1
|
Lukáš Petrova S, Vragović M, Pavlova E, Černochová Z, Jäger A, Jäger E, Konefał R. Smart Poly(lactide)- b-poly(triethylene glycol methyl ether methacrylate) (PLA- b-PTEGMA) Block Copolymers: One-Pot Synthesis, Temperature Behavior, and Controlled Release of Paclitaxel. Pharmaceutics 2023; 15:pharmaceutics15041191. [PMID: 37111676 PMCID: PMC10143907 DOI: 10.3390/pharmaceutics15041191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
This paper introduces a new class of amphiphilic block copolymers created by combining two polymers: polylactic acid (PLA), a biocompatible and biodegradable hydrophobic polyester used for cargo encapsulation, and a hydrophilic polymer composed of oligo ethylene glycol chains (triethylene glycol methyl ether methacrylate, TEGMA), which provides stability and repellent properties with added thermo-responsiveness. The PLA-b-PTEGMA block copolymers were synthesized using ring-opening polymerization (ROP) and reversible addition-fragmentation chain transfer (RAFT) polymerization (ROP-RAFT), resulting in varying ratios between the hydrophobic and hydrophilic blocks. Standard techniques, such as size exclusion chromatography (SEC) and 1H NMR spectroscopy, were used to characterize the block copolymers, while 1H NMR spectroscopy, 2D nuclear Overhauser effect spectroscopy (NOESY), and dynamic light scattering (DLS) were used to analyze the effect of the hydrophobic PLA block on the LCST of the PTEGMA block in aqueous solutions. The results show that the LCST values for the block copolymers decreased with increasing PLA content in the copolymer. The selected block copolymer presented LCST transitions at physiologically relevant temperatures, making it suitable for manufacturing nanoparticles (NPs) and drug encapsulation-release of the chemotherapeutic paclitaxel (PTX) via temperature-triggered drug release mechanism. The drug release profile was found to be temperature-dependent, with PTX release being sustained at all tested conditions, but substantially accelerated at 37 and 40 °C compared to 25 °C. The NPs were stable under simulated physiological conditions. These findings demonstrate that the addition of hydrophobic monomers, such as PLA, can tune the LCST temperatures of thermo-responsive polymers, and that PLA-b-PTEGMA copolymers have great potential for use in drug and gene delivery systems via temperature-triggered drug release mechanisms in biomedicine applications.
Collapse
Affiliation(s)
- Svetlana Lukáš Petrova
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Martina Vragović
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Ewa Pavlova
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Zulfiya Černochová
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Alessandro Jäger
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Eliézer Jäger
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Rafał Konefał
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| |
Collapse
|
2
|
Wang Y, Tan X, Usman A, Zhang Y, Sawczyk M, Král P, Zhang C, Whittaker AK. Elucidating the Impact of Hydrophilic Segments on 19F MRI Sensitivity of Fluorinated Block Copolymers. ACS Macro Lett 2022; 11:1195-1201. [DOI: 10.1021/acsmacrolett.2c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yiqing Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xiao Tan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Adil Usman
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yuhao Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Michał Sawczyk
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Petr Král
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Cheng Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Andrew K. Whittaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
3
|
Wu J, Zhang J, Liu Y, Wang J, Zhang C, Yan J, Li W, Masuda T, Whittaker AK, Zhang A. Supramolecular Chiral Assembly of Symmetric Molecules with an Extended Conjugated Core. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33734-33745. [PMID: 35834778 DOI: 10.1021/acsami.2c09752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
C3-symmetric molecules carrying a conjugated diacetylene (DA) core are found to self-assemble into well-defined supramolecular fibers with enhanced supramolecular chirality in both organic and aqueous solutions. The conjugated core affords these amphiphiles characteristic fluorescence properties, which can be quenched partially due to the aggregation. Integration of the C3-symmetry with the conjugation provides these novel molecules strong aggregation tendency through solvent-mediated π-π stacking with preferential supramolecular chirality, which is predominately related to steric hindrance from their dipeptide pendants. Highly uniform supramolecular fibers of P and M handedness with thickness consistent in the dimensions of individual C3 molecules are obtained. The increase of concentrations induces these fibers to wrap together to form supramolecular fibrous bundles. Topochemical polymerization of the DA moieties can transform these supramolecular fibers into stable covalent polymers. We therefore believe that self-assembly of these C3-symmetric molecules with extended conjugated DA cores provides new prospects for the construction of supramolecular helical fibers through enhanced π-π stacking and creates a convenient strategy to furnish covalent chiral polymers of hierarchical structures through supramolecular assembly.
Collapse
Affiliation(s)
- Jindiao Wu
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 20444, P. R. China
| | - Jianan Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 20444, P. R. China
| | - Yanjun Liu
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 20444, P. R. China
| | - Jun Wang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 20444, P. R. China
| | - Cheng Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jiatao Yan
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 20444, P. R. China
| | - Wen Li
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 20444, P. R. China
| | - Toshio Masuda
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 20444, P. R. China
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Afang Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 20444, P. R. China
| |
Collapse
|
4
|
Tan X, Sawczyk M, Chang Y, Wang Y, Usman A, Fu C, Král P, Peng H, Zhang C, Whittaker AK. Revealing the Molecular-Level Interactions between Cationic Fluorinated Polymer Sorbents and the Major PFAS Pollutant PFOA. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiao Tan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Michał Sawczyk
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Yixin Chang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yiqing Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Adil Usman
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Petr Král
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Cheng Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Andrew K. Whittaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
5
|
Tan X, Zhong J, Fu C, Dang H, Han Y, Král P, Guo J, Yuan Z, Peng H, Zhang C, Whittaker AK. Amphiphilic Perfluoropolyether Copolymers for the Effective Removal of Polyfluoroalkyl Substances from Aqueous Environments. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00096] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiao Tan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jiexi Zhong
- Advanced Water Management Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Huy Dang
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Yanxiao Han
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Petr Král
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Cheng Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andrew K. Whittaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
6
|
Ye Z, Su H, Lian C, Hu J, Shang Y, Liu H. Molecular understanding of the LCST phase behaviour of P(MEO 2MA-b-OEGMA) block copolymers. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2020.1869735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Zhicheng Ye
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Haiping Su
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Cheng Lian
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Jiajie Hu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Yazhuo Shang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Honglai Liu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| |
Collapse
|
7
|
Usman A, Zhang C, Zhao J, Peng H, Kurniawan ND, Fu C, Hill DJT, Whittaker AK. Tuning the thermoresponsive properties of PEG-based fluorinated polymers and stimuli responsive drug release for switchable 19F magnetic resonance imaging. Polym Chem 2021. [DOI: 10.1039/d1py00602a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Switching on of the 19F MRI signal via stimuli-responsive release of hydrophobic drug from PEG-based partly-fluorinated polymers due to change in thermoresponsive properties.
Collapse
Affiliation(s)
- Adil Usman
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Cheng Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jiacheng Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Nyoman D. Kurniawan
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - David J. T. Hill
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Andrew K. Whittaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
8
|
Dittrich J, Kather M, Holzberger A, Pich A, Gohlke H. Cumulative Submillisecond All-Atom Simulations of the Temperature-Induced Coil-to-Globule Transition of Poly(N-vinylcaprolactam) in Aqueous Solution. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Jonas Dittrich
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Michael Kather
- DWI-Leibniz-Institute for Interactive Materials, RWTH Aachen University, 52056 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Anna Holzberger
- DWI-Leibniz-Institute for Interactive Materials, RWTH Aachen University, 52056 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Andrij Pich
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, 52425 Jülich, Germany
- DWI-Leibniz-Institute for Interactive Materials, RWTH Aachen University, 52056 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, 52425 Jülich, Germany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
9
|
Zuppardi F, Malinconico M, D’Agosto F, D’Ayala GG, Cerruti P. Well-Defined Thermo-Responsive Copolymers Based on Oligo(Ethylene Glycol) Methacrylate and Pentafluorostyrene for the Removal of Organic Dyes from Water. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1779. [PMID: 32911815 PMCID: PMC7558912 DOI: 10.3390/nano10091779] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 02/01/2023]
Abstract
Thermo-responsive copolymers based on oligo(ethylene glycol) methacrylate (OEGMA, Mn = 300 g/mol) and pentafluorostyrene (PFS), coded PFG, were synthesized by RAFT polymerization, using a trithiocarbonate (CTTPC) as controlling agent. Different molar masses were targeted and dispersities lower than 1.51 were obtained. The thermally triggered self-assembly of the resulting PFG copolymers in water was investigated by dynamic light scattering (DLS). The lower critical solution temperature (LCST) slightly increased with the molecular weight in the 26-30 °C temperature range, whereas the sizes of the intermicellar aggregates formed upon self-assembly tended to decrease with increasing molecular weights (ranging from 1415 to 572 nm). The resulting thermally-induced polymer aggregates were then used to encapsulate and remove organic contaminants from water. Nile Red (NR) and Thiazole yellow G (TYG) were employed as hydrophobic and hydrophilic model contaminants, respectively. Experimental results evidenced that higher molecular weight copolymers removed up to 90% of NR from aqueous solution, corresponding to about 10 mg of dye per g of copolymer, regardless of NR concentration. The removal of TYG was lower with respect to NR, decreasing from about 40% to around 20% with TYG concentration. Finally, the copolymers were shown to be potentially recycled and reused in the treatment of contaminated water.
Collapse
Affiliation(s)
- Federica Zuppardi
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), 80078 Pozzuoli, Italy; (F.Z.); (M.M.); (P.C.)
| | - Mario Malinconico
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), 80078 Pozzuoli, Italy; (F.Z.); (M.M.); (P.C.)
| | - Franck D’Agosto
- CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2), Université Claude Bernard Lyon 1, 69616 Villeurbanne, France;
| | - Giovanna Gomez D’Ayala
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), 80078 Pozzuoli, Italy; (F.Z.); (M.M.); (P.C.)
| | - Pierfrancesco Cerruti
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), 80078 Pozzuoli, Italy; (F.Z.); (M.M.); (P.C.)
| |
Collapse
|
10
|
|
11
|
Konefał R, Černoch P, Konefał M, Spěváček J. Temperature Behavior of Aqueous Solutions of Poly(2-oxazoline) Homopolymer and Block Copolymers Investigated by NMR Spectroscopy and Dynamic Light Scattering. Polymers (Basel) 2020; 12:E1879. [PMID: 32825475 PMCID: PMC7565327 DOI: 10.3390/polym12091879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 11/16/2022] Open
Abstract
1H NMR methods in combination with dynamic light scattering were applied to study temperature behavior of poly(2-isopropyl-2-oxazoline) (PIPOx) homopolymer as well as PIPOx-b-poly(2-methyl-2-oxazoline) (PMeOx) and poly(2-ethyl-2-oxazoline) (PEtOx)-b-PMeOx diblock copolymers in aqueous solutions. 1H NMR spectra showed a different way of phase transition for the main and side chains in PIPOx-based solutions. Additionally, the phase transition is irreversible for PIPOx homopolymer and partially reversible for PIPOx-b-PMeOx copolymer. As revealed by NMR, the phase transition in PEtOx-based copolymers solutions exists despite the absence of solution turbidity. It is very broad, virtually independent of the copolymer composition and reversible with some hysteresis. Two types of water molecules were detected in solutions of the diblock copolymers above the phase transition-"free" with long and "bound" with short spin-spin relaxation times T2. NOESY spectra revealed information about conformational changes observed already in the pre-transition region of PIPOx-b-PMeOx copolymer solution.
Collapse
Affiliation(s)
- Rafał Konefał
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic; (P.Č.); (M.K.)
| | | | | | | |
Collapse
|
12
|
Zhang C, Liu T, Wang W, Bell CA, Han Y, Fu C, Peng H, Tan X, Král P, Gaus K, Gooding JJ, Whittaker AK. Tuning of the Aggregation Behavior of Fluorinated Polymeric Nanoparticles for Improved Therapeutic Efficacy. ACS NANO 2020; 14:7425-7434. [PMID: 32401485 DOI: 10.1021/acsnano.0c02954] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Incorporation of fluorinated moieties in polymeric nanoparticles has been shown in many instances to increase their uptake by living cells and, hence, has proven to be a useful approach to enhancing delivery to cells. However, it remains unclear how incorporation of fluorine affects critical transport processes, such as interactions with membranes, intracellular transport, and tumor penetration. In this study, we investigate the influence of fluorine on transport properties using a series of rationally designed poly(oligo(ethylene glycol) methyl ether acrylate)-block-perfluoropolyether (poly(OEGA)m-PFPE) copolymers. Copolymers with different fluorine contents were prepared and exhibit aggregate in solution in a manner dependent on the fluorine content. Doxorubicin-conjugated poly(OEGA)20-PFPE nanoparticles with lower fluorine content exist in solution as unimers, leading to greater exposure of hydrophobic PFPE segments to the cell surface. This, in turn, results in greater cellular uptake, deeper tumor penetration, as well as enhanced therapeutic efficacy compared to that with the micelle-state nanoaggregates (poly(OEGA)10-PFPE and poly(OEGA)5-PFPE) with higher fluorine content but with less PFPE exposed to the cell membranes. Our results demonstrate that the aggregation behavior of these fluorinated polymers plays a critical role in internalization and transport in living cells and 3D spheroids, providing important design criteria for the preparation of highly effective delivery agents.
Collapse
Affiliation(s)
- Cheng Zhang
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Tianqing Liu
- QIMR Berghofer Medical Research Institute, Brisbane, Qld 4006, Australia
| | | | | | | | | | | | | | - Petr Král
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | | | | | | |
Collapse
|
13
|
Konefał R, Spěváček J, Mužíková G, Laga R. Thermoresponsive behavior of poly(DEGMA)-based copolymers. NMR and dynamic light scattering study of aqueous solutions. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Wang F, Zhou C, Liu K, Yan J, Li W, Masuda T, Zhang A. Thermoresponsive Dendronized Poly(phenylacetylene)s Showing Tunable Helicity. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01881] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Fang Wang
- Department of Polymer Materials, International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| | - Congcong Zhou
- Department of Polymer Materials, International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| | - Kun Liu
- Department of Polymer Materials, International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| | - Jiatao Yan
- Department of Polymer Materials, International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| | - Wen Li
- Department of Polymer Materials, International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| | - Toshio Masuda
- Department of Polymer Materials, International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| | - Afang Zhang
- Department of Polymer Materials, International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China
| |
Collapse
|
15
|
Jiang Z, Diggle B, Shackleford ICG, Connal LA. Tough, Self-Healing Hydrogels Capable of Ultrafast Shape Changing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1904956. [PMID: 31608513 DOI: 10.1002/adma.201904956] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Achieving multifunctional shape-changing hydrogels with synergistic and engineered material properties is highly desirable for their expanding applications, yet remains an ongoing challenge. The synergistic design of multiple dynamic chemistries enables new directions for the development of such materials. Herein, a molecular design strategy is proposed based on a hydrogel combining acid-ether hydrogen bonding and imine bonds. This approach utilizes simple and scalable chemistries to produce a doubly dynamic hydrogel network, which features high water uptake, high strength and toughness, excellent fatigue resistance, fast and efficient self-healing, and superfast, programmable shape changing. Furthermore, deformed shapes can be memorized due to the large thermal hysteresis. This new type of shape-changing hydrogel is expected to be a key component in future biomedical, tissue, and soft robotic device applications.
Collapse
Affiliation(s)
- Zhen Jiang
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Broden Diggle
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - India C G Shackleford
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Luke A Connal
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
16
|
Zhang C, Sanchez RJP, Fu C, Clayden-Zabik R, Peng H, Kempe K, Whittaker AK. Importance of Thermally Induced Aggregation on 19F Magnetic Resonance Imaging of Perfluoropolyether-Based Comb-Shaped Poly(2-oxazoline)s. Biomacromolecules 2018; 20:365-374. [DOI: 10.1021/acs.biomac.8b01549] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Zhang C, Moonshi SS, Wang W, Ta HT, Han Y, Han FY, Peng H, Král P, Rolfe BE, Gooding JJ, Gaus K, Whittaker AK. High F-Content Perfluoropolyether-Based Nanoparticles for Targeted Detection of Breast Cancer by 19F Magnetic Resonance and Optical Imaging. ACS NANO 2018; 12:9162-9176. [PMID: 30118590 DOI: 10.1021/acsnano.8b03726] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Two important challenges in the field of 19F magnetic resonance imaging (MRI) are the maintenance of high fluorine content without compromising imaging performance, and effective targeting of small particles to diseased tissue. To address these challenges, we have developed a series of perfluoropolyether (PFPE)-based hyperbranched (HBPFPE) nanoparticles with attached peptide aptamer as targeting ligands for specific in vivo detection of breast cancer with high 19F MRI sensitivity. A detailed comparison of the HBPFPE nanoparticles (NPs) with the previously reported trifluoroethyl acrylate (TFEA)-based polymers demonstrates that the mobility of fluorinated segments of the HBPFPE nanoparticles is significantly enhanced (19F T2 > 80 ms vs 31 ms), resulting in superior MR imaging sensitivity. Selective targeting was confirmed by auto- and pair correlation analysis of fluorescence microscopy data, in vitro immunofluorescence, in vivo 19F MRI, ex vivo fluorescence and 19F NMR. The results highlight the high efficiency of aptamers for targeting and the excellent sensitivity of the PFPE moieties for 19F MRI. Of relevance to in vivo applications, the PFPE-based polymers exhibit much faster clearance from the body than the previously introduced perfluorocarbon emulsions ( t1/2 ∼ 20 h vs up to months). Moreover, the aptamer-conjugated NPs show significantly higher tumor-penetration, demonstrating the potential of these imaging agents for therapeutic applications. This report of the synthesis of polymeric aptamer-conjugated PFPE-based 19F MRI CAs with high fluorine content (∼10 wt %) demonstrates that these NPs are exciting candidates for detecting diseases with high imaging sensitivity.
Collapse
Affiliation(s)
| | | | | | | | | | - Felicity Y Han
- Centre for Integrated Preclinical Drug Development , The University of Queensland , Brisbane , Qld 4072 , Australia
| | | | - Petr Král
- Department of Biopharmaceutical Sciences , University of Illinois at Chicago , Chicago , Illinois 60612 , United States
| | | | | | | | | |
Collapse
|
18
|
Zhong Q, Mi L, Metwalli E, Bießmann L, Philipp M, Miasnikova A, Laschewsky A, Papadakis CM, Cubitt R, Schwartzkopf M, Roth SV, Wang J, Müller-Buschbaum P. Effect of chain architecture on the swelling and thermal response of star-shaped thermo-responsive (poly(methoxy diethylene glycol acrylate)-block-polystyrene) 3 block copolymer films. SOFT MATTER 2018; 14:6582-6594. [PMID: 30052259 DOI: 10.1039/c8sm00965a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The effect of chain architecture on the swelling and thermal response of thin films obtained from an amphiphilic three-arm star-shaped thermo-responsive block copolymer poly(methoxy diethylene glycol acrylate)-block-polystyrene ((PMDEGA-b-PS)3) is investigated by in situ neutron reflectivity (NR) measurements. The PMDEGA and PS blocks are micro-phase separated with randomly distributed PS nanodomains. The (PMDEGA-b-PS)3 films show a transition temperature (TT) at 33 °C in white light interferometry. The swelling capability of the (PMDEGA-b-PS)3 films in a D2O vapor atmosphere is better than that of films from linear PS-b-PMDEGA-b-PS triblock copolymers, which can be attributed to the hydrophilic end groups and limited size of the PS blocks in (PMDEGA-b-PS)3. However, the swelling kinetics of the as-prepared (PMDEGA-b-PS)3 films and the response of the swollen film to a temperature change above the TT are significantly slower than that in the PS-b-PMDEGA-b-PS films, which may be related to the conformation restriction by the star-shape. Unlike in the PS-b-PMDEGA-b-PS films, the amount of residual D2O in the collapsed (PMDEGA-b-PS)3 films depends on the final temperature. It decreases from (9.7 ± 0.3)% to (7.0 ± 0.3)% or (6.0 ± 0.3)% when the final temperatures are set to 35 °C, 45 °C and 50 °C, respectively. This temperature-dependent reduction of embedded D2O originates from the hindrance of chain conformation from the star-shaped chain architecture.
Collapse
Affiliation(s)
- Qi Zhong
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, National Base for International Science and Technology Cooperation in Textiles and Consumer-Goods Chemistry, Zhejiang Sci-Tech University, 310018 Hangzhou, China. and Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien/Fachgebiet Physik Weicher Materie, James-Franck-Str. 1, 85748 Garching, Germany.
| | - Lei Mi
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, National Base for International Science and Technology Cooperation in Textiles and Consumer-Goods Chemistry, Zhejiang Sci-Tech University, 310018 Hangzhou, China.
| | - Ezzeldin Metwalli
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien/Fachgebiet Physik Weicher Materie, James-Franck-Str. 1, 85748 Garching, Germany.
| | - Lorenz Bießmann
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien/Fachgebiet Physik Weicher Materie, James-Franck-Str. 1, 85748 Garching, Germany.
| | - Martine Philipp
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien/Fachgebiet Physik Weicher Materie, James-Franck-Str. 1, 85748 Garching, Germany.
| | - Anna Miasnikova
- Universität Potsdam, Institut für Chemie, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Andre Laschewsky
- Universität Potsdam, Institut für Chemie, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany and Fraunhofer Institut für Angewandte Polymerforschung, Geiselbergstr. 69, 14476 Potsdam-Golm, Germany
| | - Christine M Papadakis
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien/Fachgebiet Physik Weicher Materie, James-Franck-Str. 1, 85748 Garching, Germany.
| | - Robert Cubitt
- Institut Laue-Langevin, 6 rue Jules Horowitz, 38000 Grenoble, France
| | - Matthias Schwartzkopf
- Deutsches Elektronen-Synchrotron (DESY), Photon Science, Notkestr. 85, 22607 Hamburg, Germany
| | - Stephan V Roth
- Deutsches Elektronen-Synchrotron (DESY), Photon Science, Notkestr. 85, 22607 Hamburg, Germany and KTH Royal Institute of Technology, Department of Fibre and Polymer Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Jiping Wang
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, National Base for International Science and Technology Cooperation in Textiles and Consumer-Goods Chemistry, Zhejiang Sci-Tech University, 310018 Hangzhou, China.
| | - Peter Müller-Buschbaum
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien/Fachgebiet Physik Weicher Materie, James-Franck-Str. 1, 85748 Garching, Germany.
| |
Collapse
|
19
|
Moonshi SS, Zhang C, Peng H, Puttick S, Rose S, Fisk NM, Bhakoo K, Stringer BW, Qiao GG, Gurr PA, Whittaker AK. A unique 19F MRI agent for the tracking of non phagocytic cells in vivo. NANOSCALE 2018; 10:8226-8239. [PMID: 29682654 DOI: 10.1039/c8nr00703a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
There is currently intense interest in new methods for understanding the fate of therapeutically-relevant cells, such as mesenchymal stem cells (MSCs). The absence of a confounding background signal and consequent unequivocal assignment makes 19F MRI one of the most attractive modalities for the tracking of injected cells in vivo. We describe here the synthesis of novel partly-fluorinated polymeric nanoparticles with small size and high fluorine content as MRI agents. The polymers, constructed from perfluoropolyether methacrylate (PFPEMA) and oligo(ethylene glycol) methacrylate (OEGMA) have favourable cell uptake profiles and excellent MRI performance. To facilitate cell studies the polymer was further conjugated with a fluorescent dye creating a dual-modal imaging agent. The efficacy of labelling of MSCs was assessed using 19F NMR, flow cytometry and confocal microscopy. The labelling efficiency of 2.6 ± 0.1 × 1012 19F atoms per cell, and viability of >90% demonstrates high uptake and good tolerance by the cells. This loading translates to a minimum 19F MRI detection sensitivity of ∼7.4 × 103 cells per voxel. Importantly, preliminary in vivo data demonstrate that labelled cells can be readily detected within a short acquisition scan period (12 minutes). Hence, these copolymers show outstanding potential for 19F MRI cellular tracking and for quantification of non-phagocytic and therapeutically-relevant cells in vivo.
Collapse
Affiliation(s)
- Shehzahdi S Moonshi
- Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, QLD 4072, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Truong NP, Zhang C, Nguyen TAH, Anastasaki A, Schulze MW, Quinn JF, Whittaker AK, Hawker CJ, Whittaker MR, Davis TP. Overcoming Surfactant-Induced Morphology Instability of Noncrosslinked Diblock Copolymer Nano-Objects Obtained by RAFT Emulsion Polymerization. ACS Macro Lett 2018; 7:159-165. [PMID: 35610912 DOI: 10.1021/acsmacrolett.7b00978] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RAFT emulsion polymerization techniques including polymerization-induced self-assembly (PISA) and temperature-induced morphological transformation (TIMT) are widely used to produce noncrosslinked nano-objects with various morphologies. However, the worm, vesicle and lamellar morphologies produced by these techniques typically cannot tolerate the presence of added surfactants, thus limiting their potential applications. Herein we report the surfactant tolerance of noncrosslinked worms, vesicles, and lamellae prepared by RAFT emulsion polymerizations using poly(di(ethylene glycol) ethyl ether methacrylate-co-N-(2-hydroxypropyl) methacrylamide) (P(DEGMA-co-HPMA)) as a macromolecular chain transfer agent (macro-CTA). Significantly, these P(DEGMA-co-HPMA) nanoparticles are highly stable in concentrated solutions of surfactants (e.g., sodium dodecyl sulfate (SDS)). We also demonstrate that the surfactant tolerance is related to the limited binding of SDS to the main-chain of the P(DEGMA-co-HPMA) macro-CTA constituting the particle shell. This work provides new insight into the interactions between surfactants and thermoresponsive copolymers and expands the scope of RAFT emulsion polymerization techniques for the preparation of noncrosslinked and surfactant-tolerant nanomaterials.
Collapse
Affiliation(s)
- Nghia P Truong
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
| | | | | | - Athina Anastasaki
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Morgan W Schulze
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - John F Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
| | | | - Craig J Hawker
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Michael R Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
21
|
Dalgakiran E, Tatlipinar H. The role of hydrophobic hydration in the LCST behaviour of POEGMA300 by all-atom molecular dynamics simulations. Phys Chem Chem Phys 2018; 20:15389-15399. [DOI: 10.1039/c8cp02026d] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The role of hydrophobic hydration in the LCST phase transition of POEGMA300 by means of the breakage of cage-like water formations around the side chains.
Collapse
Affiliation(s)
- Eray Dalgakiran
- Department of Physics
- Faculty of Arts and Sciences
- Yildiz Technical University
- Istanbul
- Turkey
| | - Hasan Tatlipinar
- Department of Physics
- Faculty of Arts and Sciences
- Yildiz Technical University
- Istanbul
- Turkey
| |
Collapse
|
22
|
Dalgakiran E, Tatlipinar H. Atomistic insights on the LCST behavior of PMEO2
MA in water by molecular dynamics simulations. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/polb.24555] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Eray Dalgakiran
- Department of Physics, Faculty of Arts and Sciences; Yildiz Technical University; Istanbul 34220 Turkey
| | - Hasan Tatlipinar
- Department of Physics, Faculty of Arts and Sciences; Yildiz Technical University; Istanbul 34220 Turkey
| |
Collapse
|
23
|
Zajforoushan Moghaddam S, Zhu K, Nyström B, Thormann E. Thermo-responsive diblock and triblock cationic copolymers at the silica/aqueous interface: A QCM-D and AFM study. J Colloid Interface Sci 2017. [DOI: 10.1016/j.jcis.2017.06.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Zhang C, Moonshi SS, Han Y, Puttick S, Peng H, Magoling BJA, Reid JC, Bernardi S, Searles DJ, Král P, Whittaker AK. PFPE-Based Polymeric 19F MRI Agents: A New Class of Contrast Agents with Outstanding Sensitivity. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01285] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Cheng Zhang
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
- ARC Centre of
Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Shehzahdi Shebbrin Moonshi
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
- ARC Centre of
Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Qld 4072, Australia
| | | | - Simon Puttick
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
- ARC Centre of
Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Hui Peng
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
- ARC Centre of
Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Bryan John Abel Magoling
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - James C. Reid
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Stefano Bernardi
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Debra J. Searles
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Petr Král
- Department
of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Andrew K. Whittaker
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
- ARC Centre of
Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Qld 4072, Australia
| |
Collapse
|
25
|
Zhao W, Ta HT, Zhang C, Whittaker AK. Polymerization-Induced Self-Assembly (PISA) - Control over the Morphology of 19F-Containing Polymeric Nano-objects for Cell Uptake and Tracking. Biomacromolecules 2017; 18:1145-1156. [DOI: 10.1021/acs.biomac.6b01788] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wei Zhao
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Brisbane, Queensland 4072, Australia
| | - Hang T. Ta
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Brisbane, Queensland 4072, Australia
| | - Cheng Zhang
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Brisbane, Queensland 4072, Australia
| | - Andrew K. Whittaker
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Brisbane, Queensland 4072, Australia
| |
Collapse
|
26
|
Zuppardi F, Chiacchio FR, Sammarco R, Malinconico M, Gomez d'Ayala G, Cerruti P. Fluorinated oligo(ethylene glycol) methacrylate-based copolymers: Tuning of self assembly properties and relationship with rheological behavior. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.01.080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Li S, Feng L, Lu H, Feng S. From LCST to UCST: the phase separation behaviour of thermo-responsive polysiloxanes with the solubility parameters of solvents. NEW J CHEM 2017. [DOI: 10.1039/c6nj03386e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Thermo-responsive polysiloxanes with tunable LCST- and UCST-type phase separation in mixed solvents were synthesised via a facile, highly efficient, catalyst-free aza-Michael addition of poly(aminopropylmethylsiloxane) to N-isopropylacrylamide.
Collapse
Affiliation(s)
- Shusheng Li
- Key Laboratory of Special Functional Aggregated Materials
- Key Laboratory of Colloid and Interface Chemistry (Shandong University)
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
| | - Linglong Feng
- Key Laboratory of Special Functional Aggregated Materials
- Key Laboratory of Colloid and Interface Chemistry (Shandong University)
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
| | - Hang Lu
- Key Laboratory of Special Functional Aggregated Materials
- Key Laboratory of Colloid and Interface Chemistry (Shandong University)
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
| | - Shengyu Feng
- Key Laboratory of Special Functional Aggregated Materials
- Key Laboratory of Colloid and Interface Chemistry (Shandong University)
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
| |
Collapse
|
28
|
Kong T, Guo G, Zhang H, Gao L. Post-synthetic modification of polyvinyl alcohol with a series of N-alkyl-substituted carbamates towards thermo and CO2-responsive polymers. Polym Chem 2017. [DOI: 10.1039/c7py01136a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intensive efforts have been devoted to the synthesis of thermoresponsive polymers with terminal N-alkyl-substituted groups.
Collapse
Affiliation(s)
- Tengfei Kong
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Guoqiang Guo
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Huatang Zhang
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Liang Gao
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| |
Collapse
|
29
|
Sponchioni M, Ferrari R, Morosi L, Moscatelli D. Influence of the polymer structure over self-assembly and thermo-responsive properties: The case of PEG-b-PCL grafted copolymers via a combination of RAFT and ROP. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28177] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mattia Sponchioni
- Department of Chemistry; Materials and Chemical Engineering “Giulio Natta”; Milano 20131 Italy
| | - Raffaele Ferrari
- Department of Chemistry and Applied Biosciences; Institute for Chemical and Bioengineering; Zurich 8093 Switzerland
| | - Lavinia Morosi
- IRCSS-Istituto di Ricerche Farmacologiche Mario Negri; Milano 20156 Italy
| | - Davide Moscatelli
- Department of Chemistry; Materials and Chemical Engineering “Giulio Natta”; Milano 20131 Italy
| |
Collapse
|
30
|
Zhang C, Moonshi SS, Peng H, Puttick S, Reid J, Bernardi S, Searles DJ, Whittaker AK. Ion-Responsive 19F MRI Contrast Agents for the Detection of Cancer Cells. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00216] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Cheng Zhang
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Shehzahdi Shebbrin Moonshi
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hui Peng
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Simon Puttick
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | - Andrew K. Whittaker
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
31
|
Spěváček J, Konefał R, Čadová E. NMR Study of Thermoresponsive Block Copolymer in Aqueous Solution. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jiří Spěváček
- Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic; Heyrovský Sq. 2, 162 06 Prague 6 Czech Republic
| | - Rafał Konefał
- Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic; Heyrovský Sq. 2, 162 06 Prague 6 Czech Republic
| | - Eva Čadová
- Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic; Heyrovský Sq. 2, 162 06 Prague 6 Czech Republic
| |
Collapse
|
32
|
Zhang C, Peng H, Li W, Liu L, Puttick S, Reid J, Bernardi S, Searles DJ, Zhang A, Whittaker AK. Conformation Transitions of Thermoresponsive Dendronized Polymers across the Lower Critical Solution Temperature. Macromolecules 2016. [DOI: 10.1021/acs.macromol.5b02414] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cheng Zhang
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Hui Peng
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Wen Li
- Department
of Polymer Materials, Shanghai University, Shangda Street 99, Mailbox 152, Shanghai 200444, China
| | - Lianxiao Liu
- Department
of Polymer Materials, Shanghai University, Shangda Street 99, Mailbox 152, Shanghai 200444, China
| | - Simon Puttick
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Qld 4072, Australia
| | | | | | | | - Afang Zhang
- Department
of Polymer Materials, Shanghai University, Shangda Street 99, Mailbox 152, Shanghai 200444, China
| | - Andrew K. Whittaker
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Qld 4072, Australia
| |
Collapse
|
33
|
Yan K, Chen M, Zhou S, Wu L. Self-assembly of upconversion nanoclusters with an amphiphilic copolymer for near-infrared- and temperature-triggered drug release. RSC Adv 2016. [DOI: 10.1039/c6ra17622d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The hybrid colloidal clusters were prepared by self-assembly of multiresponsive copolymer with hydrophobic nanocrystals, and which was able to near-infrared light and temperature triggered drug release.
Collapse
Affiliation(s)
- Kai Yan
- Department of Materials Science
- State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai 200433
- China
| | - Min Chen
- Department of Materials Science
- State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai 200433
- China
| | - Shuxue Zhou
- Department of Materials Science
- State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai 200433
- China
| | - Limin Wu
- Department of Materials Science
- State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai 200433
- China
| |
Collapse
|
34
|
Li S, Feng S. High-sensitivity stimuli-responsive polysiloxane synthesized via catalyst-free aza-Michael addition for ibuprofen loading and controlled release. RSC Adv 2016. [DOI: 10.1039/c6ra20568b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
High-sensitive stimuli-responsive polysiloxanes with high sensitive respond to three changes of thermo-, pH-, and salinity were synthesized via a facile, highly efficient, catalyst-free aza-Michael addition of poly(aminopropylmethylsiloxane) with N-isopropylacrylamide.
Collapse
Affiliation(s)
- Shusheng Li
- Key Laboratory of Special Functional Aggregated Materials
- Key Laboratory of Colloid and Interface Chemistry (Shandong University)
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
| | - Shengyu Feng
- Key Laboratory of Special Functional Aggregated Materials
- Key Laboratory of Colloid and Interface Chemistry (Shandong University)
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
| |
Collapse
|
35
|
Zhong Q, Metwalli E, Rawolle M, Kaune G, Bivigou-Koumba AM, Laschewsky A, Papadakis CM, Cubitt R, Wang J, Müller-Buschbaum P. Influence of Hydrophobic Polystyrene Blocks on the Rehydration of Polystyrene-block-poly(methoxy diethylene glycol acrylate)-block-polystyrene Films Investigated by in Situ Neutron Reflectivity. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b02279] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Qi Zhong
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education; Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, National Base for International Science and Technology Cooperation in Textiles and Consumer-Goods Chemistry, Zhejiang Sci-Tech University, 310018 Hangzhou, China
- Physik-Department,
Lehrstuhl für Funktionelle Materialien/Fachgebiet Physik Weicher
Materie, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Ezzeldin Metwalli
- Physik-Department,
Lehrstuhl für Funktionelle Materialien/Fachgebiet Physik Weicher
Materie, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Monika Rawolle
- Physik-Department,
Lehrstuhl für Funktionelle Materialien/Fachgebiet Physik Weicher
Materie, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Gunar Kaune
- Martin-Luther-Universität
Halle-Wittenberg, Von-Danckelmann-Platz
3, 06120 Halle, Germany
| | | | - André Laschewsky
- Institut
für Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselberg-Str.69, 14469 Potsdam-Golm, Germany
| | - Christine M. Papadakis
- Physik-Department,
Lehrstuhl für Funktionelle Materialien/Fachgebiet Physik Weicher
Materie, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Robert Cubitt
- Institut Laue-Langevin, 6 rue Jules
Horowitz, 38000 Grenoble, France
| | - Jiping Wang
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education; Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, National Base for International Science and Technology Cooperation in Textiles and Consumer-Goods Chemistry, Zhejiang Sci-Tech University, 310018 Hangzhou, China
| | - Peter Müller-Buschbaum
- Physik-Department,
Lehrstuhl für Funktionelle Materialien/Fachgebiet Physik Weicher
Materie, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| |
Collapse
|
36
|
Wang K, Peng H, Thurecht KJ, Puttick S, Whittaker AK. Segmented Highly Branched Copolymers: Rationally Designed Macromolecules for Improved and Tunable 19F MRI. Biomacromolecules 2015. [DOI: 10.1021/acs.biomac.5b00800] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kewei Wang
- Australian Institute for
Bioengineering and Nanotechnology; Centre for Advanced Imaging; ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Hui Peng
- Australian Institute for
Bioengineering and Nanotechnology; Centre for Advanced Imaging; ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Kristofer J. Thurecht
- Australian Institute for
Bioengineering and Nanotechnology; Centre for Advanced Imaging; ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Simon Puttick
- Australian Institute for
Bioengineering and Nanotechnology; Centre for Advanced Imaging; ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Andrew K. Whittaker
- Australian Institute for
Bioengineering and Nanotechnology; Centre for Advanced Imaging; ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|