chemistry, play a significant role in dictating the forces and energies governing both NP-NP and NP-hosting matrix interactions. We highlight the fundamental principles governing the reversible surface chemistry of NPs and present detailed experimental examples in the following three key aspects of stimuli-responsive NP assembly: (i) stimuli-driven assembly of NPs at the air/liquid interface, (ii) reversible NP assembly at the liquid/liquid interface, including films and Pickering emulsions, and (iii) hybrid NP assemblies at the polymer/polymer and polymer/water interfaces that exhibit stimuli-responsive behaviors. Finally, we address current challenges in existing approaches and offer a new perspective on the advances in this field.
Collapse
Affiliation(s)
- Jieun Heo
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Seunghwan Seo
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Hongseok Yun
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea.
| | - Kang Hee Ku
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
2
|
Chen Z, Seong HG, Hu M, Gan X, Ribbe AE, Ju J, Wang H, Doucet M, Emrick T, Russell TP. Janus bottlebrush compatibilizers. SOFT MATTER 2024; 20:1554-1564. [PMID: 38270211 DOI: 10.1039/d3sm01484c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Bottlebrush random copolymers (BRCPs), consisting of a random distribution of two homopolymer chains along a backbone, can segregate to the interface between two immiscible homopolymers. BRCPs undergo a reconfiguration, where each block segregates to one of the homopolymer phases, adopting a Janus-type structure, reducing the interfacial tension and promoting adhesion between the two homopolymers, thereby serving as a Janus bottlebrush copolymer (JBCP) compatibilizer. We synthesized a series of JBCPs by copolymerizing deuterated or hydrogenated polystyrene (DPS/PS) and poly(tert-butyl acrylate) (PtBA) macromonomers using ruthenium benzylidene-initiated ring-opening metathesis polymerization (ROMP). Subsequent acid-catalyzed hydrolysis converted the PtBA brushes to poly(acrylic acid) (PAA). The JBCPs were then placed at the interface between DPS/PS homopolymers and poly(2-vinyl pyridine) (P2VP) homopolymers, where the degree of polymerization of the backbone (NBB) and the grafting density (GD) of the JBCPs were varied. Neutron reflectivity (NR) was used to determine the interfacial width and segmental density distributions (including PS homopolymer, PS block, PAA block and P2VP homopolymer) across the polymer-polymer interface. Our findings indicate that the star-like JBCP with NBB = 6 produces the largest interfacial broadening. Increasing NBB to 100 (rod-like shape) and 250 (worm-like shape) reduced the interfacial broadening due to a decrease in the interactions between blocks and homopolymers by stretching of blocks. Decreasing the GD from 100% to 80% at NBB = 100 caused an increase the interfacial width, yet further decreasing the GD to 50% and 20% reduced the interfacial width, as 80% of GD may efficiently increase the flexibility of blocks and promote interactions between homopolymers, while maintaining relatively high number of blocks attached to one molecule. The interfacial conformation of JBCPs was further translated into compatibilization efficiency. Thin film morphology studies showed that only the lower NBB values (NBB = 6 and NBB = 24) and the 80% GD of NBB = 100 had bicontinuous morphologies, due to a sufficient binding energy that arrested phase separation, supported by mechanical testing using asymmetric double cantilever beam (ADCB) tests. These provide fundamental insights into the assembly behavior of JBCPs compatibilizers at homopolymer interfaces, opening strategies for the design of new BCP compatibilizers.
Collapse
Affiliation(s)
- Zhan Chen
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| | - Hong-Gyu Seong
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| | - Mingqiu Hu
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| | - Xuchen Gan
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| | - Alexander E Ribbe
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| | - Jaechul Ju
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Hanyu Wang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Mathieu Doucet
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Todd Emrick
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| | - Thomas P Russell
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 37831, USA
| |
Collapse
|
3
|
Anisur Rahman M, Turner T, Hamilton HSC, Bradley LC, Beltramo PJ. Engineering the surface patchiness and topography of polystyrene colloids: From spheres to ellipsoids. J Colloid Interface Sci 2023; 652:82-94. [PMID: 37591086 DOI: 10.1016/j.jcis.2023.08.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/21/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023]
Abstract
HYPOTHESIS Colloidal surface morphology determines suspension properties and applications. While existing methods are effective at generating specific features on spherical particles, an approach extending this to non-spherical particles is currently missing. Synthesizing un-crosslinked polymer microspheres with controlled chemical patchiness would allow subsequent thermomechanical stretching to translate surface topographical features to ellipsoidal particles. EXPERIMENTS A systematic study using seeded emulsion polymerization to create polystyrene (PS) microspheres with controlled surface patches of poly(tert-butyl acrylate) (PtBA) was performed with different polymerization parameters such as concentration of tBA monomer, co-swelling agent, and initiator. Thermomechanical stretching converted seed spheres to microellipsoids. Acid catalyzed hydrolysis (ACH) was performed to remove the patch domains. Roughness was characterized before and after ACH using atomic force microscopy. FINDINGS PS spheres with controlled chemical patchiness were synthesized. A balance between two factors, domain coalescence from reduced viscosity and domain growth via monomer absorption, dictates the final PtBA) patch features. ACH mediated removal of patch domains produced either golf ball-like porous particles or multicavity particles, depending on the size of the precursor patches. Patchy microspheres were successfully stretched into microellipsoids while retaining their surface characteristics. Particle roughness is governed by the patch geometry and increases after ACH. Overall, this study provides a facile yet controllable platform for creating colloids with highly adjustable surface patterns.
Collapse
Affiliation(s)
- Md Anisur Rahman
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Taina Turner
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Heather S C Hamilton
- Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Laura C Bradley
- Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Peter J Beltramo
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
4
|
Li C, Pan Y, Xiao T, Xiang L, Li Q, Tian F, Manners I, Mai Y. Metal Organic Framework Cubosomes. Angew Chem Int Ed Engl 2023; 62:e202215985. [PMID: 36647212 DOI: 10.1002/anie.202215985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/08/2023] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
We demonstrate a general strategy for the synthesis of ordered bicontinuous-structured metal organic frameworks (MOFs) by using polymer cubosomes (PCs) with a double primitive structure (Im 3 ‾ ${\bar{3}}$ m symmetry) as the template. The filling of MOF precursors in the open channel of PCs, followed by their coordination and removal of the template, generates MOF cubosomes with a single primitive topology (Pm 3 ‾ ${\bar{3}}$ m) and average mesopore diameters of 60-65 nm. Mechanism study reveals that the formation of ZIF-8 cubosomes undergoes a new MOF growth process, which involves the formation of individual MOF seeds in the template, their growth and eventual fusion into the cubosomes. Their growth kinetics follows the Avrami equation with an Avrami exponent of n=3 and a growth rate of k=1.33×10-4 , indicating their fast 3D heterogeneous growth mode. Serving as a bioreactor, the ZIF-8 cubosomes show high loading of trypsin enzyme, leading to a high catalytic activity in the proteolysis of bovine serum albumin.
Collapse
Affiliation(s)
- Chen Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Department of Chemistry, Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada
| | - Yi Pan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Tianyu Xiao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Luoxing Xiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Feng Tian
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhangheng Road, Shanghai, 201204, China
| | - Ian Manners
- Department of Chemistry, Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
5
|
Guo L, Xu Y, Zhang X, Hu GH. In-situ compatibilization of polyamide 6/polycarbonate blends through interfacial localization of silica nanoparticles. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
6
|
Sims MB, Goetze JW, Gorbea GD, Gdowski ZM, Lodge TP, Bates FS. Photocrosslinkable Polymeric Bicontinuous Microemulsions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10044-10052. [PMID: 36774627 DOI: 10.1021/acsami.2c22927] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We present an approach to photocrosslink bicontinuous microemulsions derived from ternary blends of poly(methoxyethyl acrylate) (PM, Mn = 4200 g/mol), poly(hexyl methacrylate-co-coumarin methacrylate) (PHC, Mn = 6800 g/mol), and PM-b-PHC diblock polymer (Mn = 19,400 g/mol) in a phase-selective manner, enabling structural characterization at an unprecedented level of detail. This strategy utilizes the [2 + 2] photodimerization reaction of coumarin derivatives to covalently crosslink blends without the use of harsh reagents or disruptive thermal treatment, thus preserving the intricate network structure throughout curing. The resulting crosslinked bicontinuous microemulsions exhibited rubbery behavior at elevated temperatures, achieving an elastic shear modulus of nearly 1 MPa at 70 °C, owing to the presence of the three-dimensional co-continuous network morphology. The dimensional stabilization afforded by crosslinking further allowed the microstructure to be directly imaged by scanning electron microscopy and atomic force microscopy. Contrary to recent theoretical findings, the BμE appears in a wide temperature and compositional window, suggesting that it is a robust feature of these blends. As a proof of concept demonstrating both the utility of bicontinuous microemulsion-derived materials and versatility of this strategy toward broader applications in energy storage and transport, the uncrosslinked portion of a cured blend was extracted by washing and replaced with an ionic liquid; the resultant heterogeneous solid electrolyte exhibited a room-temperature conductivity of 2 mS/cm, approximately one-quarter that of the pure ionic liquid.
Collapse
Affiliation(s)
- Michael B Sims
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joshua W Goetze
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Gabriela Diaz Gorbea
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Zachary M Gdowski
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Timothy P Lodge
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Frank S Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
7
|
He HL, Liang FX. Interfacial Engineering of Polymer Blend with Janus Particle as Compatibilizer. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2878-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Wang Z, Zhang K, Wang H, Wu X, Wang H, Weng C, Li Y, Liu S, Yang J. Strengthening Interfacial Adhesion and Foamability of Immiscible Polymer Blends via Rationally Designed Reactive Macromolecular Compatibilizers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45832-45843. [PMID: 36169636 DOI: 10.1021/acsami.2c12383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Foams made of immiscible polymer blends have attracted great interest in both academia and industry, because of the integration of desirable properties of different polymers in a hybrid foam. However, the foamability and end-use properties are hampered because of the poor interfacial strength within the immiscible blends. Furthermore, few investigations have been carried out on the mechanisms by which interfacial strength and structure affect the foamability of polymer blends. In this work, two different reactive interfacial compatibilizers, i.e., poly(styrene-co-glycidyl methacrylate)-graft-poly(l-lactide) and poly(styrene-co-glycidyl methacry-late)-graft-poly(d-lactide), abbreviated as SG-g-PLLA and SG-g-PDLA, respectively, were designed and synthesized through reactive melt blending and subsequently applied to strengthen the interfacial strength and foamability of immiscible poly(butylene adipate-co-terephthalate) (PBAT)/poly(l-lactide) (PLLA) blends. Both compatibilizers could remarkably enhance the interfacial strength and foamability of the PBAT/PLLA blends, as evidenced by the significantly elongated dispersed phase in the resulting cocontinuous phase and more than 7000-fold increase in the cell density. Furthermore, the improved foamability was quantitively explained by the reduced gas diffusion and increased melt strength. Strikingly, the SG-g-PDLA introduced a stereocomplex crystal at the interface (i-SC), providing highly strengthened interfaces and nanoscale heterogeneous nucleation sites, which led to an energetically favorable cell nucleation. Moreover, foams with specifically laminated cell structures were fabricated by combining pressure-induced flow processing and i-SC strengthened interfaces. This work provides insight into the relationship between interfacial strength and formability of immiscible polymer blends and offers new possibilities for controlling cell morphologies and designing unique cell structures for polymer foams.
Collapse
Affiliation(s)
- Zhen Wang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P. R. China
| | - Kailiang Zhang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P. R. China
| | - Hengti Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Xinyu Wu
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P. R. China
| | - Hanyu Wang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P. R. China
| | - Chenglong Weng
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P. R. China
| | - Yongjin Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Shanqiu Liu
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P. R. China
| | - Jintao Yang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P. R. China
| |
Collapse
|
9
|
Asymmetrically functionalized CNTs: preparation of polymer nanocomposites and investigation of interfacial properties. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03269-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
10
|
Dhumal U, Erigi U, Tripathy M. Polymer-mediated self-assembly, dispersion, and phase separation of Janus nanorods. Phys Chem Chem Phys 2022; 24:23634-23650. [PMID: 36134618 DOI: 10.1039/d2cp01743a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The challenge of stabilizing polymer nanocomposites lies in the fact that nanoparticles tend to phase separate from the polymer melt due to an entropic 'depletion attraction' between nanoparticles. Additionally, composites of polymer and nanorods show a decrease in miscibility with increasing nanorod aspect ratio [U. K. Sankar and M. Tripathy, Macromolecules, 2015, 48, 432-442; U. Erigi, U. Dhumal and M. Tripathy, J. Chem. Phys., 2021, 154, 124903]. In this work, we have studied the structure and phase behaviour of polymer-Janus nanorod mixtures using Polymer Reference Interaction Site Model (PRISM) theory and molecular dynamics simulations. The composite system of polymer and Janus nanorods of two different thicknesses, at various Janus nanorod densities, and for different interaction strengths between polymer and attractive sites of Janus nanorods (εpa), is investigated for their miscibility and self-assembly. At low Janus nanorod density, PRISM theory predicts transitions from the entropic depletion-driven contact aggregation of Janus nanorods to a well-dispersed phase to the bridging-driven phase separation of Janus nanorods, with increasing εpa. This behaviour is similar to earlier predictions for homogeneous nanorods. However, molecular dynamics simulations do not confirm the bridging-driven phase separation at high εpa predicted by PRISM theory. We find that both PRISM theory and molecular dynamics simulations are in agreement in the intermediate and high Janus nanorod density regimes. PRISM theory predicts, and simulations confirm, that at high Janus nanorod densities, the system undergoes a transition from depletion-driven macrophase separation to dispersion to chemical anisotropy-driven self-assembly with increasing εpa. The self-assembly at high εpa is mediated by the polymer. At intermediate Janus nanorod densities, the usual transition from an entropic depletion-driven macrophase separation to dispersion is predicted at low εpa. At high εpa, both PRISM theory and molecular dynamics simulations show transition to a state that is simultaneously macrophase separated and microphase separated (self-assembled).
Collapse
Affiliation(s)
- Umesh Dhumal
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Umashankar Erigi
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Mukta Tripathy
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
11
|
Seo J, Kearney LT, Datta S, Toomey MD, Keum JK, Naskar AK. Tailoring compatibilization potential of maleic anhydride‐grafted polypropylene by sequential rheochemical processing of polypropylene and polyamide 66 blends. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jiho Seo
- Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge Tennessee USA
| | - Logan T. Kearney
- Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge Tennessee USA
| | - Siddhant Datta
- Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge Tennessee USA
| | - Michael D. Toomey
- Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge Tennessee USA
| | - Jong K. Keum
- Neutron Scattering Division and Center for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge Tennessee USA
| | - Amit K. Naskar
- Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge Tennessee USA
| |
Collapse
|
12
|
Guan J, Yang Y, Tang B, Shen X, Li Y. The synthesis of functional Janus nanosheets as compatibilizers for the immiscible polyamide 6 /polystyrene (PA6/PS): Formation of the nanosilica monolayer at the interface. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Zhang M, Jiang C, Wu Q, Zhang G, Liang F, Yang Z. Poly(lactic acid)/Poly(butylene succinate) (PLA/PBS) Layered Composite Gas Barrier Membranes by Anisotropic Janus Nanosheets Compartibilizers. ACS Macro Lett 2022; 11:657-662. [PMID: 35570811 DOI: 10.1021/acsmacrolett.2c00139] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Poly(lactic acid) (PLA), one of the most promising biodegradable polymer products, has achieved wide applications for its relatively good mechanical properties and moderate degradability. Here we report an environment-friendly filler, the organic-inorganic composite Janus nanosheets (PLA/PBS JNs), which can jam at the interface of the PLA/PBS blend with a low threshold as the compatibilizer and can simultaneously toughen the composites and improve the gas barrier performance due to better interfacial interaction and tortuous path effect. With 0.3 wt % of PLA/PBS JNs added, the tensile strength and elongation at break of the PLA/PBS blend can be improved by 37% and 224%, respectively. After a further hot-pressing process, the barrier performance of the PLA/PBS composite membranes can be significantly enhanced since PLA, PLA/PBS JNs, and PBS are arranged in a nearly lamellar structure with oxygen permeability of 0.63 × 10-15 cm3 cm·cm-2 s-1 Pa-1 with only 0.5 wt % of PLA/PBS JNs.
Collapse
Affiliation(s)
- Meng Zhang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, Liaoning University, Shenyang 110036, China
| | - Chao Jiang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Qiuhua Wu
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, Liaoning University, Shenyang 110036, China
| | - Guolin Zhang
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, Liaoning University, Shenyang 110036, China
| | - Fuxin Liang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhenzhong Yang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Hu L, Han Y, Rong C, Wang X, Wang H, Li Y. Interfacial Engineering with Rigid Nanoplatelets in Immiscible Polymer Blends: Interface Strengthening and Interfacial Curvature Controlling. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11016-11027. [PMID: 35171566 DOI: 10.1021/acsami.1c24817] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The interfacial nanoparticle compatibilization (INC) strategy has opened up a promising avenue toward simultaneous functionalization and interfacial engineering of immiscible polymer blends. While the INC mechanism has been well developed recently, few investigations have focused on rigid nanoplatelets because of the inherent steric hindrance of the surface-grafted polymer chains. Herein, surface-modified rigid nanoplatelets have been incorporated into an immiscible poly(l-lactide) (PLLA)/poly(butylene succinate) (PBSU) blend. It is demonstrated that the strong interfacial adhesion between PLLA and PBSU phases is promoted via molecular entanglements of the grafted chains on the surface of nanoplatelets with the individual components. A refined phase morphology with improved mechanical properties can be achieved with the addition of 5 wt % modified Gibbsite nanoplatelets. It was further found that the stiffness of nanoplatelets can change the geometry of the interface significantly. It is, therefore, indicated that the simultaneous interface strengthening and interfacial curvature controlling of rigid nanoplatelets originate from the selective swelling/collapse of the in situ-formed PLLA and PBSU grafts within the corresponding phase at the interface. Such a mechanism is confirmed by the Monte Carlo simulations. This work provides new opportunities for the fabrication of advanced polymer blend nanocomposites.
Collapse
Affiliation(s)
- Lingmin Hu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Yuanyuan Han
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, Liaoning, People's Republic of China
| | - Chenyan Rong
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Xiaokan Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Hengti Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Yongjin Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| |
Collapse
|
15
|
Ye Z, Yu H, Zheng Z, Hu B, Zhao Y, Wang H. Janus Nanoshards Prepared Based on High Internal Phase Emulsion Templates for Compatibilizing Immiscible Polymer Blends. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhangfan Ye
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Heng Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Zheng Zheng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Bintao Hu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yongliang Zhao
- Shanghai Dilato Materials Company Limited, Shanghai 200433, China
| | - Haitao Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
16
|
Lin J, Chi C, Zhang Y, Lin J, Chen Q. Increased Continuity of the PA6 Phase from the PS Matrix Induced by Migrating Janus Particles and Its Application in Thermal Conductivity. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiahe Lin
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, People’s Republic of China
| | - Chongyi Chi
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, People’s Republic of China
| | - Yuxia Zhang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, People’s Republic of China
| | - Jianrong Lin
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, People’s Republic of China
| | - Qinhui Chen
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, People’s Republic of China
- Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, Fujian 350007, People’s Republic of China
| |
Collapse
|
17
|
Paiva FL, Secchi AR, Calado V, Maia J, Khani S. Shear Flow and Relaxation Behaviors of Entangled Viscoelastic Nanorod-Stabilized Immiscible Polymer Blends. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Felipe L. Paiva
- Department of Macromolecular Science and Engineering, Case Western Reserve University, 2100 Adelbert Road, Cleveland, Ohio 44106, United States
- School of Chemistry, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rua Horácio Macedo 2030, Rio de Janeiro, RJ 21941-909, Brazil
| | - Argimiro R. Secchi
- Chemical Engineering Graduate Program (COPPE), Universidade Federal do Rio de Janeiro, Cidade Universitária, Rua Horácio Macedo 2030, Rio de Janeiro, RJ 21941-909, Brazil
| | - Verônica Calado
- School of Chemistry, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rua Horácio Macedo 2030, Rio de Janeiro, RJ 21941-909, Brazil
| | - João Maia
- Department of Macromolecular Science and Engineering, Case Western Reserve University, 2100 Adelbert Road, Cleveland, Ohio 44106, United States
| | - Shaghayegh Khani
- Department of Macromolecular Science and Engineering, Case Western Reserve University, 2100 Adelbert Road, Cleveland, Ohio 44106, United States
| |
Collapse
|
18
|
Hils C, Manners I, Schöbel J, Schmalz H. Patchy Micelles with a Crystalline Core: Self-Assembly Concepts, Properties, and Applications. Polymers (Basel) 2021; 13:1481. [PMID: 34064413 PMCID: PMC8125556 DOI: 10.3390/polym13091481] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 02/07/2023] Open
Abstract
Crystallization-driven self-assembly (CDSA) of block copolymers bearing one crystallizable block has emerged to be a powerful and highly relevant method for the production of one- and two-dimensional micellar assemblies with controlled length, shape, and corona chemistries. This gives access to a multitude of potential applications, from hierarchical self-assembly to complex superstructures, catalysis, sensing, nanomedicine, nanoelectronics, and surface functionalization. Related to these applications, patchy crystalline-core micelles, with their unique, nanometer-sized, alternating corona segmentation, are highly interesting, as this feature provides striking advantages concerning interfacial activity, functionalization, and confinement effects. Hence, this review aims to provide an overview of the current state of the art with respect to self-assembly concepts, properties, and applications of patchy micelles with crystalline cores formed by CDSA. We have also included a more general discussion on the CDSA process and highlight block-type co-micelles as a special type of patchy micelle, due to similarities of the corona structure if the size of the blocks is well below 100 nm.
Collapse
Affiliation(s)
- Christian Hils
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany;
| | - Ian Manners
- Department of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada;
| | - Judith Schöbel
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstraße 69, 14476 Potsdam-Golm, Germany
| | - Holger Schmalz
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany;
- Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| |
Collapse
|
19
|
Xu Z, Liu J, Chen J, Lin J, Chen Q. Design of Janus particles based on silica@polystyrene and their compatibilization on poly(
p
‐dioxanone)/poly(lactic acid) composites. J Appl Polym Sci 2021. [DOI: 10.1002/app.50269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zhiyan Xu
- College of Chemistry and Materials Science Fujian Normal University Fuzhou China
| | - Jinling Liu
- Quangang Petrochemical Research Institute Fujian Normal University Fuzhou China
| | - Jiawen Chen
- College of Chemistry and Materials Science Fujian Normal University Fuzhou China
| | - Jianrong Lin
- College of Chemistry and Materials Science Fujian Normal University Fuzhou China
| | - Qinhui Chen
- College of Chemistry and Materials Science Fujian Normal University Fuzhou China
- Fujian Provincial Key Laboratory of Polymer Materials Fujian Normal University Fuzhou China
| |
Collapse
|
20
|
|
21
|
Hu J, Song Y, Ning N, Zhang L, Yu B, Tian M. An effective strategy for improving the interface adhesion of the immiscible methyl vinyl silicone elastomer/thermoplastic polyurethane blends via developing a hybrid janus particle with amphiphilic brush. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123375] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Oh W, Bae JS, Park JW. The Interplay between Phase Separation and Gelation Controlling the Morphologies of the Reactive Covalent Network/Polymer Blends. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Wangsuk Oh
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
| | - Jae-Sung Bae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
| | - Ji-Woong Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
| |
Collapse
|
23
|
Das A, Dey AB, Chattopadhyay S, De G, Sanyal MK, Mukherjee R. Nanoparticle Induced Morphology Modulation in Spin Coated PS/PMMA Blend Thin Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:15270-15282. [PMID: 33296208 DOI: 10.1021/acs.langmuir.0c02584] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The influence of adding nanoparticles on the ascast morphology of spin coated immiscible polystyrene/poly(methyl methacrylate) (PS/PMMA) thin films of different thickness (hE) and composition (RB, volume ratio of PS to PMMA) has been explored in this article. To understand the precise effect of nanoparticle addition, the morphology of PS/PMMA thin blend films spin cast from toluene on a native oxide covered silicon wafer substrate was first investigated. It is seen that in particle free films, the generic morphology of the films remains nearly unaltered with increase in hE, for RB = 3:1 and 1:3. In contrast, strong hE dependent morphology transformation is observed in films with RB = 1:1. Subsequently, thiol-capped gold nanoparticles (AuNP) containing films with different particle concentrations (CNP) were cast from the same solvent along with the polymer mixture. We observe that addition of AuNPs barely alters the generic morphology of the films with RB = 3:1. In contrast, the presence of the particles significantly influences the morphology of the films with RB = 1:1 and 1:3, particularly at higher CNP (≈10.0%). X-ray photoelectron spectroscopy and X-ray reflectivity of some samples reveal that the AuNPs tend to migrate to the free surface through the PS phase, thereby stabilizing this layer partially or fully (depending on CNP) against dewetting over a surface of adsorbed PMMA layer and influencing the ascast morphology as a function of CNP. The work is fundamentally important in understanding largely overlooked implications of nanoparticle addition on the morphology of PS/PMMA blend thin films which forms the fundamental basis for future interesting studies involving dynamics of nanoparticles within the blend thin films.
Collapse
Affiliation(s)
- Anuja Das
- Instability and Soft Patterning Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Arka Bikash Dey
- Saha Institute of Nuclear Physics, Sector 1, AF Block, Bidhan Nagar, Kolkata, West Bengal 700064, India
| | - Shreyasi Chattopadhyay
- CSIR-Central Glass and Ceramic Research Institute, 196, Raja Subodh Chandra Mallick Rd, Jadavpur, Kolkata, West Bengal 700032, India
| | - Goutam De
- S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| | - Milan K Sanyal
- Saha Institute of Nuclear Physics, Sector 1, AF Block, Bidhan Nagar, Kolkata, West Bengal 700064, India
| | - Rabibrata Mukherjee
- Instability and Soft Patterning Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
24
|
Alkhodairi H, Russell ST, Pribyl J, Benicewicz BC, Kumar SK. Compatibilizing Immiscible Polymer Blends with Sparsely Grafted Nanoparticles. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02108] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Husam Alkhodairi
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Sebastian T. Russell
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Julia Pribyl
- Department of Chemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Brian C. Benicewicz
- Department of Chemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Sanat K. Kumar
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
25
|
Zamanian-Fard A, Sharifzadeh E, Rajabi L. A spontaneous interfacial process to produce silica Janus nanosheets as perfect emulsifiers in pickering emulsions. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1848575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Alireza Zamanian-Fard
- Polymer Research Center, Faculty of Petroleum and Chemical Engineering, Razi University, Kermanshah, Iran
| | - Esmail Sharifzadeh
- Polymer Research Center, Faculty of Petroleum and Chemical Engineering, Razi University, Kermanshah, Iran
| | - Laleh Rajabi
- Polymer Research Center, Faculty of Petroleum and Chemical Engineering, Razi University, Kermanshah, Iran
| |
Collapse
|
26
|
Guan J, Gui H, Zheng Y, You J, Li Y, Liang F, Yang Z. Stabilizing Polymeric Interface by Janus Nanosheet. Macromol Rapid Commun 2020; 41:e2000392. [PMID: 32833324 DOI: 10.1002/marc.202000392] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/11/2020] [Indexed: 12/19/2022]
Abstract
A strategy is proposed to stabilize the polymeric interface by using the irregular Janus nanosheet (JNS). The poly(vinylidene fluoride) (PVDF)/poly(l-lactic acid) (PLLA) at 60/40 (wt/wt) with a bi-continuous structure is selected as the model melt blend, and the PMMA/epoxy JNS is synthesized and used as the compatibilizer. The JNS is preferentially located at the interface. The interfacial coverage by the JNS reaches a saturated state forming the interconnected jamming structure at 0.5 wt% of the JNS. The interface is thus stabilized which is well preserved after annealing at high temperature. After selectively etching PLLA, the robust PVDF porous material is derived with the JNS armored at the pore skeleton surface. The porous material provides a universal scaffold to achieve stable functional materials after filling the pores.
Collapse
Affiliation(s)
- Jipeng Guan
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Haoguan Gui
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yanyan Zheng
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jichun You
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310036, China
| | - Yongjin Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310036, China
| | - Fuxin Liang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhenzhong Yang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
27
|
Li Q, Wang L, Lin J, Xu Z. Distinctive Morphology Modifiers for Polymer Blends: Roles of Asymmetric Janus Nanoparticles during Phase Separation. J Phys Chem B 2020; 124:4619-4630. [PMID: 32379453 DOI: 10.1021/acs.jpcb.0c02165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Janus nanoparticles (JPs), which are anisotropic nanoparticles with multiple constituting parts, have been recognized as superior compatibilizers for polymer-blend-based nanocomposites. However, so far, most studies focused on the effects of symmetric JPs on the phase separation dynamics of polymer blends, while the roles of asymmetric JPs during phase separation remain unclear. In this work, the phase separation dynamics of symmetric blends compatibilized by JPs with various compositions was studied by using dissipative particle dynamics (DPD) simulations. It was found that the blends compatibilized by asymmetric JPs tend to undergo morphological transitions from bicontinuous networks to droplets-in-matrix structures at the late stage of phase separation, which is due to the influence of asymmetric JPs on the energetically favored curvature of the interfaces between polymer domains. Such a mechanism is absent for symmetric JPs and other compatibilizers (e.g., triblock copolymers and homogeneous particles) because they lack the unique combination of chemical asymmetry with the particulate nature like the asymmetric JPs. Moreover, it was observed that the asymmetric JPs can stably localize at the interfaces and act as efficient compatibilizers only when the fraction of the minor constituent part exceeds a critical value. These findings not only shed light upon the roles of asymmetric JPs as compatibilizers but also indicate a promising strategy for designing polymer-blend-based nanocomposites with tailor-made structures.
Collapse
Affiliation(s)
- Qing Li
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhanwen Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
28
|
Chen S, Yong X. Janus Nanoparticles Enable Entropy-Driven Mixing of Bicomponent Hydrogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14840-14848. [PMID: 31657936 DOI: 10.1021/acs.langmuir.9b02012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mixing incompatible polymers in water to form homogeneous hydrogels possessing both hydrophilic and lipophilic components is challenging due to high enthalpic penalty and negligible entropic gain in total Gibbs free energy. Here we performed dissipative particle dynamics simulations and machine learning to uncover the influence of Janus nanoparticles on immiscible polymer mixtures with high water content and to predict the phase behavior of bicomponent hydrogels. An intriguing transition from kinetically arrested demixing to spontaneous mixing was observed with increasing particle concentration and decreasing particle size. The analysis reveals that the mixing is driven by a significant entropic gain of small nanoparticles being well dispersed in aqueous solvent of high-volume fraction. This finding highlights an entropy-driven mixing mechanism for nanocomposite bicomponent hydrogels. Supervised machine learning algorithms were used to establish a microstructure phase diagram with respect to particle concentration and radius, in which homogeneous, percolated, clustered, and separated phases, as well as corresponding phase boundaries, were clearly identified.
Collapse
Affiliation(s)
- Shensheng Chen
- Department of Mechanical Engineering , Binghamton University, The State University of New York , Binghamton , New York 13902 , United States
| | - Xin Yong
- Department of Mechanical Engineering , Binghamton University, The State University of New York , Binghamton , New York 13902 , United States
| |
Collapse
|
29
|
Paiva F, Boromand A, Maia J, Secchi A, Calado V, Khani S. Interfacial aggregation of Janus rods in binary polymer blends and their effect on phase separation. J Chem Phys 2019; 151:114907. [PMID: 31542012 DOI: 10.1063/1.5100134] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Janus particles interfacially self-assemble into different structures when incorporated into multiphase systems. Dissipative particle dynamics simulations are employed herein to investigate the interplay between aggregation mechanisms and phase separation in polymer blends. Shorter rods with a standing configuration become increasingly "caged" or trapped in larger aggregates as weight fraction increases, which is reflected in the way that their diffusion is coupled to their aggregation rates. Janus rods of higher aspect ratios that are tilted at the interface aggregate side-by-side and are able to hinder phase separation kinetics. This is due to a combination of individual Janus rod conformations at the interface, their intrinsic aggregation mechanisms, aggregate fractal dimension, and aggregation rates, and can also be traced back to the scaling of the diffusion coefficient of aggregates with their size. Findings presented provide insight into the mechanisms governing two dimensionally growing colloidal aggregates at fluid interfaces, more specifically, those associated with Janus particles, and shed light on the potential of these systems in paving the way for designing new functional materials.
Collapse
Affiliation(s)
- F Paiva
- Department of Macromolecular Science and Engineering, Case Western Reserve University, 2100 Adelbert Road, Cleveland, Ohio 44106, USA
| | - A Boromand
- Department of Macromolecular Science and Engineering, Case Western Reserve University, 2100 Adelbert Road, Cleveland, Ohio 44106, USA
| | - J Maia
- Department of Macromolecular Science and Engineering, Case Western Reserve University, 2100 Adelbert Road, Cleveland, Ohio 44106, USA
| | - A Secchi
- Chemical Engineering Graduate Program (COPPE), Universidade Federal do Rio de Janeiro, Rua Horácio Macedo 2030, Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| | - V Calado
- School of Chemistry, Universidade Federal do Rio de Janeiro, Rua Horácio Macedo 2030, Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| | - S Khani
- Department of Macromolecular Science and Engineering, Case Western Reserve University, 2100 Adelbert Road, Cleveland, Ohio 44106, USA
| |
Collapse
|
30
|
Su H, Hurd Price CA, Jing L, Tian Q, Liu J, Qian K. Janus particles: design, preparation, and biomedical applications. Mater Today Bio 2019; 4:100033. [PMID: 32159157 PMCID: PMC7061647 DOI: 10.1016/j.mtbio.2019.100033] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/30/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023] Open
Abstract
Janus particles with an anisotropic structure have emerged as a focus of intensive research due to their diverse composition and surface chemistry, which show excellent performance in various fields, especially in biomedical applications. In this review, we briefly introduce the structures, composition, and properties of Janus particles, followed by a summary of their biomedical applications. Then we review several design strategies including morphology, particle size, composition, and surface modification, that will affect the performance of Janus particles. Subsequently, we explore the synthetic methodologies of Janus particles, with an emphasis on the most prevalent synthetic method (surface nucleation and seeded growth). Following this, we highlight Janus particles in biomedical applications, especially in drug delivery, bio-imaging, and bio-sensing. Finally, we will consider the current challenges the materials face with perspectives in the future directions.
Collapse
Affiliation(s)
- H. Su
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - C.-A. Hurd Price
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, University of Surrey Guildford, Surrey, GU2 7XH, United Kingdom
| | - L. Jing
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Q. Tian
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - J. Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, University of Surrey Guildford, Surrey, GU2 7XH, United Kingdom
| | - K. Qian
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
31
|
Diaz J, Pinna M, Zvelindovsky A, Pagonabarraga I. Co-assembly of Janus nanoparticles in block copolymer systems. SOFT MATTER 2019; 15:6400-6410. [PMID: 31318004 DOI: 10.1039/c9sm01062a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Block copolymer are ideal matrices to control the localisation of colloids. Furthermore, anisotropic nanoparticles such as Janus nanoparticles possess an additional orientational degree of freedom that can play a crucial role in the formation of highly ordered materials made of block copolymers. This work presents a mesoscopic simulation method to assert the co-assembly of Janus nanoparticles in a block copolymer mixture, finding numerous instances of aggregation and formation of ordered configurations. Comparison with chemically homogeneous neutral nanoparticles shows that Janus nanoparticles are less prone to induce bridging along lamellar domains, thus being a less destructive way to segregate nanoparticles at interfaces. The combination of asymmetric block copolymer and asymmetric Janus nanoparticles can result in assembly of colloids with an even number of layers within the minority domain.
Collapse
Affiliation(s)
- Javier Diaz
- Centre for Computational Physics, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK.
| | - Marco Pinna
- Centre for Computational Physics, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK.
| | - Andrei Zvelindovsky
- Centre for Computational Physics, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK.
| | - Ignacio Pagonabarraga
- Departament de Fisica de la Materia Condensada, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona, Spain and CECAM, Centre Européen de Calcul Atomique et Moléculaire, École Polytechnique Fédérale de Lausanne, Batochime - Avenue Forel 2, 1015 Lausanne, Switzerland and Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
32
|
Percebom AM, Costa LHM. Formation and assembly of amphiphilic Janus nanoparticles promoted by polymer interactions. Adv Colloid Interface Sci 2019; 269:256-269. [PMID: 31102800 DOI: 10.1016/j.cis.2019.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 01/18/2023]
Abstract
Almost three decades after de Gennes have introduced the term Janus for particles possessing two faces with different chemical nature, Janus particles are currently a hot topic in itself. Although de Gennes was not concerned with the size of particles, due to the advent and perspectives of nanotechnology, nanosized Janus particles have particularly received great attention. The capacity of having two antagonistic properties within the same particle has attracted interest on Janus nanoparticles for innumerous potential applications. It took some years for the studies about Janus nanoparticles to finally see great advances, mainly due to the progress in nanoparticle synthesis. What de Gennes might have not predicted (or at least he did not mention it during his speech) is that intermolecular interactions between polymers would be of immense importance to the actual achievement of Janus nanoparticles. Moreover, these interactions can also have large effects on the assembly process of amphiphilic Janus nanoparticles, which is important to form hierarchical structures and new materials at different scales. Hence, it is interesting to notice that de Gennes' contribution for the polymer field has been influencing the preparation and the controlled assembly of Janus nanoparticles. This article attempts to summarize empirical studies where noncovalent forces between polymers played a role, either on the production of Janus nanoparticles or on their assembly.
Collapse
Affiliation(s)
- Ana Maria Percebom
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, PUC-Rio, 22451-900 Rio de Janeiro, RJ, Brazil.
| | - Lais Helena Moreira Costa
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, PUC-Rio, 22451-900 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
33
|
Yan X, Cayla A, Devaux E, Otazaghine B, Salaün F. Polypropylene/Poly(vinyl alcohol) Blends Compatibilized with Kaolinite Janus Hybrid Particles and Their Transformation into Fibers. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiang Yan
- GEMTEX − Laboratoire de Génie et Matériaux Textiles, ENSAIT, F-59000 Lille, France
| | - Aurélie Cayla
- GEMTEX − Laboratoire de Génie et Matériaux Textiles, ENSAIT, F-59000 Lille, France
| | - Eric Devaux
- GEMTEX − Laboratoire de Génie et Matériaux Textiles, ENSAIT, F-59000 Lille, France
| | - Belkacem Otazaghine
- Centre des Matériaux des mines d’Alès (C2MA), IMT, Mines Alès, 6, Avenue de Clavières, F-30319 Alès Cedex, France
| | - Fabien Salaün
- GEMTEX − Laboratoire de Génie et Matériaux Textiles, ENSAIT, F-59000 Lille, France
| |
Collapse
|
34
|
Hou Y, Zhang G, Tang X, Si Y, Song X, Liang F, Yang Z. Janus Nanosheets Synchronously Strengthen and Toughen Polymer Blends. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00598] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Yu Hou
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, Liaoning University, Shenyang 110036, China
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Guolin Zhang
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, Liaoning University, Shenyang 110036, China
| | - Xiuping Tang
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, Liaoning University, Shenyang 110036, China
| | - Yan Si
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ximing Song
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, Liaoning University, Shenyang 110036, China
| | - Fuxin Liang
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, Liaoning University, Shenyang 110036, China
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhenzhong Yang
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
35
|
Kirillova A, Marschelke C, Synytska A. Hybrid Janus Particles: Challenges and Opportunities for the Design of Active Functional Interfaces and Surfaces. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9643-9671. [PMID: 30715834 DOI: 10.1021/acsami.8b17709] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Janus particles are a unique class of multifunctional patchy particles combining two dissimilar chemical or physical functionalities at their opposite sides. The asymmetry characteristic for Janus particles allows them to self-assemble into sophisticated structures and materials not attainable by their homogeneous counterparts. Significant breakthroughs have recently been made in the synthesis of Janus particles and the understanding of their assembly. Nevertheless, the advancement of their applications is still a challenging field. In this Review, we highlight recent developments in the use of Janus particles as building blocks for functional materials. We provide a brief introduction into the synthetic strategies for the fabrication of JPs and their properties and assembly, outlining the existing challenges. The focus of this Review is placed on the applications of Janus particles for active interfaces and surfaces. Active functional interfaces are created owing to the stabilization efficiency of Janus particles combined with their capability for interface structuring and functionalizing. Moreover, Janus particles can be employed as building blocks to fabricate active functional surfaces with controlled chemical and topographical heterogeneity. Ultimately, we will provide implications for the rational design of multifunctional materials based on Janus particles.
Collapse
Affiliation(s)
- Alina Kirillova
- Department of Mechanical Engineering and Materials Science, Edmund T. Pratt Jr. School of Engineering , Duke University , Durham , North Carolina 27708 , United States
| | - Claudia Marschelke
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Strasse 6 , 01069 Dresden , Germany
- Fakultät Mathematik und Naturwissenschaften , Technische Universität Dresden , 01062 Dresden , Germany
| | - Alla Synytska
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Strasse 6 , 01069 Dresden , Germany
- Fakultät Mathematik und Naturwissenschaften , Technische Universität Dresden , 01062 Dresden , Germany
| |
Collapse
|
36
|
Li Q, Wang L, Lin J, Zhang L. Distinctive phase separation dynamics of polymer blends: roles of Janus nanoparticles. Phys Chem Chem Phys 2019; 21:2651-2658. [DOI: 10.1039/c8cp06431h] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The present work demonstrates that Janus nanoparticles uniquely promote the phase separation of polymer blends at the early stage of spinodal decomposition, but impede it at the late stage.
Collapse
Affiliation(s)
- Qing Li
- Shanghai Key Laboratory of Advanced Polymeric Materials
- State Key Laboratory of Bioreactor Engineering
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials
- State Key Laboratory of Bioreactor Engineering
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials
- State Key Laboratory of Bioreactor Engineering
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Liangshun Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials
- State Key Laboratory of Bioreactor Engineering
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
| |
Collapse
|
37
|
Han X, Liang X, Cai L, He A, Nie H. Amphiphilic Janus nanosheets by grafting reactive rubber brushes for reinforced rubber materials. Polym Chem 2019. [DOI: 10.1039/c9py00863b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
An amphiphilic Janus nanosheet with different reactive rubber brushes on two opposite sides can simultaneously strengthen and toughen rubber blends.
Collapse
Affiliation(s)
- Xiao Han
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization
- Key Laboratory of Rubber-Plastics (Ministry of Education)
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Xincheng Liang
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization
- Key Laboratory of Rubber-Plastics (Ministry of Education)
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Lei Cai
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization
- Key Laboratory of Rubber-Plastics (Ministry of Education)
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Aihua He
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization
- Key Laboratory of Rubber-Plastics (Ministry of Education)
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Huarong Nie
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization
- Key Laboratory of Rubber-Plastics (Ministry of Education)
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| |
Collapse
|
38
|
Guo Y, Liu Q, Peng C, Wang E, Joy A, Cakmak M. Colloid silica nanoparticles trapped morphology of polymer blends during solvent evaporation. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
You W, Yu W. Onset Reduction and Stabilization of Cocontinuous Morphology in Immiscible Polymer Blends by Snowmanlike Janus Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11092-11100. [PMID: 30149721 DOI: 10.1021/acs.langmuir.8b02503] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Interfacial jamming of monolayer nanoparticles is often required to kinetically arrest the cocontinuous morphology, which is not in favor of achieving high efficiency at low particle contents. In this paper, we find that the shape asymmetry of the snowmanlike Janus particles (JPs) has significant influence on the cocontinuous morphology of polymer blends under the melt-mixing process. The addition of 0.9 vol % snowmanlike JPs can almost have the onset concentration of cocontinuity in immiscible blends, which is much lower than the apparent interfacial jamming concentration. In addition, JPs show superior ability to stabilize the continuous morphology during annealing at high temperatures. The interfacial activity of asymmetric JPs is due to the decrease in the radius of the jamming curvature in the interfacial region as the shape asymmetry of the snowmanlike JPs increases. This result implies a general strategy to prepare Janus nanoparticles for a highly effective interfacial modification agent at low contents, which can induce the dispersed-phase continuity and suppress the coarsening of cocontinuous morphology simultaneously.
Collapse
Affiliation(s)
- Wei You
- Advanced Rheology Institute, Department of Polymer Science and Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China
| | - Wei Yu
- Advanced Rheology Institute, Department of Polymer Science and Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China
| |
Collapse
|
40
|
Yang Q, Miao X, Loos K. Fabrication of Nano-Sized Hybrid Janus Particles from Strawberry-Like Hierarchical Composites. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qiuyan Yang
- Macromolecular Chemistry & New Polymeric Materials Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Xiaoming Miao
- Centre for Systems Chemistry, Stratingh Institute; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Katja Loos
- Macromolecular Chemistry & New Polymeric Materials Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
41
|
Sharifzadeh E. Modeling of the Mechanical Properties of Blend Based Polymer Nanocomposites Considering the Effects of Janus Nanoparticles on Polymer/Polymer Interface. CHINESE JOURNAL OF POLYMER SCIENCE 2018. [DOI: 10.1007/s10118-019-2178-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
42
|
Mah AH, Afzali P, Qi L, Pesek S, Verduzco R, Stein GE. Bottlebrush Copolymer Additives for Immiscible Polymer Blends. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00719] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | | | - Luqing Qi
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77006, United States
| | - Stacy Pesek
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77006, United States
| | - Rafael Verduzco
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77006, United States
| | - Gila E. Stein
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
43
|
Dehghani E, Salami-Kalajahi M, Roghani-Mamaqani H. Simultaneous two drugs release form Janus particles prepared via polymerization-induced phase separation approach. Colloids Surf B Biointerfaces 2018; 170:85-91. [PMID: 29894836 DOI: 10.1016/j.colsurfb.2018.05.067] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/23/2018] [Accepted: 05/29/2018] [Indexed: 01/06/2023]
Abstract
Seeded emulsion polymerization of 2-dimethylaminoethylamino methacrylate (DMAEMA) was carried out using monodispersed poly(2-hydroxyehtyl methacrylate) (PHEMA) seeds to produce Janus particles. Three feeding approaches were used comprising one together, rest and continuous feeding methods to investigate different morphologies. However, FE-SEM results showed that all feeding approaches yielded dumbbell-like Janus particles. Furthermore, snowman-like Janus particles were obtained via seeded distillation precipitation polymerization (DPP). It is shown that minimizing the total interfacial free energy alongside difference in solubility parameters of Janus domains are responsible for obtained morphologies. Two different morphologies (dumbbell-like and snowman-like) were chosen as carriers of ibuprofen and DOX simultaneously. Also, simultaneous release of two drugs were investigated in different conditions. Dumbbell-like Janus particles showed higher ibuprofen loading whereas DOX was more loaded onto snowman-like Janus particles. Also, DOX was released more rapidly through Janus particles at different pH values and both types of Janus particles showed similar drugs release behaviors.
Collapse
Affiliation(s)
- Elham Dehghani
- Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Mehdi Salami-Kalajahi
- Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
| | - Hossein Roghani-Mamaqani
- Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
| |
Collapse
|
44
|
Zhou Y, Huang M, Lu T, Guo H. Nanorods with Different Surface Properties in Directing the Compatibilization Behavior and the Morphological Transition of Immiscible Polymer Blends in Both Shear and Shear-Free Conditions. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02624] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Yongxiang Zhou
- Beijing National Laboratory for Molecular Sciences, Joint Laboratory of Polymer Sciences and Materials, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of
Chinese Academy of Sciences, Beijing 100049, China
| | - Manxia Huang
- Beijing National Laboratory for Molecular Sciences, Joint Laboratory of Polymer Sciences and Materials, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of
Chinese Academy of Sciences, Beijing 100049, China
| | - Teng Lu
- Beijing National Laboratory for Molecular Sciences, Joint Laboratory of Polymer Sciences and Materials, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of
Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxia Guo
- Beijing National Laboratory for Molecular Sciences, Joint Laboratory of Polymer Sciences and Materials, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of
Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
45
|
Liang F, Liu B, Cao Z, Yang Z. Janus Colloids toward Interfacial Engineering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:4123-4131. [PMID: 29169237 DOI: 10.1021/acs.langmuir.7b02308] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Janus colloids are functional particles consisting of two surfaces (or internal materials) with distinct physical or chemical properties in the same particle. Owing to their amphiphilic nature, Janus colloids composed of both hydrophilic and hydrophobic faces provide a powerful tool to generate functional surfaces and to manipulate the properties of interfaces. Amphiphilic Janus colloids have shown promising applications as particulate surfactants in oil/water separation, as interfacial compatibilizers in polymer blends, and as assembly blocks in robust coatings with unique wettability. In this Feature Article, we summarize recent advances in engineering interfaces by using Janus colloids.
Collapse
Affiliation(s)
- Fuxin Liang
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Bing Liu
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Zheng Cao
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Zhenzhong Yang
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
46
|
Nie H, Liang X, He A. Enthalpy-Enhanced Janus Nanosheets for Trapping Nonequilibrium Morphology of Immiscible Polymer Blends. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00039] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Huarong Nie
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Key Laboratory of Rubber-Plastics (Ministry of Education), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Xincheng Liang
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Key Laboratory of Rubber-Plastics (Ministry of Education), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Aihua He
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Key Laboratory of Rubber-Plastics (Ministry of Education), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| |
Collapse
|
47
|
Han B, Xia W, Liu K, Tian F, Chen Y, Wang X, Liang F, Yang Z. Janus Nanoparticles for Improved Dentin Bonding. ACS APPLIED MATERIALS & INTERFACES 2018; 10:8519-8526. [PMID: 29468876 DOI: 10.1021/acsami.7b19652] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The amphiphilic monomer 2-hydroxyethyl methacrylate (HEMA) is widely used in dental adhesives as a priming component, especially for dentin bonding. It behaves as a compatibilizer between hydrophilic and hydrophobic components and stabilizes the multicomponent adhesive system. However, there are several drawbacks associated with using HEMA, such as water retention within the adhesive layer, hydrolysis in oral environments, and cytotoxicity. These drawbacks lead to the failure of tooth restoration and represent a heavy medical burden. Thus, it is imperative to find a new compatibilizer to substitute for HEMA. Because of their superior compatibilization capabilities as functional solid surfactants, amphiphilic Janus particles are chosen as candidates for an alternative to HEMA in dental adhesives. Reactive amphiphilic Janus nanoparticles are synthesized by selectively etching and modifying at the interface of a Pickering emulsion. This approach could be extended to the synthesis of a series of other Janus nanoparticles. The Janus nanoparticles were verified to be better for the reduction of the phase separation and stabilization of dentin adhesives than HEMA. It is also demonstrated that these reactive Janus nanoparticles can strongly enhance the dentin bonding interface without cytotoxicity. It is clearly illustrated by this study that Janus nanoparticles may be promising materials to substitute for HEMA in dental adhesives.
Collapse
Affiliation(s)
| | | | | | | | - Ying Chen
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | | | - Fuxin Liang
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Zhenzhong Yang
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| |
Collapse
|
48
|
Synthesis of Janus POSS star polymer and exploring its compatibilization behavior for PLLA/PCL polymer blends. POLYMER 2018. [DOI: 10.1016/j.polymer.2017.12.050] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Fu Z, Wang H, Zhao X, Horiuchi S, Li Y. Immiscible polymer blends compatibilized with reactive hybrid nanoparticles: Morphologies and properties. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.11.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Jiang Y, Löbling TI, Huang C, Sun Z, Müller AHE, Russell TP. Interfacial Assembly and Jamming Behavior of Polymeric Janus Particles at Liquid Interfaces. ACS APPLIED MATERIALS & INTERFACES 2017; 9:33327-33332. [PMID: 28863260 DOI: 10.1021/acsami.7b10981] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The self-assembly and interfacial jamming of spherical Janus nanoparticles (JNPs) at the water/oil interface were investigated. Polymeric JNPs, made by cross-linking polystyrene-block-polybutadiene-block-poly(methyl methacrylate) (PS-PB-PMMA), with a high interfacial activity assemble at the water/oil interface. During the self-assembly at the interface, the interfacial energy was reduced and a dynamic interlayer was observed that is responsive to the pH of the aqueous phase. Unlike hard particles, the JNPs are composed of polymer chains that can spread at the liquid-liquid interface to maximize coverage at relatively low areal densities. In a pendant drop geometry, the interfacial area of a water droplet in oil was significantly decreased and the JNPs were forced to pack more closely. Entangling of the polymer chains causes the JNPs to form a solid-like interfacial assembly, resulting in the formation of wrinkles when the interfacial area is decreased. The wrinkling behavior, the retention of the wrinkles, or the slow relaxation of the liquid drop back to its original equilibrium shape was found to depend upon the pH.
Collapse
Affiliation(s)
- Yufeng Jiang
- Department of Applied Science and Technology, University of California , Berkeley 94720 United States
- Material Sciences Division, Lawrence Berkeley National Laboratory , Berkeley 94720, United States
| | - Tina I Löbling
- Center for Nanointegration Duisburg-Essen (CENIDE) and Technical Chemistry I, University of Duisburg-Essen , 47057 Duisburg, Germany
| | - Caili Huang
- Material Sciences Division, Lawrence Berkeley National Laboratory , Berkeley 94720, United States
| | - Zhiwei Sun
- Material Sciences Division, Lawrence Berkeley National Laboratory , Berkeley 94720, United States
| | - Axel H E Müller
- Institute of Organic Chemistry, Johannes Gutenberg University , Mainz 55099, Germany
| | - Thomas P Russell
- Material Sciences Division, Lawrence Berkeley National Laboratory , Berkeley 94720, United States
- Department of Polymer Science and Engineering, University of Massachusetts , Amherst, Massachusetts 01003, United States
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| |
Collapse
|