1
|
Wang M, Li J, Zhang C, Liu G, Napolitano S, Wang D. Physical Aging of Polystyrene Confined in Anodic Aluminum Oxide Nanopores. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3471-3480. [PMID: 36802636 DOI: 10.1021/acs.langmuir.2c03505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We investigated the glassy dynamics of polystyrene (PS) confined in anodic aluminum oxide (AAO) nanopores by differential scanning calorimetry. Based on the outcome of our experiments, we show that the cooling rate applied to process the 2D confined PS melt has a significant impact on both the glass transition and the structural relaxation in the glassy state. A single glass transition temperature (Tg) is observed in quenched samples, while slow-cooled PS chains show two Tgs corresponding to a core-shell structure. The former phenomenon resembles what is observed in freestanding structures, while the latter is imputed to the adsorption of PS onto AAO walls. A more complex picture was drawn for physical aging. In the case of quenched samples, we observed a non-monotonic trend of the apparent aging rate that in 400 nm pores, reaches a value almost twice as larger than what is measured in bulk and decreases upon further confinement in smaller nanopores. For slow-cooled samples, by adequately varying the aging conditions, we were able to control the equilibration kinetics and either separate the two aging processes or induce an intermediate aging regime. We propose a possible explanation of these findings in terms of distribution in free volume and the presence of different aging mechanisms.
Collapse
Affiliation(s)
- Ming Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chunbo Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Guoming Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Simone Napolitano
- Laboratory of Polymer and Soft Matter Dynamics, Experimental Soft Matter and Thermal Physics (EST), Université Libre de Bruxelles (ULB), Brussels 1050, Belgium
| | - Dujin Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Minecka A, Tarnacka M, Soszka N, Hachuła B, Kamiński K, Kamińska E. Studying the Intermolecular Interactions, Structural Dynamics, and Non-Equilibrium Kinetics of Cilnidipine Infiltrated into Alumina and Silica Pores. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:533-544. [PMID: 36575053 DOI: 10.1021/acs.langmuir.2c02816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In the present study, the behavior of the calcium channel blocker cilnidipine (CLN) infiltrated into silica (SiO2) and anodic aluminum oxide (AAO) porous membranes characterized by a similar pore size (d = 8 nm and d = 10 nm, respectively) as well as the bulk sample has been investigated using differential scanning calorimetry, broadband dielectric spectroscopy (BDS), and Fourier-transform infrared spectroscopy (FTIR) techniques. The obtained data suggested the existence of two sets of CLN molecules in both confined systems (core and interfacial). They also revealed the lack of substantial differences in inter- and intramolecular dynamics of nanospatially restricted samples independently of the applied porous membranes. Moreover, the annealing experiments (isothermal time-dependent measurements) performed on the confined CLN clearly indicated that the whole equilibration process under confinement is governed by structural relaxation. It was also found that the βanneal parameters obtained from BDS and FTIR data upon equilibration of both confined samples are comparable (within 10%) to each other, while the equilibration constants are significantly different. This finding strongly emphasizes that there is a close connection between the inter- and intramolecular dynamics under nanospatial restriction.
Collapse
Affiliation(s)
- Aldona Minecka
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200Sosnowiec, Poland
| | - Magdalena Tarnacka
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 41-500Chorzow, Poland
| | - Natalia Soszka
- Institute of Chemistry, University of Silesia, 40-006Katowice, Poland
| | - Barbara Hachuła
- Institute of Chemistry, University of Silesia, 40-006Katowice, Poland
| | - Kamil Kamiński
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 41-500Chorzow, Poland
| | - Ewa Kamińska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200Sosnowiec, Poland
| |
Collapse
|
3
|
Tarnacka M, Kamińska E, Paluch M, Kamiński K. New Insights from Nonequilibrium Kinetics Studies on Highly Polar S-Methoxy-PC Infiltrated into Pores. J Phys Chem Lett 2022; 13:10464-10470. [PMID: 36326602 PMCID: PMC9661534 DOI: 10.1021/acs.jpclett.2c02672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Herein, the annealing of highly polar (S)-(-)-4-methoxymethyl-1,3-dioxolan-2-one (S-methoxy-PC) within alumina and silica porous membranes characterized by different pore diameters was studied by means of dielectric spectroscopy. We found a significant slowing down of the structural dynamics of confined S-methoxy-PC with annealing time below and, surprisingly, also above the glass transition temperatures of the interfacial layer, Tg,interfacial. Furthermore, unexpectedly, a change in the slope of temperature dependencies of the characteristic time scale of this process τanneal, at Tg,interfacial for all confined samples, was reported. By modeling τanneal(T), we noted that the observed enormous variation of τanneal results from a decrease of the pore radius due to the vitrification of the interfacial molecules. This indicates that the enhanced dynamics of confined materials upon cooling is mainly controlled by the interfacial molecules.
Collapse
Affiliation(s)
- Magdalena Tarnacka
- Institute
of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500Chorzow, Poland
| | - Ewa Kamińska
- Department
of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences
in Sosnowiec, Medical University of Silesia
in Katowice, Jagiellońska 4, 41-200Sosnowiec, Poland
| | - Marian Paluch
- Institute
of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500Chorzow, Poland
| | - Kamil Kamiński
- Institute
of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500Chorzow, Poland
| |
Collapse
|
4
|
Li J, Wang M, Shi G, Liu G, Wang L, Cavallo D, Wang D. Cooling Condition Determines the Transition Degree at Saturation of Form II in Isotactic Polybutene-1 Confined within Nanopores. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jing Li
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ming Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Guangyu Shi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Guoming Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Dario Cavallo
- Department of Chemistry and Industrial Chemistry, University of Genova, Genova 16146, Italy
| | - Dujin Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Kardasis P, Sakellariou G, Steinhart M, Floudas G. Non-equilibrium Effects of Polymer Dynamics under Nanometer Confinement: Effects of Architecture and Molar Mass. J Phys Chem B 2022; 126:5570-5581. [PMID: 35834553 DOI: 10.1021/acs.jpcb.2c03389] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The non-equilibrium dynamics of linear and star-shaped cis-1,4 polyisoprenes confined within nanoporous alumina is explored as a function of pore size, d, molar mass, and functionality (f = 2, 6, and 64). Two thermal protocols are tested: one resembling a quasi-static process (I) and another involving fast cooling followed by annealing (II). Although both protocols give identical equilibrium times, it is through protocol I that it is easier to extract the equilibrium times, teq, by the linear relationships of the characteristic peak frequencies with time and rate, respectively, as log(fmax) = C1 - k log(t) and log(fmax) = C2 + λ log(β). Both thermal protocols establish the existence of a critical temperature (at Tc, where k → 0 and λ → 0) below which non-equilibrium effects set-in. The critical temperature depends on the degree of confinement, 2Rg/d, and on molecular architecture. Strikingly, establishing equilibrium dynamics at all temperatures above the bulk, Tg, requires 2Rg/d ∼ 0.02, i.e., pore diameters that are much larger than the chain dimensions. This reflects non-equilibrium configurations of the adsorbed layer that extent away from the pore walls. The equilibrium times depend strongly on temperature, pore size, and functionality. In general, star-shaped polymers require longer times to reach equilibrium because of the higher tendency for adsorption. Both thermal protocols produced an increasing dielectric strength for the segmental and chain modes. The increase was beyond any densification, suggesting enhanced orientation correlations of subchain dipoles.
Collapse
Affiliation(s)
| | - Georgios Sakellariou
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Martin Steinhart
- Institut für Chemie neuer Materialien, Universität Osnabrück, D-49069 Osnabrück, Germany
| | - George Floudas
- Department of Physics, University of Ioannina, 45110 Ioannina, Greece.,Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| |
Collapse
|
6
|
Winkler R, Chat K, Unni AB, Dulski M, Laskowska M, Laskowski L, Adrjanowicz K. Glass Transition Dynamics of Poly(phenylmethylsiloxane) Confined within Alumina Nanopores with Different Atomic Layer Deposition (ALD) Coatings. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Roksana Winkler
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Katarzyna Chat
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Aparna Beena Unni
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Mateusz Dulski
- Institute of Materials Engineering, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Magdalena Laskowska
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland
| | - Lukasz Laskowski
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland
| | - Karolina Adrjanowicz
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| |
Collapse
|
7
|
Kardasis P, Oikonomopoulos A, Sakellariou G, Steinhart M, Floudas G. Effect of Star Architecture on the Dynamics of 1,4- cis-Polyisoprene under Nanometer Confinement. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c02212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Angelos Oikonomopoulos
- Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Georgios Sakellariou
- Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Martin Steinhart
- Institut für Chemie neuer Materialien, Universität Osnabrück, Osnabrück D-49069, Germany
| | - George Floudas
- Department of Physics, University of Ioannina, Ioannina 45110, Greece
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), Ioannina 45110, Greece
| |
Collapse
|
8
|
Winkler R, Tu W, Dulski M, Laskowski L, Adrjanowicz K. Effect of the Surface Polarity, Through Employing Nonpolar Spacer Groups, on the Glass-Transition Dynamics of Poly(phenyl methylsiloxane) Confined in Alumina Nanopores. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c02145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Roksana Winkler
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, Chorzow 41-500, Poland
- Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1, Chorzow 41-500, Poland
| | - Wenkang Tu
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, Chorzow 41-500, Poland
- Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1, Chorzow 41-500, Poland
| | - Mateusz Dulski
- Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1, Chorzow 41-500, Poland
- Institute of Materials Engineering, University of Silesia, 75 Pulku Piechoty 1a, Chorzow 41-500, Poland
| | - Lukasz Laskowski
- Institute of Nuclear Physics Polish Academy of Sciences, Krakow 31-342, Poland
| | - Karolina Adrjanowicz
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, Chorzow 41-500, Poland
- Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1, Chorzow 41-500, Poland
| |
Collapse
|
9
|
Tu CH, Zhou J, Butt HJ, Floudas G. Adsorption Kinetics of cis-1,4-Polyisoprene in Nanopores by In Situ Nanodielectric Spectroscopy. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00821] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chien-Hua Tu
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Jiajia Zhou
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | | | - George Floudas
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
- Department of Physics, University of Ioannina, 45110 Ioannina, Greece
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| |
Collapse
|
10
|
Tarnacka M, Geppert-Rybczyńska M, Dulski M, Grelska J, Jurkiewicz K, Grzybowska K, Kamiński K, Paluch M. Local structure and molecular dynamics of highly polar propylene carbonate derivative infiltrated within alumina and silica porous templates. J Chem Phys 2021; 154:064701. [PMID: 33588559 DOI: 10.1063/5.0040150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Herein, we examined the effect of finite size and wettability on the structural dynamics and the molecular arrangement of the propylene carbonate derivative, (S)-(-)-4-methoxymethyl-1,3-dioxolan-2-one (assigned as s-methoxy-PC), incorporated into alumina and silica porous templates of pore diameters d = 4 nm-10 nm using Raman and broadband dielectric spectroscopy, differential scanning calorimetry, and x-ray diffraction. It was demonstrated that only subtle changes in the molecular organization and short-range order of confined s-methoxy-PC molecules were detected. Yet, a significant deviation of the structural dynamics and depression of the glass transition temperatures, Tg, was found for all confined samples with respect to the bulk material. Interestingly, these changes correlate with neither the finite size effects nor the interfacial energy but seem to vary with wettability, generally. Nevertheless, for s-methoxy-PC infiltrated into native (more hydrophilic) and modified (more hydrophobic) silica templates of the same nanochannel size (d = 4 nm), a change in the dynamics and Tg was negligible despite a significant variation in wettability. These results indicated that although wettability might be a suitable variable to predict alteration of the structural dynamics and depression of the glass transition temperature, other factors, i.e., surface roughness and the density packing, might also have a strong contribution to the observed confinement effects.
Collapse
Affiliation(s)
- Magdalena Tarnacka
- Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzow, Poland
| | | | - Mateusz Dulski
- Silesian Center of Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| | - Joanna Grelska
- Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzow, Poland
| | - Karolina Jurkiewicz
- Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzow, Poland
| | - Katarzyna Grzybowska
- Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzow, Poland
| | - Kamil Kamiński
- Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzow, Poland
| | - Marian Paluch
- Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzow, Poland
| |
Collapse
|
11
|
Tu CH, Zhou J, Doi M, Butt HJ, Floudas G. Interfacial Interactions During In Situ Polymer Imbibition in Nanopores. PHYSICAL REVIEW LETTERS 2020; 125:127802. [PMID: 33016756 DOI: 10.1103/physrevlett.125.127802] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
Using in situ nanodielectric spectroscopy we demonstrate that the imbibition kinetics of cis-1,4-polyisoprene in native alumina nanopores proceeds in two time regimes both with higher effective viscosity than bulk. This finding is discussed by a microscopic picture that considers the competition from an increasing number of chains entering the pores and a decreasing number of fluctuating chain ends. The latter is a direct manifestation of increasing adsorption sites during flow. At the same time, the longest normal mode is somewhat longer than in bulk. This could reflect an increasing density of topological constraints of chains entering the pores with the longer loops formed by other chains.
Collapse
Affiliation(s)
- Chien-Hua Tu
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Jiajia Zhou
- School of Chemistry, Beihang University, Key Lab Bioinspired Smart Interfacial Science & Technology of Ministry of Education, Beijing 100191, China
- Center of Soft Matter Physics and Its Applications, Beihang University, Beijing 100191, China
| | - Masao Doi
- Center of Soft Matter Physics and Its Applications, Beihang University, Beijing 100191, China
| | | | - George Floudas
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
- Department of Physics, University of Ioannina, 45110 Ioannina, Greece
- University Research Center of Ioannina (URCI)-Institute of Materials Science and Computing, 45110 Ioannina, Greece
| |
Collapse
|
12
|
Talik A, Tarnacka M, Geppert-Rybczyńska M, Hachuła B, Bernat R, Chrzanowska A, Kaminski K, Paluch M. Are hydrogen supramolecular structures being suppressed upon nanoscale confinement? The case of monohydroxy alcohols. J Colloid Interface Sci 2020; 576:217-229. [PMID: 32417683 DOI: 10.1016/j.jcis.2020.04.084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 11/27/2022]
Abstract
In this paper, the molecular dynamics, H-bonding pattern and wettability of the primary and secondary monohydroxyalcohols, 2-ethyl-1-hexanol (2E1H), 2-ethyl-1-butanol (2E1B) and 5-methyl-3-heptanol (5M3H) infiltrated into native and functionalized silica and alumina pores having pore diameters, d = 4 nm and d = 10 nm, have been studied with the use of Broadband Dielectric (BDS) and Fourier Transform InfraRed (FTIR) spectroscopies, as well as contact angle measurements. We found significant differences in the behavior of alcohols forming chain- (2E1H, 2E1B) or micelle-like (5M3H) supramolecular structures despite of their similarities in the wettability and interfacial energy. It turned out that nanoassociates as well as H-bonds are more or less affected by the confinement dependently on the chemical structure and alcohol order. Moreover, a peculiar behavior of the self-assemblies at the interface was noted in the latter material (5M3H). Finally, it was found that irrespectively to the sample, type of pores, functionalization, the temperature evolution of Debye relaxation times, τD, of the confined systems deviates from the bulk behavior always at similar τD due to vitrification of the interfacial layer. This finding is a clear indication that unexpectedly dynamics (mobility) of the supramolecular structures close to the hydrophilic and hydrophobic surfaces is similar in each system.
Collapse
Affiliation(s)
- Agnieszka Talik
- Institute of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland; Silesian Center of Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland.
| | - Magdalena Tarnacka
- Institute of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland; Silesian Center of Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | | | - Barbara Hachuła
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| | - Roksana Bernat
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| | - Agnieszka Chrzanowska
- Department of Physical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, M. Curie-Sklodowska Sq. 3, 20-031, Lublin, Poland
| | - Kamil Kaminski
- Institute of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland; Silesian Center of Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland.
| | - Marian Paluch
- Institute of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland; Silesian Center of Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
13
|
Tarnacka M, Wojtyniak M, Brzózka A, Talik A, Hachuła B, Kamińska E, Sulka GD, Kaminski K, Paluch M. Unique Behavior of Poly(propylene glycols) Confined within Alumina Templates Having a Nanostructured Interface. NANO LETTERS 2020; 20:5714-5719. [PMID: 32559092 PMCID: PMC7588129 DOI: 10.1021/acs.nanolett.0c01116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Herein we show that the nanostructured interface obtained via modulation of the pore size has a strong impact on the segmental and chain dynamics of two poly(propylene glycol) (PPG) derivatives with various molecular weights (Mn = 4000 g/mol and Mn = 2000 g/mol). In fact, a significant acceleration of the dynamics was observed for PPG infiltrated into ordinary alumina templates (Dp = 36 nm), while bulklike behavior was found for samples incorporated into membranes of modulated diameter (19 nm < Dp < 28 nm). We demostrated that the modulation-induced roughness reduces surface interactions of polymer chains near the interface with respect to the ones adsorbed to the ordinary nanochannels. Interestingly, this effect is noted despite the enhanced wettability of PPG in the latter system. Consequently, as a result of weaker H-bonding surface interactions, the conformation of segments seems to locally mimic the bulk arrangement, leading to bulklike dynamics, highlighting the crucial impact of the interface on the overall behavior of confined materials.
Collapse
Affiliation(s)
- Magdalena Tarnacka
- Institute
of Physics, University of Silesia in Katowice, ul. 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian
Center of Education and Interdisciplinary Research, University of Silesia in Katowice, ul. 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Marcin Wojtyniak
- Institute
of Physics, University of Silesia in Katowice, ul. 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian
Center of Education and Interdisciplinary Research, University of Silesia in Katowice, ul. 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Agnieszka Brzózka
- Department
of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Krakow, Poland
| | - Agnieszka Talik
- Institute
of Physics, University of Silesia in Katowice, ul. 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian
Center of Education and Interdisciplinary Research, University of Silesia in Katowice, ul. 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Barbara Hachuła
- Institute
of Chemistry, University of Silesia in Katowice, ul. Szkolna 9, 40-007 Katowice, Poland
| | - Ewa Kamińska
- Department
of Pharmacognosy and Phytochemistry, Faculty
of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia
in Katowice, ul. Jagiellonska 4, 41-200 Sosnowiec, Poland
| | - Grzegorz D. Sulka
- Department
of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Krakow, Poland
| | - Kamil Kaminski
- Institute
of Physics, University of Silesia in Katowice, ul. 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian
Center of Education and Interdisciplinary Research, University of Silesia in Katowice, ul. 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Marian Paluch
- Institute
of Physics, University of Silesia in Katowice, ul. 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian
Center of Education and Interdisciplinary Research, University of Silesia in Katowice, ul. 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
14
|
Chat K, Tu W, Beena Unni A, Geppert-Rybczyńska M, Adrjanowicz K. Study on the glass transition dynamics and crystallization kinetics of molecular liquid, dimethyl phthalate, confined in Anodized Aluminum Oxide (AAO) nanopores with Atomic Layer Deposition (ALD) coatings. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Napolitano S. Irreversible adsorption of polymer melts and nanoconfinement effects. SOFT MATTER 2020; 16:5348-5365. [PMID: 32419002 DOI: 10.1039/d0sm00361a] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
For almost a decade, growing experimental evidence has revealed a strong correlation between the properties of nanoconfined polymers and the number of chains irreversibly adsorbed onto nonrepulsive interfaces, e.g. the supporting substrate of thin polymer coatings, or nanofillers dispersed in polymer melts. Based on such a correlation, it has already been possible to tailor structural and dynamics properties - such as the glass transition temperature, the crystallization rate, the thermal expansion coefficients, the viscosity and the wettability - of nanomaterials by controlling the adsorption kinetics. This evidence indicates that irreversible adsorption affects nanoconfinement effects. More recently, also the opposite phenomenon was experimentally observed: nanoconfinement alters interfacial interactions and, consequently, also the number of chains adsorbed in equilibrium conditions. In this review we discuss this intriguing interplay between irreversible adsorption and nanoconfinement effects in ultrathin polymer films. After introducing the methods currently used to prepare adsorbed layers and to measure the number of irreversibly adsorbed chains, we analyze the models employed to describe the kinetics of adsorption in polymer melts. We then discuss the structure of adsorbed polymer layers, focusing on the complex macromolecular architecture of interfacial chains and on their thermal expansion; we examine the way in which the structure of the adsorbed layer affects the thermal glass transition temperature, vitrification, and crystallization. By analyzing segmental dynamics of 1D confined systems, we describe experiments to track the changes in density during adsorption. We conclude this review with an analysis of the impact of nanoconfinement on adsorption, and a perspective on future work where we also address the key ideas of irreversibility, equilibration and long-range interactions.
Collapse
Affiliation(s)
- Simone Napolitano
- Laboratory of Polymer and Soft Matter Dynamics, Experimental Soft Matter and Thermal Physics (EST), Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Bruxelles 1050, Belgium.
| |
Collapse
|
16
|
Kamińska E, Minecka A, Tarnacka M, Kamiński K, Paluch M. Breakdown of the isochronal structural (α) and secondary (JG β) exact superpositioning in probucol - A low molecular weight pharmaceutical. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Panagopoulou A, Rodríguez-Tinoco C, White RP, Lipson JEG, Napolitano S. Substrate Roughness Speeds Up Segmental Dynamics of Thin Polymer Films. PHYSICAL REVIEW LETTERS 2020; 124:027802. [PMID: 32004047 DOI: 10.1103/physrevlett.124.027802] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Indexed: 06/10/2023]
Abstract
We show that the segmental mobility of thin films of poly(4-chlorostyrene) prepared under nonequilibrium conditions gets enhanced in the proximity of rough substrates. This trend is in contrast to existing treatments of roughness which conclude it is a source of slower dynamics, and to measurements of thin films of poly(2-vinylpiridine), whose dynamics is roughness invariant. Our experimental evidence indicates the faster interfacial dynamics originate from a reduction in interfacial density, due to the noncomplete filling of substrate asperities. Importantly, our results agree with the same scaling that describes the density dependence of bulk materials, correlating segmental mobility to a term exponential in the specific volume, and with empirical relations linking an increase in glass transition temperature to larger interfacial energy.
Collapse
Affiliation(s)
- Anna Panagopoulou
- Laboratory of Polymer and Soft Matter Dynamics, Experimental Soft Matter and Thermal Physics (EST), Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Bruxelles 1050, Belgium
| | - Cristian Rodríguez-Tinoco
- Laboratory of Polymer and Soft Matter Dynamics, Experimental Soft Matter and Thermal Physics (EST), Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Bruxelles 1050, Belgium
| | - Ronald P White
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Jane E G Lipson
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Simone Napolitano
- Laboratory of Polymer and Soft Matter Dynamics, Experimental Soft Matter and Thermal Physics (EST), Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Bruxelles 1050, Belgium
| |
Collapse
|
18
|
Talik A, Tarnacka M, Wojtyniak M, Kaminska E, Kaminski K, Paluch M. The influence of the nanocurvature on the surface interactions and molecular dynamics of model liquid confined in cylindrical pores. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Safari M, Maiz J, Shi G, Juanes D, Liu G, Wang D, Mijangos C, Alegría Á, Müller AJ. How Confinement Affects the Nucleation, Crystallization, and Dielectric Relaxation of Poly(butylene succinate) and Poly(butylene adipate) Infiltrated within Nanoporous Alumina Templates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15168-15179. [PMID: 31621336 DOI: 10.1021/acs.langmuir.9b02215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This work describes the successful melt infiltration of poly(butylene succinate) (PBS) and poly(butylene adipate) (PBA) within 70 nm diameter anodic aluminum oxide (AAO) templates. The infiltrated samples were characterized by SEM, Raman, and FTIR spectroscopy. The crystallization behaviors and crystalline structures of both polymers, bulk and confined, were analyzed by differential scanning calorimetry (DSC) and grazing incidence wide angle X-ray scattering (GIWAXS). DSC revealed that a change in the nucleation process occurred from heterogeneous nucleation for bulk samples to homogeneous nucleation for infiltrated PBA and to surface-induced nucleation for infiltrated PBS. GIWAXS results indicate that PBS nanofibers crystallize in the α-phase, as well as their bulk samples. However, PBA nanofibers crystallize just in the β-phase, whereas PBA bulk samples crystallize in a mixture of α- and β-phases. The crystal orientation within the pores was determined, and differences between PBS and PBA were also found. Finally, broadband dielectric spectroscopy was applied to study the segmental dynamics for bulk and infiltrated samples. The glass temperature was found to significantly decrease in the PBS case upon infiltration, while that of PBA remained unchanged. These differences were correlated with the higher affinity of PBS to the AAO walls than PBA, in accordance with their nucleation behavior (surface-induced versus homogeneous nucleation, respectively).
Collapse
Affiliation(s)
- Maryam Safari
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry , University of the Basque Country UPV/EHU , Paseo Manuel de Lardizábal, 3 , 20018 Donostia-San Sebastián , Spain
| | - Jon Maiz
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry , University of the Basque Country UPV/EHU , Paseo Manuel de Lardizábal, 3 , 20018 Donostia-San Sebastián , Spain
| | - Guangyu Shi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, the Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Diana Juanes
- Instituto de Ciencia y Tecnología de Polímeros , Consejo Superior de Investigaciones Científicas, ICTP-CSIC , Juan de la Cierva 3 , Madrid 28006 , Spain
| | - Guoming Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, the Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Dujin Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, the Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Carmen Mijangos
- Instituto de Ciencia y Tecnología de Polímeros , Consejo Superior de Investigaciones Científicas, ICTP-CSIC , Juan de la Cierva 3 , Madrid 28006 , Spain
- Departamento de Física de Materiales , University of the Basque Country UPV/EHU and Centro de Física de Materiales (CFM) (CSIC-UPV/EHU) - Materials Physics Center (MPC) , Paseo Manuel de Lardizabal 5 , 20018 San Sebastián , Spain
| | - Ángel Alegría
- Departamento de Física de Materiales , University of the Basque Country UPV/EHU and Centro de Física de Materiales (CFM) (CSIC-UPV/EHU) - Materials Physics Center (MPC) , Paseo Manuel de Lardizabal 5 , 20018 San Sebastián , Spain
| | - Alejandro J Müller
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry , University of the Basque Country UPV/EHU , Paseo Manuel de Lardizábal, 3 , 20018 Donostia-San Sebastián , Spain
- IKERBASQUE, Basque Foundation for Science , 48013 Bilbao , Spain
| |
Collapse
|
20
|
Kinsey T, Mapesa E, Cosby T, He Y, Hong K, Wang Y, Iacob C, Sangoro J. Elucidating the impact of extreme nanoscale confinement on segmental and chain dynamics of unentangled poly(cis-1,4-isoprene). THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:137. [PMID: 31650417 DOI: 10.1140/epje/i2019-11907-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
Broadband dielectric spectroscopy is employed to probe dynamics in low molecular weight poly(cis-1,4-isoprene) (PI) confined in unidirectional silica nanopores with mean pore diameter, D, of 6.5 nm. Three molecular weights of PI (3, 7 and 10 kg/mol) were chosen such that the ratio of D to the polymer radius of gyration, Rg, is varied from 3.4, 2.3 to 1.9, respectively. It is found that the mean segmental relaxation rate remains bulk-like but an additional process arises at lower frequencies with increasing molecular weight (decreasing D/Rg. In contrast, the mean relaxation rates of the end-to-end dipole vector corresponding to chain dynamics are found to be slightly slower than that in the bulk for the systems approaching D/Rg ∼ 2, but faster than the bulk for the polymer with the largest molecular weight. The analysis of the spectral shapes of the chain relaxation suggests that the resulting dynamics of the 10kg/mol PI confined at length-scales close to that of the Rg are due to non-ideal chain conformations under confinement decreasing the chain relaxation times. The understanding of these faster chain dynamics of polymers under extreme geometrical confinement is necessary in designing nanodevices that contain polymeric materials within substrates approaching the molecular scale.
Collapse
Affiliation(s)
- Thomas Kinsey
- Department of Chemical and Biomolecular Engineering, University of Tennessee, 37996, Knoxville, TN, USA
| | - Emmanuel Mapesa
- Department of Chemical and Biomolecular Engineering, University of Tennessee, 37996, Knoxville, TN, USA
| | - Tyler Cosby
- Department of Chemical and Biomolecular Engineering, University of Tennessee, 37996, Knoxville, TN, USA
| | - Youjun He
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA
| | - Kunlun Hong
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA
| | - Yangyang Wang
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA
| | - Ciprian Iacob
- National Research and Development Institute for Cryogenic and Isotopic Technologies, ICSI Rm. Valcea, Rm. Valcea, Romania
- Karlsruhe Institute of Technology (KIT), Institute for Chemical Technology and Polymer Chemistry, 76128, Karlsruhe, Germany
| | - Joshua Sangoro
- Department of Chemical and Biomolecular Engineering, University of Tennessee, 37996, Knoxville, TN, USA.
| |
Collapse
|
21
|
Tu CH, Steinhart M, Butt HJ, Floudas G. In Situ Monitoring of the Imbibition of Poly(n-butyl methacrylates) in Nanoporous Alumina by Dielectric Spectroscopy. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01383] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chien-Hua Tu
- Max Planck Institute for Polymer Research, D-55128 Mainz, Germany
| | - Martin Steinhart
- Institut für Chemie neuer Materialien, Universität Osnabrück, D-49069 Osnabrück, Germany
| | | | - George Floudas
- Max Planck Institute for Polymer Research, D-55128 Mainz, Germany
- Department of Physics, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
22
|
Shi G, Guan Y, Liu G, Müller AJ, Wang D. Segmental Dynamics Govern the Cold Crystallization of Poly(lactic acid) in Nanoporous Alumina. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00542] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Guangyu Shi
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Guan
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoming Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alejandro J. Müller
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain
| | - Dujin Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Politidis C, Alexandris S, Sakellariou G, Steinhart M, Floudas G. Dynamics of Entangled cis-1,4-Polyisoprene Confined to Nanoporous Alumina. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00523] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | | | - Georgios Sakellariou
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Martin Steinhart
- Institut für Chemie neuer Materialien, Universität Osnabrück, D-49069 Osnabrück, Germany
| | - George Floudas
- Department of Physics, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
24
|
Adrjanowicz K, Paluch M. Discharge of the Nanopore Confinement Effect on the Glass Transition Dynamics via Viscous Flow. PHYSICAL REVIEW LETTERS 2019; 122:176101. [PMID: 31107059 DOI: 10.1103/physrevlett.122.176101] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Indexed: 06/09/2023]
Abstract
Using dielectric spectroscopy, we demonstrate that confinement-induced changes in the glass transition dynamics, as observed for polymethylphenylsiloxane in alumina nanopores, reveal a pronounced nonequilibrium nature. Our results indicate that glass formers confined to nanopores are able to recover their bulklike mobility. We found that the characteristic time constant of such an equilibration process correlates with an extremely slow viscous flow rate in cylindrical channels of nanometer size. Thus, all the way to equilibrium, confinement effects seen in faster segmental dynamics are released through the viscous flow which eventually helps to eliminate surplus volume gained by nanoconstrained polymers upon cooling.
Collapse
Affiliation(s)
- K Adrjanowicz
- Institute of Physics, University of Silesia, Ulica 75 Pulku Piechoty 1, 41-500 Chorzow, Poland and Silesian Center for Education and Interdisciplinary Research (SMCEBI), Ulica 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - M Paluch
- Institute of Physics, University of Silesia, Ulica 75 Pulku Piechoty 1, 41-500 Chorzow, Poland and Silesian Center for Education and Interdisciplinary Research (SMCEBI), Ulica 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| |
Collapse
|
25
|
Tarnacka M, Talik A, Kamińska E, Geppert-Rybczyńska M, Kaminski K, Paluch M. The Impact of Molecular Weight on the Behavior of Poly(propylene glycol) Derivatives Confined within Alumina Templates. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00209] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | | | - Ewa Kamińska
- Department of Pharmacognosy and Phytochemistry, Medical University of Silesia in Katowice,School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Jagiellonska 4, 41-200 Sosnowiec, Poland
| | | | | | | |
Collapse
|
26
|
Kipnusu WK, Elmahdy MM, Elsayed M, Krause-Rehberg R, Kremer F. Counterbalance between Surface and Confinement Effects As Studied for Amino-Terminated Poly(propylene glycol) Constraint in Silica Nanopores. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02687] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Wycliffe K. Kipnusu
- GROC.UJI, Institute of New Imaging Technologies, Universitat Jaume I, Avda. Sos Baynat s/n, 12071 Castellón, Spain
| | - Mahdy M. Elmahdy
- Department of Physics, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
| | - Mohamed Elsayed
- Department of Physics, Martin Luther University Halle, 06099 Halle, Germany
- Department of Physics, Faculty of Science, Minia University, 61519 Minia, Egypt
| | | | - Friedrich Kremer
- Peter-Debye-Institute, University of Leipzig, Linnéstraße 5, 04103 Leipzig, Germany
| |
Collapse
|
27
|
White RP, Lipson JEG. Connecting Pressure-Dependent Dynamics to Dynamics under Confinement: The Cooperative Free Volume Model Applied to Poly(4-chlorostyrene) Bulk and Thin Films. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01392] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Ronald P. White
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Jane E. G. Lipson
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
28
|
Talik A, Tarnacka M, Grudzka-Flak I, Maksym P, Geppert-Rybczynska M, Wolnica K, Kaminska E, Kaminski K, Paluch M. The Role of Interfacial Energy and Specific Interactions on the Behavior of Poly(propylene glycol) Derivatives under 2D Confinement. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00658] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Agnieszka Talik
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center of Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Magdalena Tarnacka
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center of Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Iwona Grudzka-Flak
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center of Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Paulina Maksym
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center of Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | | | - Kamila Wolnica
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center of Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Ewa Kaminska
- Department of Pharmacognosy and Phytochemistry, Medical University of Silesia in Katowice, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Jagiellonska 4, 41-200 Sosnowiec, Poland
| | - Kamil Kaminski
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Marian Paluch
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center of Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
29
|
Xu H, Song Y, Jia E, Zheng Q. Dynamics heterogeneity in silica-filled nitrile butadiene rubber. J Appl Polym Sci 2018. [DOI: 10.1002/app.46223] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Huilong Xu
- Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Yihu Song
- Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Zhejiang University; Hangzhou 310027 China
| | - Erwen Jia
- Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Qiang Zheng
- Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|
30
|
Zhang C, Sha Y, Zhang Y, Cai T, Li L, Zhou D, Wang X, Xue G. Nanostructures and Dynamics of Isochorically Confined Amorphous Drug Mediated by Cooling Rate, Interfacial, and Intermolecular Interactions. J Phys Chem B 2017; 121:10704-10716. [PMID: 29111765 DOI: 10.1021/acs.jpcb.7b08545] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The production and stabilization of amorphous drugs by the nanoconfinement effect has recently become a research hotspot in pharmaceutical sciences. Herein, two guest/host systems, indomethacin (IMC) and griseofulvin (GSF) confined in anodic aluminum oxide (AAO) templates with different pore diameters (25-250 nm) are investigated by differential scanning calorimetry (DSC) and broadband dielectric spectroscopy (BDS). The crystallization of the confined drugs is suppressed, and their glass transition temperatures show an evident pore-size dependency. Moreover, a combination of dielectric and calorimetric results demonstrates that the significant change in the temperature dependence of the structural relaxation time during the cooling process is attributed to the vitrification of the interfacial molecules and the local density heterogeneity under isochoric confinement. Interestingly, compared with the case of IMC/AAO, which can be described by a typical two-layer model, GSF/AAO presents an rare scenario of three glass transition temperatures under fast cooling (40-10 K/min), indicating that there exists a thermodynamic nonequilibrium interlayer between the bulk-like core and interfacial layer. In contrast, the slow cooling process (0.5 K/min) would lead confined GSF into the stable core-shell nanostructure. Using surface modification, the interfacial effect is confirmed to be an important reason for the different phenomena between these two guest/host systems, and intermolecular hydrogen bonding is also suggested to be emphasized considering the long-range effect of interfacial interactions. Our results not only provide insight into the glass transition behavior of geometrically confined supercooled liquids, but also offer a means of adjusting and stabilizing the nanostructure of amorphous drugs under two-dimensional confinement.
Collapse
Affiliation(s)
- Chen Zhang
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Nanjing University , Nanjing 210093, P. R. China
| | - Ye Sha
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Nanjing University , Nanjing 210093, P. R. China
| | - Yue Zhang
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Nanjing University , Nanjing 210093, P. R. China
| | - Ting Cai
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, and Department of Pharmaceutics, College of Pharmacy, China Pharmaceutical University , Nanjing 210009, P. R. China
| | - Linling Li
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Nanjing University , Nanjing 210093, P. R. China
| | - Dongshan Zhou
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Nanjing University , Nanjing 210093, P. R. China
| | - Xiaoliang Wang
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Nanjing University , Nanjing 210093, P. R. China
| | - Gi Xue
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Nanjing University , Nanjing 210093, P. R. China
| |
Collapse
|
31
|
Panagopoulou A, Napolitano S. Irreversible Adsorption Governs the Equilibration of Thin Polymer Films. PHYSICAL REVIEW LETTERS 2017; 119:097801. [PMID: 28949580 DOI: 10.1103/physrevlett.119.097801] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Indexed: 06/07/2023]
Abstract
We demonstrate that the enhanced segmental motion commonly observed in spin cast thin polymer films is a nonequilibrium phenomenon. In the presence of nonrepulsive interfaces, prolonged annealing in the liquid state allows, in fact, recovering bulk segmental mobility. Our measurements prove that, while the fraction of unrelaxed chains increases upon nanoconfinement, the dynamics of equilibration is almost unaffected by the film thickness. We show that the rate of equilibration of nanoconfined chains does not depend on the structural relaxation process but on the feasibility to form an adsorbed layer. We propose that the equilibration of the thin polymer melts is driven by the slow relaxation of interfacial chains upon irreversible adsorption on the confining walls.
Collapse
Affiliation(s)
- Anna Panagopoulou
- Laboratory of Polymer and Soft Matter Dynamics, Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Bâtiment NO, Bruxelles 1050, Belgium
| | - Simone Napolitano
- Laboratory of Polymer and Soft Matter Dynamics, Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Bâtiment NO, Bruxelles 1050, Belgium
| |
Collapse
|
32
|
Tarnacka M, Madejczyk O, Kaminski K, Paluch M. Time and Temperature as Key Parameters Controlling Dynamics and Properties of Spatially Restricted Polymers. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00616] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Magdalena Tarnacka
- Institute
of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian
Center of Education and Interdisciplinary Research, University of Silesia, ul. 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Olga Madejczyk
- Institute
of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian
Center of Education and Interdisciplinary Research, University of Silesia, ul. 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Kamil Kaminski
- Institute
of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian
Center of Education and Interdisciplinary Research, University of Silesia, ul. 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Marian Paluch
- Institute
of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian
Center of Education and Interdisciplinary Research, University of Silesia, ul. 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
33
|
Casalini R, Labardi M, Roland CM. Dynamics of poly(vinyl methyl ketone) thin films studied by local dielectric spectroscopy. J Chem Phys 2017; 146:203315. [PMID: 28571366 DOI: 10.1063/1.4977785] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Local dielectric spectroscopy, which entails measuring the change in resonance frequency of the conducting tip of an atomic force microscope to determine the complex permittivity of a sample with high spatial (lateral) resolution, was employed to characterize the dynamics of thin films of poly(vinyl methyl ketone) (PVMK) having different substrate and top surface layers. A free surface yields the usual speeding up of the segmental dynamics, corresponding to a glass transition suppression of 6.5° for 18 nm film thickness. This result is unaffected by the presence of a glassy, compatible polymer, poly-4-vinyl phenol (PVPh), between the metal substrate and the PVMK. However, covering the top surface with a thin layer of the PVPh suppresses the dynamics. The speeding up of PVMK segmental motions observed for a free surface is absent due to interfacial interactions of the PVMK with the glass layer, an effect not seen when the top layer is an incompatible polymer.
Collapse
Affiliation(s)
- R Casalini
- Chemistry Division, Naval Research Laboratory, Washington, DC 20375-5320, USA
| | - M Labardi
- CNR-IPCF, SS Pisa, Largo Pontecorvo 3, I-56127 Pisa, Italy
| | - C M Roland
- Chemistry Division, Naval Research Laboratory, Washington, DC 20375-5320, USA
| |
Collapse
|
34
|
Napolitano S, Glynos E, Tito NB. Glass transition of polymers in bulk, confined geometries, and near interfaces. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:036602. [PMID: 28134134 DOI: 10.1088/1361-6633/aa5284] [Citation(s) in RCA: 257] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
When cooled or pressurized, polymer melts exhibit a tremendous reduction in molecular mobility. If the process is performed at a constant rate, the structural relaxation time of the liquid eventually exceeds the time allowed for equilibration. This brings the system out of equilibrium, and the liquid is operationally defined as a glass-a solid lacking long-range order. Despite almost 100 years of research on the (liquid/)glass transition, it is not yet clear which molecular mechanisms are responsible for the unique slow-down in molecular dynamics. In this review, we first introduce the reader to experimental methodologies, theories, and simulations of glassy polymer dynamics and vitrification. We then analyse the impact of connectivity, structure, and chain environment on molecular motion at the length scale of a few monomers, as well as how macromolecular architecture affects the glass transition of non-linear polymers. We then discuss a revised picture of nanoconfinement, going beyond a simple picture based on interfacial interactions and surface/volume ratio. Analysis of a large body of experimental evidence, results from molecular simulations, and predictions from theory supports, instead, a more complex framework where other parameters are relevant. We focus discussion specifically on local order, free volume, irreversible chain adsorption, the Debye-Waller factor of confined and confining media, chain rigidity, and the absolute value of the vitrification temperature. We end by highlighting the molecular origin of distributions in relaxation times and glass transition temperatures which exceed, by far, the size of a chain. Fast relaxation modes, almost universally present at the free surface between polymer and air, are also remarked upon. These modes relax at rates far larger than those characteristic of glassy dynamics in bulk. We speculate on how these may be a signature of unique relaxation processes occurring in confined or heterogeneous polymeric systems.
Collapse
Affiliation(s)
- Simone Napolitano
- Laboratory of Polymer and Soft Matter Dynamics, Faculté des Sciences, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium
| | | | | |
Collapse
|
35
|
Tarnacka M, Chrobok A, Matuszek K, Golba S, Maksym P, Kaminski K, Paluch M. Polymerization of Monomeric Ionic Liquid Confined within Uniaxial Alumina Pores as a New Way of Obtaining Materials with Enhanced Conductivity. ACS APPLIED MATERIALS & INTERFACES 2016; 8:29779-29790. [PMID: 27709888 DOI: 10.1021/acsami.6b10666] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Broadband dielectric spectroscopy (BDS) and differential scanning calorimetry (DSC) have been employed to probe dynamics and charge transport of 1-butyl-3-vinylimidazolium bis(trifluoromethanesulfonyl)imide ([bvim][NTf2]) confined in native uniaxial AAO pores as well as to study kinetics of radical polymerization of the examined compound as a function of the degree of confinement. Subsequently, the electronic conductivity of the produced polymers was investigated. As observed, polymerization carried out at T = 363 K proceeds faster under confinement with some saturation effect observed for the sample in pores of smaller diameter. Obtained results were discussed in the context of the very recent reports showing that the free volume of the confined material is higher with respect to the bulk one. It was also noted that conductivity of poly[bvim][NTf2] is significantly higher with respect to the macromolecules obtained upon bulk polymerization. Moreover, charge transport of the confined macromolecules is even higher when compared to the bulk monomeric ionic liquid at some thermodynamic conditions. Additionally, the molecular weight, Mw, of the confined-synthesized polymers is significantly higher with respect to the bulk-synthesized material. Interestingly, both parameters, (i) the enhancement of σdc and (ii) the increase in Mw, can be tuned and controlled by the application of the appropriate confinement. Consequently, those results are quite promising in the context of development of the fabrication of polymerized ionic liquids (PILs) nanomaterials with unique properties and morphologies, which can be further easily applied in the field of nanotechnology.
Collapse
Affiliation(s)
- Magdalena Tarnacka
- Institute of Physics, University of Silesia , Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, University of Silesia , 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Anna Chrobok
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology , Krzywoustego 4, 44-100 Gliwice, Poland
| | - Karolina Matuszek
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology , Krzywoustego 4, 44-100 Gliwice, Poland
| | - Sylwia Golba
- Institute of Materials Science, University of Silesia , 75 Pulk Piechoty 1A, 41-500 Chorzow, Poland
| | - Paulina Maksym
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology , Strzody 9, 44-100 Gliwice, Poland
| | - Kamil Kaminski
- Institute of Physics, University of Silesia , Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, University of Silesia , 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Marian Paluch
- Institute of Physics, University of Silesia , Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, University of Silesia , 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|