1
|
Xu Q, Wang Y, Zheng Y, Zhu Y, Li Z, Liu Y, Ding M. Polymersomes in Drug Delivery─From Experiment to Computational Modeling. Biomacromolecules 2024; 25:2114-2135. [PMID: 38011222 DOI: 10.1021/acs.biomac.3c00903] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Polymersomes, composed of amphiphilic block copolymers, are self-assembled vesicles that have gained attention as potential drug delivery systems due to their good biocompatibility, stability, and versatility. Various experimental techniques have been employed to characterize the self-assembly behaviors and properties of polymersomes. However, they have limitations in revealing molecular details and underlying mechanisms. Computational modeling techniques have emerged as powerful tools to complement experimental studies and enabled researchers to examine drug delivery mechanisms at molecular resolution. This review aims to provide a comprehensive overview of the state of the art in the field of polymersome-based drug delivery systems, with an emphasis on insights gained from both experimental and computational studies. Specifically, we focus on polymersome morphologies, self-assembly kinetics, fusion and fission, behaviors in flow, as well as drug encapsulation and release mechanisms. Furthermore, we also identify existing challenges and limitations in this rapidly evolving field and suggest possible directions for future research.
Collapse
Affiliation(s)
- Qianru Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yiwei Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yi Zheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yuling Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Zifen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Mingming Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
2
|
Du M, Yan X, Zhao N, Wang X, Xu D. Self-assembly of rigid amphiphilic graft cyclic-brush copolymers to nanochannels using dissipative particle dynamics simulation. SOFT MATTER 2024; 20:2321-2330. [PMID: 38372026 DOI: 10.1039/d3sm01674a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The synthesis of specific artificial nanochannels remains a formidable challenge in the field of nanomaterials and synthetic chemistry. In particular, the preparation of artificial nanochannels using amphiphilic graft cyclic-brush copolymers (AGCCs) as monomers has garnered substantial attention. Nevertheless, because of the constrained time and length scales inherent in traditional molecular dynamics simulations, a comprehensive theoretical understanding of the morphological regulation mechanism governing the self-assembly of AGCCs into nanochannels remains elusive. In this study, we employed the dissipative particle dynamics (DPD) method to explore the self-assembly mechanism considering factors such as the DPD interaction parameters, concentrations, and sizes of AGCCs. By calculating the phase diagrams, we predicted the emergence of four distinct nanochannel types: short independent, long independent, parallel, and disordered channels. Importantly, the formation of these nanochannels is highly contingent on specific environmental conditions. Furthermore, we extensively discussed self-assembly processes that lead to different types of nanochannels. The self-assembly of AGCCs is revealed as a multistep process primarily influenced by the interaction parameters. However, while the monomer size and concentration do not introduce novel self-assembly morphologies, they do influence the final aggregation state. The elucidation of the self-assembly mechanism presented in this study deepens our understanding of AGCC nanochannel formation. Consequently, this is a valuable guide for the preparation of copolymer materials with specific functionalities, offering insights into targeted copolymer material design.
Collapse
Affiliation(s)
- Meng Du
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China.
| | - Xinrong Yan
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China.
| | - Nanrong Zhao
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China.
| | - Xin Wang
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China.
| | - Dingguo Xu
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China.
- Research Center for Materials Genome Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| |
Collapse
|
3
|
Zhang Y, Tang H, Wang R. Controlling the two components modified on nanoparticles to construct nanomaterials. SOFT MATTER 2022; 18:8213-8222. [PMID: 36285648 DOI: 10.1039/d2sm00877g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nanoparticle self-assembly technology has made great progress in the past 30 years. Many kinds of self-assembly strategies of modifiable nanoparticles have been developed and used to construct nano-aggregates by designing the shape, size and type of nanoparticles and controlling the components modified on nanoparticles. These strategies are widely used in many fields, such as medical diagnosis, biological detection, drug delivery, materials synthesis and sensors. The modified components can be DNA chains, polymer chains, proteins, and even organic molecules based on different molecular conformations and chemical properties. In recent years, the self-assembly of two-component modified nanoparticles has gradually attracted more attention. Nanoparticles modified with two components of different DNA strands can self-assemble to produce a variety of nano arrangement structures, such as BCC, FCC and other cubic crystals, which can be used in crystal materials. Two-component modification of hydrophilic and hydrophobic polymers can produce vesicular aggregates, which can be used for drug delivery. In this review, we summarize the latest experimental progress and theoretical simulation of self-assembly of two-component modified nanoparticles including different DNA chains, different polymer chains, DNA and polymer chains, proteins and polymer chains, and different organic molecules. Their self-assembly characteristics and application prospects were discussed. Compared with single-component modified nanoparticles, two-component nanoparticles have different tethered molecules or molecular chains, which can be multifunctional by regulating different modified components and types of nanoparticles and ultimately expand the scope of applications.
Collapse
Affiliation(s)
- Yixin Zhang
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Hao Tang
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Rong Wang
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
4
|
Procházka K, Limpouchová Z, Štěpánek M, Šindelka K, Lísal M. DPD Modelling of the Self- and Co-Assembly of Polymers and Polyelectrolytes in Aqueous Media: Impact on Polymer Science. Polymers (Basel) 2022; 14:404. [PMID: 35160394 PMCID: PMC8838752 DOI: 10.3390/polym14030404] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023] Open
Abstract
This review article is addressed to a broad community of polymer scientists. We outline and analyse the fundamentals of the dissipative particle dynamics (DPD) simulation method from the point of view of polymer physics and review the articles on polymer systems published in approximately the last two decades, focusing on their impact on macromolecular science. Special attention is devoted to polymer and polyelectrolyte self- and co-assembly and self-organisation and to the problems connected with the implementation of explicit electrostatics in DPD numerical machinery. Critical analysis of the results of a number of successful DPD studies of complex polymer systems published recently documents the importance and suitability of this coarse-grained method for studying polymer systems.
Collapse
Affiliation(s)
- Karel Procházka
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic; (Z.L.); (M.Š.)
| | - Zuzana Limpouchová
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic; (Z.L.); (M.Š.)
| | - Miroslav Štěpánek
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic; (Z.L.); (M.Š.)
| | - Karel Šindelka
- Department of Molecular and Mesoscopic Modelling, Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135, 165 02 Prague, Czech Republic; (K.Š.); (M.L.)
| | - Martin Lísal
- Department of Molecular and Mesoscopic Modelling, Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135, 165 02 Prague, Czech Republic; (K.Š.); (M.L.)
- Department of Physics, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 3632, 400 96 Ústí n. Labem, Czech Republic
| |
Collapse
|
5
|
Liu D, Zhang Z, Wang R, Hu J. Stability and Deformation of Vesicles in a Cylindrical Flow. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:629-637. [PMID: 34994199 DOI: 10.1021/acs.langmuir.1c02000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, we used dissipative particle dynamics to study the stability, deformation, and rupture of polymer vesicles confined in cylindrical channels under the flow field. The morphological evolution, elongation, and rupture of vesicles and the corresponding mechanisms were intensively investigated. Bullet-like vesicles, leaking vesicles, spherical micelles, hamburger-like micelles, and bilayers were observed by changing the degree of confinement and dimensionless shear rate. We found that increasing the dimensionless shear rate and the degree of confinement can cause the deformation or rupture of polymeric vesicles. The asphericity parameter was utilized to describe the degree of elongation of vesicles deviating from the sphere in the direction of the flow. The results show that the aggregates are more likely to be spherical when the confinement is weak, while they become elongated bullet-like shapes when the confinement is strong. The investigation of dynamics reveals that the degree of confinement and the dimensionless shear rate can affect the chain stretching and reorganization during the process of vesicle elongation. Furthermore, the rupture time of the vesicle shows a nonlinear decrease with an increase in the dimensionless shear rate, and the confinement also contributes to the rupture. The results are very useful for guiding the application of vesicles in a flow environment.
Collapse
Affiliation(s)
- Dan Liu
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences, Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhihao Zhang
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences, Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Rong Wang
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences, Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jinglei Hu
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
Santo KP, Neimark AV. Dissipative particle dynamics simulations in colloid and Interface science: a review. Adv Colloid Interface Sci 2021; 298:102545. [PMID: 34757286 DOI: 10.1016/j.cis.2021.102545] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/31/2022]
Abstract
Dissipative particle dynamics (DPD) is one of the most efficient mesoscale coarse-grained methodologies for modeling soft matter systems. Here, we comprehensively review the progress in theoretical formulations, parametrization strategies, and applications of DPD over the last two decades. DPD bridges the gap between the microscopic atomistic and macroscopic continuum length and time scales. Numerous efforts have been performed to improve the computational efficiency and to develop advanced versions and modifications of the original DPD framework. The progress in the parametrization techniques that can reproduce the engineering properties of experimental systems attracted a lot of interest from the industrial community longing to use DPD to characterize, help design and optimize the practical products. While there are still areas for improvements, DPD has been efficiently applied to numerous colloidal and interfacial phenomena involving phase separations, self-assembly, and transport in polymeric, surfactant, nanoparticle, and biomolecules systems.
Collapse
Affiliation(s)
- Kolattukudy P Santo
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States
| | - Alexander V Neimark
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States.
| |
Collapse
|
7
|
Duan H, Luo Q, Wei Z, Lin Y, He J. Symmetry-Broken Patches on Gold Nanoparticles through Deficient Ligand Exchange. ACS Macro Lett 2021; 10:786-790. [PMID: 35549198 DOI: 10.1021/acsmacrolett.1c00252] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Symmetry-broken nanoparticles (NPs) are important building blocks with directional interparticle interaction as a key to access the precise organization of NPs macroscopically. We report a facile, one-pot synthetic approach to prepare high-quality symmetry-broken plasmonic gold NPs (AuNPs). Symmetry-broken patterning is achieved through deficient ligand exchange of isotropic AuNPs with thiol-terminated polystyrene (PS-SH) in the presence of an amphiphilic polymer surfactant. The concentration of PS-SH plays a dominant role in tuning surface patterning and coverage of AuNPs. The formation of asymmetric surface patches arises from the interplay between the conformational entropy of polymer ligands and the interfacial energy between polymer-grafted AuNPs and the solvent. Our method illustrates new paradises to design asymmetric NPs with directional interparticle interactions to access the precise organization of NPs.
Collapse
|
8
|
Bai JL, Liu D, Wang R. Self-assembly of Amphiphilic Diblock Copolymers Induced by Liquid-Liquid Phase Separation. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2563-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Midya J, Rubinstein M, Kumar SK, Nikoubashman A. Structure of Polymer-Grafted Nanoparticle Melts. ACS NANO 2020; 14:15505-15516. [PMID: 33084300 PMCID: PMC8056455 DOI: 10.1021/acsnano.0c06134] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The structure of neat melts of polymer-grafted nanoparticles (GNPs) is studied via coarse-grained molecular dynamics simulations. We systematically vary the degree of polymerization and grafting density at fixed nanoparticle (NP) radius and study in detail the shape and size of the GNP coronas. For sufficiently high grafting density, chain sections close to the NP core are extended and form a dry layer. Further away from the NP, there is an interpenetration layer, where the polymer coronas of neighboring GNPs overlap and the chain sections have almost unperturbed conformations. To better understand this partitioning, we develop a two-layer model, representing the grafted polymer around an NP by spherical dry and interpenetration layers. This model quantitatively predicts that the thicknesses of the two layers depend on one universal parameter, x, the degree of overcrowding of grafted chains relative to chains in the melt. Both simulations and theory show that the chain extension free energy is nonmonotonic with increasing chain length at a fixed grafting density, with a well-defined maximum. This maximum is indicative of the crossover from the dry layer-dominated to interpenetration layer-dominated regime, and it could have profound consequences on our understanding of a variety of anomalous transport properties of these GNPs. Our theoretical approach therefore provides a facile means for understanding and designing solvent-free GNP-based materials.
Collapse
Affiliation(s)
- Jiarul Midya
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - Michael Rubinstein
- Department of Mechanical Engineering and Materials Science, Biomedical Engineering, Chemistry, and Physics, Duke University, Durham, NC 27708-0300, USA
| | - Sanat K. Kumar
- Department of Chemical Engineering, Columbia University, New York, New York 10027, USA
| | - Arash Nikoubashman
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| |
Collapse
|
10
|
Wang TY, Tsao HK, Sheng YJ. Perforated Vesicles of ABA Triblock Copolymers with ON/OFF-Switchable Nanopores. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ting-Ya Wang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Heng-Kwong Tsao
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan, ROC
| | - Yu-Jane Sheng
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC
| |
Collapse
|
11
|
He H, Song B, Qiu G, Wang W, Gu H. Synthesis, conjugating capacity and biocompatibility evaluation of a novel amphiphilic polynorbornene. Des Monomers Polym 2020; 23:141-154. [PMID: 33029082 PMCID: PMC7473315 DOI: 10.1080/15685551.2020.1812832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Polynorbornenes, prepared by the ‘living’ and ‘controlled’ ring-opening metathesis polymerization (ROMP) method, have emerged as a stimuli-sensitive new class of polymer carriers. Herein, we reported a novel amphiphilic diblock polynorbornene, PNCHO-b-PNTEG, containing active benzaldehyde units, which exhibited good conjugating capacity to amino-containing molecules (e.g., doxorubicin (DOX)) via the pH-sensitive Schiff base linkage. The copolymer and its conjugate with DOX, DOX-PNCHO-b-PNTEG, were adequately analyzed by various techniques including 1H NMR, 13C NMR, gel permeation chromatography, etc. Especially, the formed conjugate of DOX-PNCHO-b-PNTEG could self-assemble into near-spherical micelles with the diameter of 81 ± 10 nm, and exhibit acid-triggered DOX release behavior, and the release rate could be adjusted by changing the environmental pH value. The excellent biological safety of PNCHO-b-PNTEG was further demonstrated by the results from both in vitro toxicity evaluation to murine fibroblast cells (L-929 cells) and in vivo evaluation of acute developmental toxicity and cell death in zebrafish embryos. Hence, the present polynorbornene-based PNCHO-b-PNTEG possesses great potential application as a biocompatible polymeric carrier and could be employed to fabricate various pH-sensitive conjugates.
Collapse
Affiliation(s)
- Hengxi He
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, China
| | - Bin Song
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, China
| | - Guirong Qiu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, China
| | - Weixiang Wang
- College of Food and Bioengineering, Xihua University, Chengdu, China
| | - Haibin Gu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Shan Y, Ji Y, Wang X, He L, Li S. Predicting asymmetric phospholipid microstructures in solutions. RSC Adv 2020; 10:24521-24532. [PMID: 35516199 PMCID: PMC9055179 DOI: 10.1039/d0ra03732j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/18/2020] [Indexed: 01/29/2023] Open
Abstract
Asymmetric phospholipid microstructures, such as asymmetric phospholipid membranes, have potential applications in biological and medicinal processes. Here, we used the dissipative particle dynamics simulation method to predict the asymmetric phospholipid microstructures in aqueous solutions. The asymmetric phospholipid membranes, tubes and vesicles are determined and characterized by the chain density distributions and order parameters. The phase diagrams are constructed to evaluate the effects of the chain length on the asymmetric structure formations at equilibrium states, while the average radius of gyration and shape factors are calculated to analyze the asymmetric structure formations in the non-equilibrium processes. Meanwhile, we predicted the mechanical properties of the asymmetric membranes by analyzing the spatial distributions of the interface tensions and osmotic pressures in solutions.
Collapse
Affiliation(s)
- Yue Shan
- Department of Physics, Wenzhou University Wenzhou Zhejiang 325035 China
| | - Yongyun Ji
- Department of Physics, Wenzhou University Wenzhou Zhejiang 325035 China
| | - Xianghong Wang
- Department of Physics, Wenzhou University Wenzhou Zhejiang 325035 China
| | - Linli He
- Department of Physics, Wenzhou University Wenzhou Zhejiang 325035 China
| | - Shiben Li
- Department of Physics, Wenzhou University Wenzhou Zhejiang 325035 China
| |
Collapse
|
13
|
Wang Z, Lee J, Wang Z, Zhao Y, Yan J, Lin Y, Li S, Liu T, Olszewski M, Pietrasik J, Bockstaller MR, Matyjaszewski K. Tunable Assembly of Block Copolymer Tethered Particle Brushes by Surface-Initiated Atom Transfer Radical Polymerization. ACS Macro Lett 2020; 9:806-812. [PMID: 35648530 DOI: 10.1021/acsmacrolett.0c00158] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A strategy to synthesize SiO2-g-PMMA/PMMA-b-PS mono- and bimodal block copolymer particle brushes by surface-initiated atom transfer radical polymerization (SI-ATRP) from silica particles is presented. First, PMMA blocks were prepared by normal ATRP with controlled degree of polymerizations and grafting density. In a second step, the PS block was synthesized through a chain extension using low parts per million of Cu catalyst. Variation of the SiO2-g-PMMA-Br macroinitiator concentration had a pronounced effect on the modality of the chain extension product. In the limit of small concentration, partial termination resulted in bimodal brush architectures, while more uniform brush architectures were observed with increasing concentration of macroinitiator. Brush nanoparticles with bimodal architectures assembled into string-like aggregates that bore a resemblance to structures found in systems comprised of sparse (homopolymer) brush particles. The unexpected effect of modality on structure formation points to opportunities in controlling microstructures in brush particle materials.
Collapse
Affiliation(s)
- Zongyu Wang
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Jaejun Lee
- Department of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Zhenhua Wang
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.,Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yuqi Zhao
- Department of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Jiajun Yan
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Yu Lin
- Department of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Sipei Li
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Tong Liu
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Mateusz Olszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Joanna Pietrasik
- Institute of Polymer and Dye Technology, Technical University of Lodz, Stefanowskiego 12/16, 90 924 Lodz, Poland
| | - Michael R Bockstaller
- Department of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
14
|
Li BY, Zhao L, Lu ZY. Microscopic characteristics of Janus nanoparticles prepared via a grafting-from reaction at the immiscible liquid interface. Phys Chem Chem Phys 2020; 22:5347-5354. [PMID: 32096506 DOI: 10.1039/c9cp06497d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The dynamic process of synthesizing Janus nanoparticles (JNPs) at a water/oil two-phase interface using a grafting-from reaction is investigated via dissipative particle dynamics simulations. We find that the interfacial tension, the initial monomer concentration, and the reaction probability can greatly influence the microscopic characteristics of JNP structure. It is difficult to synthesize a symmetric JNP with an equal volume ratio between hydrophilic and hydrophobic parts by grafting-from methods unless the physical chemical conditions in the two phases are strictly symmetric, and there is always a disordered domain on the JNP at a two immiscible solvents interface. Interestingly, for certain routes for synthesizing JNPs with a grafting-from method, the higher interfacial tension between the water and oil phases may enhance the degree of disorder of the grafted chains. The asymmetric initial monomer concentration in solution and the reaction probability can be used to control the syntheses of asymmetric JNPs.
Collapse
Affiliation(s)
- Bing-Yu Li
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130021, China.
| | - Li Zhao
- College of Life Sciences, Jilin University, Changchun 130012, China.
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130021, China.
| |
Collapse
|
15
|
Li Y, Wang N, Huang X, Li F, Davis TP, Qiao R, Ling D. Polymer-Assisted Magnetic Nanoparticle Assemblies for Biomedical Applications. ACS APPLIED BIO MATERIALS 2019; 3:121-142. [DOI: 10.1021/acsabm.9b00896] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yuhuan Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | | | - Xumin Huang
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ruirui Qiao
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | |
Collapse
|
16
|
Li C, Fu X, Zhong W, Liu J. Dissipative Particle Dynamics Simulations of a Protein-Directed Self-Assembly of Nanoparticles. ACS OMEGA 2019; 4:10216-10224. [PMID: 31460113 PMCID: PMC6648767 DOI: 10.1021/acsomega.9b01078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/31/2019] [Indexed: 06/10/2023]
Abstract
Design and fabrication of multifunctional porous structures play key roles in the development of high-performance energy storage devices. Our experiments demonstrated that nanostructured porous components, such as electrodes and interlayers, generated from the protein-directed self-assembly of nanoparticles can significantly improve the battery performances. The protein-directed assembly of nanoparticles in solution is a complex process involving the complicated interactions among proteins, particles, and solvent molecules. In this paper, we investigate the effects of coating proteins and specific solvent environments on the assembled porous structures. Comprehensive dissipative particle dynamics (DPD) simulations have been implemented to explore the molecular interactions and uncover the fundamental mechanisms in a gelatin-directed self-assembly of carbon black particles under different solvent conditions. Our simulations show that compact triple-strand "rod-like" structures are formed in water while loose curved "sheet-like" structures are formed in an acetic acid/water mixture. The structural difference is mainly due to the redistribution of the charges on the gelatin side chains under specific acid-solvent conditions. The strong and flexible "sheet-like" structures lead to a homogenous porous structure with high porosity and with large functionalized surfaces. Our simulations results can reasonably explain the experimental observations; this work demonstrates the great potential of DPD as a powerful tool in guiding future experimental design and optimization.
Collapse
|
17
|
Tan H, Li S, Li K, Yu C, Lu Z, Zhou Y. Shape Transformations of Vesicles Self-Assembled from Amphiphilic Hyperbranched Multiarm Copolymers via Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6929-6938. [PMID: 30091926 DOI: 10.1021/acs.langmuir.8b02206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The understanding of shape transformations of vesicles is of fundamental importance in biological and clinical sciences. Hyperbranched polymer vesicles (branched polymersomes) are newly emerging polymer vesicles with special structure and property. They have also been regarded as a good model for biomembranes. However, the shape transformations of hyperbranched polymer vesicles have not been studied from either an experimental or theoretical level. Herein, the shape transformations of vesicles self-assembled from amphiphilic hyperbranched multiarm copolymers (HMCs) in response to the interaction parameters between the hydrophobic core and hydrophilic arms and the polymer concentrations are investigated carefully through dissipative particle dynamics (DPD) simulations. In the morphological phase diagram, two types of vesicles are obtained: one type corresponds to vesicles without holes formed at low concentrations including unilamellar vesicles, double-lamellar vesicles, discocyte-shaped vesicles, and tubular vesicles, and the other type corresponds to vesicles with holes formed at high concentrations including stomatocyte-shaped vesicles, toroidal vesicles, genus-3 (G-3) toroidal vesicles with three holes, and genus-4 (G-4) toroidal vesicles with four holes. In addition, both the self-assembly mechanisms and the dynamics for the formation of these vesicles have been systematically studied. The current work will offer theoretical support for fabricating novel vesicles with various shapes from hyperbranched polymers.
Collapse
Affiliation(s)
- Haina Tan
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai , China 200240
| | - Shanlong Li
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai , China 200240
| | - Ke Li
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai , China 200240
| | - Chunyang Yu
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai , China 200240
| | - Zhongyuan Lu
- Institute of Theoretical Chemistry, State Key Laboratory of Supramolecular Structure and Materials , Jilin University , Changchun , China 130021
| | - Yongfeng Zhou
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai , China 200240
| |
Collapse
|
18
|
Li N, Nikoubashman A, Panagiotopoulos AZ. Self-Assembly of Polymer Blends and Nanoparticles through Rapid Solvent Exchange. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3780-3789. [PMID: 30759987 DOI: 10.1021/acs.langmuir.8b04197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Molecular dynamics simulations were performed to study the fabrication of polymeric colloids containing inorganic nanoparticles (NPs) via the flash nanoprecipitation (FNP) technique. During this process, a binary polymer blend, initially in a good solvent for the polymers, is rapidly mixed with NPs and a poor solvent for the polymers that is miscible with the good solvent. The simulations reveal that the polymers formed Janus particles with NPs distributed either on the surface of the aggregates, throughout their interior, or aligned at the interface between the two polymer domains, depending on the NP-polymer and NP-solvent interactions. The loading and surface density of NPs can be controlled by the polymer feed concentration, the NP feed concentration, and their ratio in the feed streams. Selective localization of NPs by incorporating electrostatic interactions between polymers and NPs has also been investigated, and was shown to be an effective way to enhance NP loading and surface density as compared to the case with only van der Waals attractions. This work demonstrates that the FNP process is promising for the production of structured and hybrid nanocolloids in a continuous and scalable way, with independent control over particle properties such as size, NP location, loading, and surface density. Our results provide useful guidelines for experimental fabrication of such hybrid nanoparticles.
Collapse
Affiliation(s)
- Nannan Li
- Department of Chemical and Biological Engineering , Princeton University , Princeton , New Jersey 08544 , United States
| | - Arash Nikoubashman
- Institute of Physics , Johannes Gutenberg University Mainz , Staudingerweg 7 , Mainz 55128 , Germany
| | - Athanassios Z Panagiotopoulos
- Department of Chemical and Biological Engineering , Princeton University , Princeton , New Jersey 08544 , United States
| |
Collapse
|
19
|
Yang J, Wang R, Xie D. Precisely Controlled Incorporation of Drug Nanoparticles in Polymer Vesicles by Amphiphilic Copolymer Tethers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Junying Yang
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Rong Wang
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
20
|
Atsumi C, Araoka S, Landenberger KB, Kanazawa A, Nakamura J, Ohtsuki C, Aoshima S, Sugawara-Narutaki A. Ring-Like Assembly of Silica Nanospheres in the Presence of Amphiphilic Block Copolymer: Effects of Particle Size. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7751-7758. [PMID: 29878793 DOI: 10.1021/acs.langmuir.8b00420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Block copolymer-mediated self-assembly of colloidal nanoparticles has attracted great attention for the fabrication of a wide variety of nanoparticle arrays. We have previously shown that silica nanospheres (SNSs) 15 nm in diameter assemble into ring-like nanostructures in the presence of amphiphilic block copolymers poly[(2-ethoxyethyl vinyl ether)- block-(2-methoxyethyl vinyl ether)] (EOVE-MOVE) in an aqueous phase. Here, the effects of particle size of SNSs on this polymer-mediated self-assembly are studied systematically using scanning electron microscopy to observe SNSs of seven different sizes between 13 to 42 nm. SNSs of 13, 16, 19, and 21 nm in diameter assemble into nanorings in the presence of EOVE-MOVE. In contrast, larger SNSs of 26, 34, and 42 nm aggregate heavily, form chain-like networks, and remain dispersed, respectively, instead of forming ring-like nanostructures. The assembly trend for 26-42 nm-SNSs agrees with that expected from the increased colloidal stability for larger particles. Time-course observation for the assembled morphology of 16 nm-SNSs reveals that the nanorings, once formed, assemble further into network-like structures, as if the nanorings behave as building units for higher-order assembly. This indicates that the ring-like assembly is a fast process that can proceed onto random colloidal aggregation. Detailed analysis of nanoring structures revealed that the average number of SNSs comprising one ring decreased from 5.0 to 3.1 with increasing the SNS size from 13 to 21 nm. A change in the number of ring members was also observed when the length of EOVE-MOVE varied while the size of SNSs was fixed. Dynamic light scattering measurements and atomic force microscopy confirmed the SNSs/polymer composite structures. We hypothesize that a stable composite morphology may exist that is influenced by both the size of SNSs and the polymer molecular structures.
Collapse
Affiliation(s)
- Chisato Atsumi
- Department of Crystalline Materials Science , Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8603 , Japan
| | - Shintaro Araoka
- Department of Macromolecular Science , Osaka University, Machikaneyama , Toyonaka , Osaka 560-0043 , Japan
| | - Kira B Landenberger
- Department of Polymer Chemistry , Kyoto University, Katsura , Nishikyo-ku, Kyoto 615-8510 , Japan
| | - Arihiro Kanazawa
- Department of Macromolecular Science , Osaka University, Machikaneyama , Toyonaka , Osaka 560-0043 , Japan
| | - Jin Nakamura
- Department of Materials Chemistry , Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8603 , Japan
| | - Chikara Ohtsuki
- Department of Materials Chemistry , Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8603 , Japan
| | - Sadahito Aoshima
- Department of Macromolecular Science , Osaka University, Machikaneyama , Toyonaka , Osaka 560-0043 , Japan
| | - Ayae Sugawara-Narutaki
- Department of Materials Chemistry , Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8603 , Japan
| |
Collapse
|
21
|
Baran Ł, Sokołowski S. Effective interactions between a pair of particles modified with tethered chains. J Chem Phys 2018; 147:044903. [PMID: 28764361 DOI: 10.1063/1.4994919] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Using molecular dynamics, we evaluate the potential of mean force for two models of hybrid nanoparticles, namely, for the models with fixed and movable chain ligands. We also investigate the structure of segments of chains around nanoparticles and its change when one nanoparticle approaches the other. In the case of an isolated particle, we also employ a density functional theory to compute the segment density profiles. Moreover, to determine the structure of segments around a core, we have employed the concept of the so-called mass dipoles.
Collapse
Affiliation(s)
- Ł Baran
- Department for the Modelling of Physico-Chemical Processes, Maria Curie-Sklodowska University, Gliniana 33, Lublin, Poland
| | - S Sokołowski
- Department for the Modelling of Physico-Chemical Processes, Maria Curie-Sklodowska University, Gliniana 33, Lublin, Poland
| |
Collapse
|
22
|
Bakshi MS. Engineered nanomaterials growth control by monomers and micelles: From surfactants to surface active polymers. Adv Colloid Interface Sci 2018; 256:101-110. [PMID: 29731110 DOI: 10.1016/j.cis.2018.04.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/12/2018] [Accepted: 04/23/2018] [Indexed: 01/05/2023]
Abstract
In pseudo-micellar phase, the crystal growth is primarily achieved by the surface activity of the monomers in the presence of micelles. To ensure the maximum potential of surface activity of monomers in morphology control, a micellar phase is required. This account specifically focuses on the crystal growth control by the surface active monomers of conventional surfactants and that of water soluble polymers. It also distinguishes the mechanisms involved in the shape control driven by the micellar phase of micelle forming polymers, their role as nanoreactors, micellar stability, and micellar transitions from the monomeric phase. The fundamental basis of the crystal growth control by the surface active agents holds the key of using other non-convectional surface active species like proteins, carbohydrates, and bioactive polymers to achieve morphology control bionanomaterials for their specific biological applications.
Collapse
Affiliation(s)
- Mandeep Singh Bakshi
- Department of Natural and Applied Sciences, University of Wisconsin - Green Bay, 2420 Nicolet Drive, Green Bay, WI 54311-7001, USA.
| |
Collapse
|
23
|
Self-assembly of rarely polymer-grafted nanoparticles in dilute solutions and on a surface: From non-spherical vesicles to graphene-like sheets. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Yang J, Hu Y, Wang R, Xie D. Nanoparticle encapsulation in vesicles formed by amphiphilic diblock copolymers. SOFT MATTER 2017; 13:7840-7847. [PMID: 28930357 DOI: 10.1039/c7sm01354j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We investigated the co-assembly of nanoparticles P and amphiphilic diblock copolymers AB in selective solvents using a dissipative particle dynamics (DPD) method. By controlling the nanoparticle concentration and the interaction parameter between the hydrophobic blocks and the solvents, we found that the aggregation morphology can be changed from rod-like micelles to disk-like micelles and further to vesicles. The ratio of the hydrophobic/hydrophilic block and the nanoparticle concentration largely affects the structural characteristics of vesicles and the dispersion of nanoparticles. Copolymers with a longer hydrophobic block length are more likely to form vesicles with a smaller aqueous cavity size and vesicle size as well as a thicker wall. At the same time, the nanoparticles in the hydrophobic membrane tend to locate closer to the center of the vesicle and they become more compactly organized. A significant discovery has found that the larger the nanoparticle concentration, the smaller the aqueous cavity and the larger the vesicle size. We can also locate the nanoparticles at the center of spherical micelles or the hydrophobic membranes of vesicles by varying the nanoparticle concentration. This provides an effective and simple method to prepare size-controlled vesicles containing nanoparticles, project the localization of nanoparticles within the vesicles, and even tune the distance between the nanoparticles.
Collapse
Affiliation(s)
- Junying Yang
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | | | | | | |
Collapse
|
25
|
Wang ZD, Yan CF, Huang Y, Yi LQ. Dependence of size and morphology on shear flow for PS-based amphiphilic block copolymer micelles in aqueous solution. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-017-1927-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Shi R, Qian HJ, Lu ZY. Computer simulation study on the self-assembly of unimodal and bimodal polymer-grafted nanoparticles in a polymer melt. Phys Chem Chem Phys 2017; 19:16524-16532. [DOI: 10.1039/c7cp01905j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By performing comprehensive molecular dynamics simulations, the self-assembly behavior of polymer-grafted nanoparticles in a polymer matrix is investigated in this study. Short grafted chains on bimodal grafted NP surfaces favor the dispersion of NPs in the polymer matrix.
Collapse
Affiliation(s)
- Rui Shi
- State Key Laboratory of Supramolecular Structure and Materials
- Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry
- Changchun
- China
| | - Hu-Jun Qian
- State Key Laboratory of Supramolecular Structure and Materials
- Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry
- Changchun
- China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials
- Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry
- Changchun
- China
| |
Collapse
|
27
|
Zhou Y, Ma X, Zhang L, Lin J. Directed assembly of functionalized nanoparticles with amphiphilic diblock copolymers. Phys Chem Chem Phys 2017; 19:18757-18766. [DOI: 10.1039/c7cp03294c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We theoretically propose a simple approach to achieve soft nanoparticles with a self-patchiness nature, which are further directed to assemble into a rich variety of highly ordered superstructures.
Collapse
Affiliation(s)
- Yaru Zhou
- Shanghai Key Laboratory of Advanced Polymeric Materials
- State Key Laboratory of Bioreactor Engineering
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Xiaodong Ma
- Shanghai Key Laboratory of Advanced Polymeric Materials
- State Key Laboratory of Bioreactor Engineering
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Liangshun Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials
- State Key Laboratory of Bioreactor Engineering
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials
- State Key Laboratory of Bioreactor Engineering
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
| |
Collapse
|
28
|
Liu YT, Li YR, Wang X. Dynamic evolution of a vesicle formed by comb-like block copolymer-tethered nanoparticles: a dissipative particle dynamics simulation study. Phys Chem Chem Phys 2017; 19:27313-27319. [DOI: 10.1039/c7cp05196d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vesicles are well-sealed capsules that can store or transport substances.
Collapse
Affiliation(s)
- Ying-Tao Liu
- School of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan
- China
| | - Yan-Rong Li
- School of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan
- China
| | - Xin Wang
- School of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan
- China
| |
Collapse
|
29
|
Xiang W, Zhao S, Song X, Fang S, Wang F, Zhong C, Luo Z. Amphiphilic nanosheet self-assembly at the water/oil interface: computer simulations. Phys Chem Chem Phys 2017; 19:7576-7586. [DOI: 10.1039/c6cp08654c] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The self-assembly of amphiphilic Janus triangular-plates at the water/oil interface is simulated for the first time.
Collapse
Affiliation(s)
- Wenjun Xiang
- School of Chemistry and Chemical Engineering
- Sichuan University of Arts and Science
- Dazhou
- P. R. China
| | - Shuangliang Zhao
- State Key Laboratory of Chemical Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Xianyu Song
- Department of Mechanical and Electrical Engineering
- Dazhou Vocational and Technical College
- Dazhou
- P. R. China
| | - Shenwen Fang
- College of Chemistry and Chemical Engineering
- Southwest Petroleum University
- P. R. China
| | - Fen Wang
- School of Chemistry and Chemical Engineering
- Sichuan University of Arts and Science
- Dazhou
- P. R. China
| | - Cheng Zhong
- Department of Mechanical and Electrical Engineering
- Dazhou Vocational and Technical College
- Dazhou
- P. R. China
| | - Zhaoyang Luo
- Department of Mechanical and Electrical Engineering
- Dazhou Vocational and Technical College
- Dazhou
- P. R. China
| |
Collapse
|