1
|
Johnson B, Sankara Raman A, Narla A, Jhulki S, Chen L, Marder SR, Ramprasad R, Turcheniuk K, Yushin G. Polyphosphazene-Based Anion-Anchored Polymer Electrolytes For All-Solid-State Lithium Metal Batteries. ACS OMEGA 2024; 9:15410-15420. [PMID: 38585116 PMCID: PMC10993324 DOI: 10.1021/acsomega.3c10311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 04/09/2024]
Abstract
Safety concerns of traditional liquid electrolytes, especially when paired with lithium (Li) metal anodes, have stimulated research of solid polymer electrolytes (SPEs) to exploit the superior thermal and mechanical properties of polymers. Polyphosphazenes are primarily known for their use as flame retardant materials and have demonstrated high Li-ion conductivity owing to their highly flexible P = N backbone which promotes Li-ion conduction via inter- and intrachain hopping along the polymer backbone. While polyphosphazenes are largely unexplored as SPEs in the literature, a few existing examples showed promising ionic conductivity. By anchoring the anion to the polymer backbone, one may primarily allow the movement of Li ions, alleviating the detrimental effects of polarization that are common in conventional dual-ion conducting SPEs. Anion-anchored SPEs, known as single Li-ion conducting solid polymer electrolytes (SLiC-SPEs), exhibit high Li-ion transference numbers (tLi+), which limits Li dendrite growth, thus further increasing the safety of SPEs. However, previously reported SLiC-SPEs suffer from inadequate ionic conductivity, small electrochemical stability windows (ESWs), and limited cycling stability. Herein, we report three polyphosphazene-based SLiC-SPEs comprising lithiated polyphosphazenes. The SLiC polyphosphazenes were prepared through a facile synthesis route, opening the door for enhanced tunability of polymer properties via facile macromolecular nucleophilic substitution and subsequent lithiation. State-of-the-art characterization techniques, such as differential scanning calorimetry (DSC), electrochemical impedance spectroscopy (EIS), and solid-state nuclear magnetic resonance spectroscopy (ssNMR) were employed to probe the effect of the polymer structure on Li-ion dynamics and other electrochemical properties. Produced SPEs showed thermal stability up to ∼208 °C with ionic conductivities comparable to that of the best-reported SLiC-SPEs that definitively comprise no solvents or plasticizers. Among the three lithiated polyphosphazenes, the SPE containing dilithium poly[bis(trifluoroethylamino)phosphazene] (pTFAP2Li) exhibited the most promising electrochemical characteristics with tLi+ of 0.76 and compatibility with both Li metal anodes and LiFePO4 (LFP) cathodes; through 40 cycles at 100 °C, the PEO-pTFAP2Li blend showed 81.2% capacity utilization and 86.8% capacity retention. This work constitutes one of the first successful demonstrations of the cycling performance of a true all-solid-state Li-metal battery using SLiC polyphosphazene SPEs.
Collapse
Affiliation(s)
- Billy
R. Johnson
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ashwin Sankara Raman
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Aashray Narla
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Samik Jhulki
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Lihua Chen
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Seth R. Marder
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Rampi Ramprasad
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Kostia Turcheniuk
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Gleb Yushin
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Nikitina EA, Dashtimoghadam E, Sheiko SS, Ivanov DA. Bottlebrush Elastomers with Crystallizable Side Chains: Monolayer-like Structure of Backbones Segregated in Intercrystalline Regions. Polymers (Basel) 2024; 16:296. [PMID: 38276704 PMCID: PMC10819367 DOI: 10.3390/polym16020296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Bottlebrush (BB) elastomers with water-soluble side chains and tissue-mimetic mechanical properties are promising for biomedical applications like tissue implants and drug depots. This work investigates the microstructure and phase transitions of BB elastomers with crystallizable polyethylene oxide (PEO) side chains by real-time synchrotron X-ray scattering. In the melt, the elastomers exhibit the characteristic BB peak corresponding to the backbone-to-backbone correlation. This peak is a distinct feature of BB systems and is observable in small- or medium-angle X-ray scattering curves. In the systems studied, the position of the BB peak ranges from 3.6 to 4.8 nm in BB elastomers. This variation is associated with the degree of polymerization of the polyethylene oxide (PEO) side chains, which ranges from 19 to 40. Upon crystallization of the side chains, the intensity of the peak decays linearly with crystallinity and eventually vanishes due to BB packing disordering within intercrystalline amorphous gaps. This behavior of the bottlebrush peak differs from an earlier study of BBs with poly(ε-caprolactone) side chains, explained by stronger backbone confinement in the case of PEO, a high-crystallinity polymer. Microstructural models based on 1D SAXS correlation function analysis suggest crystalline lamellae of PEO side chains separated by amorphous gaps of monolayer-like BB backbones.
Collapse
Affiliation(s)
- Evgeniia A. Nikitina
- Faculty of Chemistry, Lomonosov Moscow State University (MSU), GSP-1, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| | - Erfan Dashtimoghadam
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | - Sergei S. Sheiko
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | - Dimitri A. Ivanov
- Faculty of Chemistry, Lomonosov Moscow State University (MSU), GSP-1, 1-3 Leninskiye Gory, 119991 Moscow, Russia
- Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
- Institut de Sciences des Matériaux de Mulhouse-IS2M, CNRS UMR 7361, F-68057 Mulhouse, France
| |
Collapse
|
3
|
Das A, Pal S, Jewrajka SK. Physical, Electrochemical, and Solvent Permeation Properties of Amphiphilic Conetwork Membranes Formed through Interlinking of Poly(vinylidene fluoride)- Graft-Poly[(2-dimethylamino)ethyl Methacrylate] with Telechelic Poly(ethylene glycol) and Small Molecular Weight Cross-Linkers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15340-15352. [PMID: 36459173 DOI: 10.1021/acs.langmuir.2c02553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We report the preparation of dense and porous amphiphilic conetwork (APCN) membranes through the covalent interconnection of poly(vinylidene fluoride)-graft-poly[(2-dimethylamino)ethyl methacrylate] (PVDF-g-PDMAEMA) copolymers with telechelic poly(ethylene glycol) (PEG) or α,α-dichloro-p-xylene (XDC). The dense APCN membranes exhibit varying solvent swelling and mechanical properties depending on the compositions and overall crystallinity. The crystallinity of both PVDF (20-47%) and PEG (9-17%) is significantly suppressed in the dense APCNs prepared through the interconnection of PVDF-g-PDMAEMA with reactive PEG as compared to the APCN membranes (48-53%) prepared with XDC as well as mechanical blend of PVDF-g-PDMAEMA plus nonreactive PEG. The dense APCN membranes exhibit a good transport number of monovalent ions and ionic conductivity. The APCN membrane interconnected with PEG and containing binary ionic liquids exhibits a room-temperature lithium ion conductivity of 0.52 mS/cm. On the other hand, APCN ultrafiltration (UF) membranes exhibit organic solvent-resistant behavior. The UF membrane obtained by interconnecting PVDF-g-PDMAEMA with telechelic PEG shows low protein fouling propensity, higher hydrophilicity, and water flux as compared to membranes prepared using XDC as the interconnecting agent. The significant effect of the covalent interconnection of the amphiphilic graft copolymers with telechelic PEG or XDC on the overall properties provides a good opportunity to modulate the properties and performance of APCN membranes.
Collapse
Affiliation(s)
- Anupam Das
- School of Chemistry, University of Hyderabad, Hyderabad, Telangana500046, India
| | - Sandip Pal
- Membrane Science and Separation Technology Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg, Bhavnagar, Gujarat364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh201002, India
| | - Suresh K Jewrajka
- Membrane Science and Separation Technology Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg, Bhavnagar, Gujarat364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh201002, India
| |
Collapse
|
4
|
Nikolakakou G, Pantazidis C, Sakellariou G, Glynos E. Ion Conductivity–Shear Modulus Relationship of Single-Ion Solid Polymer Electrolytes Composed of Polyanionic Miktoarm Star Copolymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Georgia Nikolakakou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, P.O. Box 1385, 711 10 Heraklion, Crete, Greece
- Department of Chemistry, University of Crete, P.O. Box 2208, 710 03 Heraklion, Crete, Greece
| | - Christos Pantazidis
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografrou, 15 771 Athens, Greece
| | - Georgios Sakellariou
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografrou, 15 771 Athens, Greece
| | - Emmanouil Glynos
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, P.O. Box 1385, 711 10 Heraklion, Crete, Greece
- Department of Materials Science and Technology, University of Crete, Heraklion 71003, Greece
| |
Collapse
|
5
|
Grim BJ, Green MD. Thermodynamics and Structure‐Property Relationships of Charged Block Polymers. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bradley J. Grim
- Chemical Engineering School for Engineering of Matter Transport and Energy Arizona State University Tempe AZ 85287
| | - Matthew D. Green
- Chemical Engineering School for Engineering of Matter Transport and Energy Arizona State University Tempe AZ 85287
| |
Collapse
|
6
|
Kim K, Nguyen N, Marxsen SF, Smith S, Alamo RG, Kennemur JG, Hallinan DT. Ionic Transport and Thermodynamic Interaction in Precision Polymer Blend Electrolytes for Lithium Batteries. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kyoungmin Kim
- Department of Chemical and Biomedical Engineering Florida A&M University–Florida State University (FAMU‐FSU) College of Engineering 2525 Pottsdamer Street Tallahassee FL 32310 USA
- Aero‐propulsion, Mechatronics and Energy (AME) Center FAMU‐FSU College of Engineering 2003 Levy Avenue Tallahassee FL 32310 USA
| | - Nam Nguyen
- Department of Chemistry and Biochemistry Florida State University 95 Chieftan Way Tallahassee FL 32306 USA
| | - Stephanie F. Marxsen
- Department of Chemical and Biomedical Engineering Florida A&M University–Florida State University (FAMU‐FSU) College of Engineering 2525 Pottsdamer Street Tallahassee FL 32310 USA
| | - Sage Smith
- Department of Chemical and Biomedical Engineering Florida A&M University–Florida State University (FAMU‐FSU) College of Engineering 2525 Pottsdamer Street Tallahassee FL 32310 USA
- Aero‐propulsion, Mechatronics and Energy (AME) Center FAMU‐FSU College of Engineering 2003 Levy Avenue Tallahassee FL 32310 USA
| | - Rufina G. Alamo
- Department of Chemical and Biomedical Engineering Florida A&M University–Florida State University (FAMU‐FSU) College of Engineering 2525 Pottsdamer Street Tallahassee FL 32310 USA
| | - Justin G. Kennemur
- Department of Chemistry and Biochemistry Florida State University 95 Chieftan Way Tallahassee FL 32306 USA
| | - Daniel T. Hallinan
- Department of Chemical and Biomedical Engineering Florida A&M University–Florida State University (FAMU‐FSU) College of Engineering 2525 Pottsdamer Street Tallahassee FL 32310 USA
- Aero‐propulsion, Mechatronics and Energy (AME) Center FAMU‐FSU College of Engineering 2003 Levy Avenue Tallahassee FL 32310 USA
| |
Collapse
|
7
|
Kang M, Min HJ, Kim NU, Kim JH. Amphiphilic micelle-forming PDMS-PEGBEM comb copolymer self-assembly to tailor the interlamellar nanospaces of defective poly(ethylene oxide) membranes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
8
|
Nicolas C, Zhang W, Choppé É, Fontaine L, Montembault V. Polynorbornene‐
g
‐poly(ethylene oxide) Through the Combination of ROMP and Nitroxide Radical Coupling Reactions. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20190183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Clémence Nicolas
- Institut des Molécules et Matériaux du Mans (IMMM) ‐ UMR 6283 CNRSLe Mans Université Le Mans France
| | - Wenhao Zhang
- Institut des Molécules et Matériaux du Mans (IMMM) ‐ UMR 6283 CNRSLe Mans Université Le Mans France
| | - Émilie Choppé
- Institut des Molécules et Matériaux du Mans (IMMM) ‐ UMR 6283 CNRSLe Mans Université Le Mans France
| | - Laurent Fontaine
- Institut des Molécules et Matériaux du Mans (IMMM) ‐ UMR 6283 CNRSLe Mans Université Le Mans France
| | - Véronique Montembault
- Institut des Molécules et Matériaux du Mans (IMMM) ‐ UMR 6283 CNRSLe Mans Université Le Mans France
| |
Collapse
|
9
|
Chintapalli M, Timachova K, Olson KR, Mecham SJ, DeSimone JM, Balsara NP. Lithium Salt Distribution and Thermodynamics in Electrolytes Based on Short Perfluoropolyether- block-Poly(ethylene oxide) Copolymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b01637] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mahati Chintapalli
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ksenia Timachova
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kevin R. Olson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sue J. Mecham
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Joseph M. DeSimone
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Nitash P. Balsara
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Joint Center for Energy Storage Research (JCESR), Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
10
|
Van Horn RM, Steffen MR, O'Connor D. Recent progress in block copolymer crystallization. POLYMER CRYSTALLIZATION 2018. [DOI: 10.1002/pcr2.10039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ryan M. Van Horn
- Department of Chemistry Allegheny College Meadville Pennsylvania
| | | | - Dana O'Connor
- Department of Chemistry Allegheny College Meadville Pennsylvania
| |
Collapse
|
11
|
Zhai C, Zhou H, Gao T, Zhao L, Lin S. Electrostatically Tuned Microdomain Morphology and Phase-Dependent Ion Transport Anisotropy in Single-Ion Conducting Block Copolyelectrolytes. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00451] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Chenxi Zhai
- Department of Mechanical Engineering, Materials Science and Engineering Program, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
| | - Huanhuan Zhou
- Department of Mechanical Engineering, Materials Science and Engineering Program, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
| | - Teng Gao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy & Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Lingling Zhao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy & Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Shangchao Lin
- Department of Mechanical Engineering, Materials Science and Engineering Program, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
| |
Collapse
|
12
|
Thelen JL, Wang AA, Chen XC, Jiang X, Schaible E, Balsara NP. Correlations between Salt-Induced Crystallization, Morphology, Segmental Dynamics, and Conductivity in Amorphous Block Copolymer Electrolytes. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02415] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Jacob L. Thelen
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Andrew A. Wang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | | | | | | | - Nitash P. Balsara
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|