1
|
Du H, Chen B, Zhang F. Strong Acceptors Based on Derivatives of Benzothiadiazoloimidazole. Molecules 2024; 29:2262. [PMID: 38792123 PMCID: PMC11124087 DOI: 10.3390/molecules29102262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Despite the rapid progression of organic semiconductors, developing high-air-stability n-type organic semiconductors are still challenging. Herein, novel strong acceptors based on benzothiadiazoloimidazole units are reported. The results reveal that the strong acceptor BTI-NDI-BTI-a has good solubility and high electron affinity (3.94 eV), accompanied by 1D slipped-stacking crystals. Notably, the material presents promising potential for developing into air-stable n-type organic semiconductor materials.
Collapse
Affiliation(s)
- Hanyun Du
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China;
| | - Bin Chen
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
| | - Fengyuan Zhang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
| |
Collapse
|
2
|
Lin L, Wang C, Deng Y, Geng Y. Isomerically Pure Oxindole-Terminated Quinoids for n-Type Organic Thin-Film Transistors Enabled by the Chlorination of Quinoidal Core. Chemistry 2023; 29:e202203336. [PMID: 36456528 DOI: 10.1002/chem.202203336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/03/2022]
Abstract
Quinoidal compounds have great potential utility as high-performance organic semiconducting materials because of their rigid planar structures and extended π-conjugation. However, the existence of E and Z isomers adversely affects the charge-transport properties of quinoidal compounds. In this study, three isomerically pure oxindole-terminated quinoids were developed by introducing chlorine atoms in the quinoidal core. The synthesized quinoids were confirmed to have a Z,Z configuration by means of 1 H NMR spectroscopy, density functional theory calculations, and single-crystal X-ray analysis. Importantly, the strategy of chlorination allowed to maintain low-lying frontier molecular orbital energy levels and ensure favorable intermolecular packing. Consequently, all three quinoidal compounds showed n-type transport characteristics in organic thin-film transistors, with electron mobilities up to 0.35 cm2 V-1 s-1 , which is the highest value reported to date for oxindole-terminated quinoids. Our study can provide new guidelines for the design of isomerically pure quinoids with high electron mobilities.
Collapse
Affiliation(s)
- Linlin Lin
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| | - Cheng Wang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| | - Yunfeng Deng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou, 350207, China
| | - Yanhou Geng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
3
|
Meniscus-Assisted Solution Printing Enables Cocrystallization in Poly(3-alkylthiophene)-based Blends for Field-Effect Transistors. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2916-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
4
|
Wang X, Liu S, Ren C, Cao L, Zhang W, Wu T. Synthesis, Characterization, and Field-Effect Transistor Properties of Naphthalene Diimide-Based Conjugated Polymers with Fluorine-Containing Branched Side Chains. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xuran Wang
- Laboratory of Optoelectronic and Information Marking Materials, Key Laboratory of Printing & Packaging Material and Technology, Beijing Institute of Graphic Communication, Beijing 102600, P. R. China
| | - Shengzhen Liu
- Laboratory of Optoelectronic and Information Marking Materials, Key Laboratory of Printing & Packaging Material and Technology, Beijing Institute of Graphic Communication, Beijing 102600, P. R. China
| | - Chunxing Ren
- Laboratory of Optoelectronic and Information Marking Materials, Key Laboratory of Printing & Packaging Material and Technology, Beijing Institute of Graphic Communication, Beijing 102600, P. R. China
| | - Long Cao
- Laboratory of Optoelectronic and Information Marking Materials, Key Laboratory of Printing & Packaging Material and Technology, Beijing Institute of Graphic Communication, Beijing 102600, P. R. China
| | - Weimin Zhang
- Laboratory of Optoelectronic and Information Marking Materials, Key Laboratory of Printing & Packaging Material and Technology, Beijing Institute of Graphic Communication, Beijing 102600, P. R. China
| | - Ti Wu
- Laboratory of Optoelectronic and Information Marking Materials, Key Laboratory of Printing & Packaging Material and Technology, Beijing Institute of Graphic Communication, Beijing 102600, P. R. China
| |
Collapse
|
5
|
Zhang Q, Huang J, Wang K, Huang W. Recent Structural Engineering of Polymer Semiconductors Incorporating Hydrogen Bonds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110639. [PMID: 35261083 DOI: 10.1002/adma.202110639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Highly planar, extended π-electron organic conjugated polymers have been increasingly attractive for achieving high-mobility organic semiconductors. In addition to the conventional strategy to construct rigid backbone by covalent bonds, hydrogen bond has been employed extensively to increase the planarity and rigidity of polymer via intramolecular noncovalent interactions. This review provides a general summary of high-mobility semiconducting polymers incorporating hydrogen bonds in field-effect transistors over recent years. The structural engineering of the hydrogen bond-containing building blocks and the discussion of theoretical simulation, microstructural characterization, and device performance are covered. Additionally, the effects of the introduction of hydrogen bond on self-healing, stretchability, chemical sensitivity, and mechanical properties are also discussed. The review aims to help and inspire design of new high-mobility conjugated polymers with superiority of mechanical flexibility by incorporation of hydrogen bond for the application in flexible electronics.
Collapse
Affiliation(s)
- Qi Zhang
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| | - Jianyao Huang
- CAS key Laboratory of Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Kai Wang
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| | - Wei Huang
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| |
Collapse
|
6
|
Zhang C, Tan WL, Liu Z, He Q, Li Y, Ma J, Chesman ASR, Han Y, McNeill CR, Heeney M, Fei Z. High-Performance Unipolar n-Type Conjugated Polymers Enabled by Highly Electron-Deficient Building Blocks Containing F and CN Groups. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chan Zhang
- Institute of Molecular Plus, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Wen Liang Tan
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Zhongwei Liu
- Institute of Molecular Plus, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Qiao He
- Department of Chemistry and Centre for Plastic Electronics, White City Campus, Imperial College London, London W120BZ, U.K
| | - Yanru Li
- Institute of Molecular Plus, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Jianeng Ma
- Institute of Molecular Plus, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | | | - Yang Han
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Christopher R. McNeill
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Martin Heeney
- Department of Chemistry and Centre for Plastic Electronics, White City Campus, Imperial College London, London W120BZ, U.K
| | - Zhuping Fei
- Institute of Molecular Plus, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
7
|
Chen J, Yang J, Guo Y, Liu Y. Acceptor Modulation Strategies for Improving the Electron Transport in High-Performance Organic Field-Effect Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104325. [PMID: 34605074 DOI: 10.1002/adma.202104325] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/04/2021] [Indexed: 06/13/2023]
Abstract
High-performance ambipolar and electronic type semiconducting polymers are essential for fabricating various organic optoelectronic devices and complementary circuits. This review summarizes the strategies of improving the electron transport of semiconducting polymers via acceptor modulation strategies, which include the use of single, dual, triple, multiple, and all acceptors as well as the fusion of multiple identical acceptors to obtain new heterocyclic acceptors. To further improve the electron transport of semiconducting polymers, the introduction of strong electron-withdrawing groups can enhance the electron-withdrawing ability of donors and acceptors, thereby facilitating electron injection and suppressing hole accumulation. In addition, the relationships between the molecular structure, frontier molecular orbital energy levels, thin film morphology, microstructure, processing conditions, and device performances are also comprehensively discussed. Finally, the challenges encountered in this research area are proposed and the future outlook is presented.
Collapse
Affiliation(s)
- Jinyang Chen
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jie Yang
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yunlong Guo
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
8
|
Zhang Y, Zhang C, Su Y, Dong W, Li Y, Liu Z, Yao X, Han Y, Fei Z. Chlorinated conjugated polymer based on chlorine‐ and cyano‐substituted (
E
)‐1,2‐di(thiophen‐2‐yl)ethane for ambipolar and n‐type Organic thin‐film transistors. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yulong Zhang
- Institute of Molecular Plus and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
| | - Chan Zhang
- Institute of Molecular Plus and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
| | - Yunran Su
- Institute of Molecular Plus and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
| | - Weijia Dong
- School of Materials Science and Engineering Tianjin University Tianjin 300072 China
| | - Yanru Li
- Institute of Molecular Plus and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
| | - Zhongwei Liu
- Institute of Molecular Plus and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
| | - Xiang Yao
- Institute of Molecular Plus and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
| | - Yang Han
- School of Materials Science and Engineering Tianjin University Tianjin 300072 China
| | - Zhuping Fei
- Institute of Molecular Plus and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
| |
Collapse
|
9
|
Zhang L, Zhu X, Deng D, Wang Z, Zhang Z, Li Y, Zhang J, Lv K, Liu L, Zhang X, Zhou H, Ade H, Wei Z. High Miscibility Compatible with Ordered Molecular Packing Enables an Excellent Efficiency of 16.2% in All-Small-Molecule Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106316. [PMID: 34773418 DOI: 10.1002/adma.202106316] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/27/2021] [Indexed: 06/13/2023]
Abstract
In all-small-molecule organic solar cells (ASM-OSCs), a high short-circuit current (Jsc ) usually needs a small phase separation, while a high fill factor (FF) is generally realized in a highly ordered packing system. However, small domain and ordered packing always conflicted each other in ASM-OSCs, leading to a mutually restricted Jsc and FF. In this study, alleviation of the previous dilemma by the strategy of obtaining simultaneous good miscibility and ordered packing through modulating homo- and heteromolecular interactions is proposed. By moving the alkyl-thiolation side chains from the para- to the meta-position in the small-molecule donor, the surface tension and molecular planarity are synchronously enhanced, resulting in compatible properties of good miscibility with acceptor BTP-eC9 and strong self-assembly ability. As a result, an optimized morphology with multi-length-scale domains and highly ordered packing is realized. The device exhibits a long carrier lifetime (39.8 μs) and fast charge collection (15.5 ns). A record efficiency of 16.2% with a high FF of 75.6% and a Jsc of 25.4 mA cm-2 in the ASM-OSCs is obtained. These results demonstrate that the strategy of simultaneously obtaining good miscibility with high crystallinity could be an efficient photovoltaic material design principle for high-performance ASM-OSCs.
Collapse
Affiliation(s)
- Lili Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Sino-Danish Center for Education and Research, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangwei Zhu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Dan Deng
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhen Wang
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Ziqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yi Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Kun Lv
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Lixuan Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xuning Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Huiqiong Zhou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Harald Ade
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
10
|
Shanwu L, Chenyujie Z, Yinhao L, Yaru Z, Hanming T, Zongrui W, Yonggang Z. Research Progress in n-type Organic Semiconducting Materials Based on Amides or Imides. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22080380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
11
|
Liu X, Yan Y, Zhang Q, Zhao K, Han Y. n-Type D-A Conjugated Polymers: Relationship Between Microstructure and Electrical/Mechanical Performance. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1269-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Wei C, Xu P, Zhang W, Zhou Y, Wei X, Zheng Y, Wang L, Yu G. Incorporation of Cyano‐Substituted Aromatic Blocks into Naphthalene Diimide‐Based Copolymers: Toward Unipolar n‐Channel Field‐Effect Transistors. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Congyuan Wei
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Pan Xu
- School of Material Science and Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yankai Zhou
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xuyang Wei
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yuanhui Zheng
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Liping Wang
- School of Material Science and Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
13
|
Gayen K, Nandi N, Das KS, Hermida-Merino D, Hamley IW, Banerjee A. The aging effect on the enhancement of thermal stability, mechanical stiffness and fluorescence properties of histidine-appended naphthalenediimide based two-component hydrogels. SOFT MATTER 2020; 16:10106-10114. [PMID: 32716462 DOI: 10.1039/d0sm00468e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A histidine attached naphthalenediimide (NDI)-containing amphiphilic molecule (NDIP) self-assembles into nanotubes in aqueous solution at pH 6.6 as revealed by high-resolution transmission electron microscopy studies. This histidine-appended NDI forms a two-component hydrogel in the presence of tartaric acid at a molar ratio of 1 : 2. A morphological transformation was observed from a nanotube structure in the non-gel aggregated state of histidine appended NDI to interconnected cross-linked nanofibers of the two-component hydrogel in the presence of tartaric acid. Interestingly, the gel exhibits an unusual behavior upon aging compared to the fresh gel. It is found that the thermal stability and gel stiffness increase very significantly upon aging. Another important feature noted is that the very weak fluorescence of the fresh gel is transformed into bright greenish fluorescence upon aging. These results suggest that intermolecular interactions among the gelator molecules and tartaric acid in the gel phase slowly increase with time to form a mechanically very stiff and thermally robust gel.
Collapse
Affiliation(s)
- Kousik Gayen
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India.
| | | | | | | | | | | |
Collapse
|
14
|
Ding Y, Zhao F, Kim S, Wang X, Lu H, Zhang G, Cho K, Qiu L. Azaisoindigo-Based Polymers with a Linear Hybrid Siloxane-Based Side Chain for High-Performance Semiconductors Processable with Nonchlorinated Solvents. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41832-41841. [PMID: 32865385 DOI: 10.1021/acsami.0c11436] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Developing nonchlorinated solvent-processed polymeric semiconductors to avoid environmental concerns and health hazards caused by chlorinated solvents is especially urgent. Here, a molecular design strategy, composed of backbone fluorination and side chain optimization, is used for preparing high-solubility and high-performance azaisoindigo-based polymers. The effects of different backbones and side chains on the solubility, film crystallinity, molecular stacking, and charge transport properties are mainly investigated. A long linear hybrid siloxane-based chain (C6-Si7) is chosen to improve the solubility, while the incorporation of fluorine (F) is used to enhance the film crystallinity and charge mobility. By optimizing the backbone and side chain, both solubility and charge mobility of the azaisoindigo-based polymer are significantly improved. As a result, PAIIDBFT-Si films processed with toluene, tetrahydrofuran, ether, and alkanes, achieved charge mobilities of 4.14, 3.78, 2.14, and 2.34 cm2 V-1 s-1, respectively. The current study provides an effective strategy for the design and synthesis of high-performance polymeric semiconductors processed with nonchlorinated solvents.
Collapse
Affiliation(s)
- Yafei Ding
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, and Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Fengsheng Zhao
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, and Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Sanghyo Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | - Xiaohong Wang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, and Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Hongbo Lu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, and Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Guobing Zhang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, and Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Kilwon Cho
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | - Longzhen Qiu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, and Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
15
|
Ultraviolet Photodetecting and Plasmon-to-Electric Conversion of Controlled Inkjet-Printing Thin-Film Transistors. NANOMATERIALS 2020; 10:nano10030458. [PMID: 32143384 PMCID: PMC7153598 DOI: 10.3390/nano10030458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 11/17/2022]
Abstract
Direct ink-jet printing of a zinc-oxide-based thin-film transistor (ZnO-based TFT) with a three-dimensional (3-D) channel structure was demonstrated for ultraviolet light (UV) and visible light photodetection. Here, we demonstrated the channel structures by which temperature-induced Marangoni flow can be used to narrow the channel width from 318.9 ± 44.1 μm to 180.1 ± 13.9 μm via a temperature gradient. Furthermore, a simple and efficient oxygen plasma treatment was used to enhance the electrical characteristics of switching ION/IOFF ratio of approximately 105. Therefore, the stable and excellent gate bias-controlled photo-transistors were fabricated and characterized in detail for ultraviolet (UV) and visible light sensing. The photodetector exhibited a superior photoresponse with a significant increase of more than 2 orders of magnitude larger drain current generated upon UV illumination. The results could be useful for the development of UV photodetectors by the direct-patterning ink-jet printing technique. Additionally, we also have successfully demonstrated that a metal-semiconductor junction structure that enables plasmon energy detection by using the plasmonic effects is an efficient conversion of plasmon energy to an electrical signal. The device showed a significant variations negative shift of threshold voltage under different light power density with exposure of visible light. With the ZnO-based TFTs, only ultraviolet light detection extends to the visible light wavelength.
Collapse
|
16
|
Wei C, Tang Z, Zhang W, Huang J, Zhou Y, Wang L, Yu G. Molecular engineering of (E)-1,2-bis(3-cyanothiophene-2-yl)ethene-based polymeric semiconductors for unipolar n-channel field-effect transistors. Polym Chem 2020. [DOI: 10.1039/d0py01399d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The unipolar n-type polymeric semiconductors based on (E)-1,2-bis(3-cyanothiophene-2-yl)ethene were developed and their structure–property relationships were investigated.
Collapse
Affiliation(s)
- Congyuan Wei
- Beijing National Laboratory for Molecular Sciences
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Zhonghai Tang
- Beijing National Laboratory for Molecular Sciences
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Jianyao Huang
- Beijing National Laboratory for Molecular Sciences
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Yankai Zhou
- Beijing National Laboratory for Molecular Sciences
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Liping Wang
- School of Material Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
17
|
Tang Z, Wei X, Zhang W, Zhou Y, Wei C, Huang J, Chen Z, Wang L, Yu G. An A−D−Aʹ−Dʹ strategy enables perylenediimide-based polymer dyes exhibiting enhanced electron transport characteristics. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121712] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Goel M, Heinrich CD, Krauss G, Thelakkat M. Principles of Structural Design of Conjugated Polymers Showing Excellent Charge Transport toward Thermoelectrics and Bioelectronics Applications. Macromol Rapid Commun 2019; 40:e1800915. [DOI: 10.1002/marc.201800915] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/21/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Mahima Goel
- Applied Functional PolymersMacromolecular Chemistry IUniversity of Bayreuth Universitätsstr. 30 Bayreuth 95440 Germany
| | - C. David Heinrich
- Applied Functional PolymersMacromolecular Chemistry IUniversity of Bayreuth Universitätsstr. 30 Bayreuth 95440 Germany
| | - Gert Krauss
- Applied Functional PolymersMacromolecular Chemistry IUniversity of Bayreuth Universitätsstr. 30 Bayreuth 95440 Germany
| | - Mukundan Thelakkat
- Applied Functional PolymersMacromolecular Chemistry IUniversity of Bayreuth Universitätsstr. 30 Bayreuth 95440 Germany
- Bavarian Polymer Institute (BPI)University of Bayreuth Universitätsstr. 30 Bayreuth 95440 Germany
| |
Collapse
|
19
|
Chavez R, Diodati L, Wheeler DL, Shaw J, Tomlinson AL, Jeffries-El M. Evaluating the Impact of Fluorination on the Electro-optical Properties of Cross-Conjugated Benzobisoxazoles. J Phys Chem A 2019; 123:1343-1352. [PMID: 30680993 DOI: 10.1021/acs.jpca.8b07778] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Six 2,4,6,8-tetrarylbenzo[1,2- d:4,5- d']bisoxazoles (BBOs) were synthesized: three bearing phenyl substituents at the 2- and 6-positions and three bearing perfluorophenyl groups at those positions. The influence of perfluoro-aryl group substitution on the physical, optical, and electronic properties of 2,4,6,8-tetrarylbenzo[1,2- d:4,5- d']bisoxazoles (BBO) was evaluated using both experimental and theoretical methods. The density functional theory (DFT) model was found to be well-matched to the experimental optical data, as evidenced by the UV-vis spectra. Both cyclic voltammetry (CV) and ultraviolet photoelectron spectroscopy (UPS) were used to determine the position of the HOMO with varying results. The values obtained by CV were deeper than those obtained via UPS and correlated well with the theoretical calculations. However, the UPS values were more consistent with the expected outcomes for a system with segregated frontier molecular orbitals (FMOs). The UPS results are also supported by the electrostatic potential maps, which indicate that the electron density within the LUMO and HOMO is nearly completely localized along the 2,6- or 4,8-axis, respectively. The summation of the results indicates that strongly electron-withdrawing groups can be used to selectively tune the LUMO level with minor perturbation of the HOMO, something that is challenging to accomplish in typical donor-acceptor systems.
Collapse
Affiliation(s)
- Ramiro Chavez
- Department of Chemistry , Boston University , 590 Commonwealth Avenue , Boston , Massachusetts 02215 , United States
| | - Lily Diodati
- Department of Chemistry and Biochemistry , University of North Georgia , 82 College Circle , Dahlonega , Georgia 30041 , United States
| | - David L Wheeler
- Department of Chemistry , Boston University , 590 Commonwealth Avenue , Boston , Massachusetts 02215 , United States
| | - Jessica Shaw
- Department of Chemistry , Boston University , 590 Commonwealth Avenue , Boston , Massachusetts 02215 , United States
| | - Aimée L Tomlinson
- Department of Chemistry and Biochemistry , University of North Georgia , 82 College Circle , Dahlonega , Georgia 30041 , United States
| | - Malika Jeffries-El
- Department of Chemistry , Boston University , 590 Commonwealth Avenue , Boston , Massachusetts 02215 , United States
| |
Collapse
|
20
|
Zhang Q, Wei Q, Guo X, Hai G, Sun H, Li J, Xia R, Qian Y, Casado S, Castro‐Smirnov JR, Cabanillas‐Gonzalez J. Concurrent Optical Gain Optimization and Electrical Tuning in Novel Oligomer:Polymer Blends with Yellow-Green Laser Emission. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801455. [PMID: 30643727 PMCID: PMC6325601 DOI: 10.1002/advs.201801455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/27/2018] [Indexed: 06/09/2023]
Abstract
Electrically pumped organic lasing requires the integration of electrodes contact into the laser cavity in an organic light-emitting diode (OLED) or organic field effect transistor configuration to enable charge injection. Efficient and balanced carrier injection requires in turn alignment of the energy levels of the organic active layers with the Fermi levels of the cathode and anode. This can be achieved through chemical substitution with specific aromatic functional groups, although paying the price for a substantial (and often detrimental) change in the emission and light amplifying properties of the organic gain medium. Here, using host-guest energy transfer mixtures with hosts bearing a systematic and gradual shift in molecular orbitals is proposed, which reduces the amplified spontaneous emission (ASE) threshold of the organic gain medium significantly while leaving the peak emission unaffected. By virtue of the low guest doping required for complete host-to-guest energy transfer, the injection levels in the blends are attributed to the host whereas the gain properties solely depend on the guest. It is demonstrated that the ASE peak and thresholds of blends with different hosts do not differ while the current efficiency of OLEDs devices is deeply influenced by molecular orbital tuning of the hosts.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID)Jiangsu‐Singapore Joint Research Center for Organic/Bio Electronics and Information DisplaysInstitute of Advanced Materials (IAM)Nanjing University of Posts and Telecommunications9 Wenyuan RoadNanjing210046P. R. China
- IMDEA NanoscienceCalle Faraday 9Cantoblanco28049MadridSpain
| | - Qi Wei
- Shaanxi Institute of Flexible Electronics (SIFE)Northwestern Polytechnical University (NPU)127 West Youyi RoadXi'an710072ShanxiChina
| | - Xiangru Guo
- Key Laboratory for Organic Electronics and Information Displays (KLOEID)Jiangsu‐Singapore Joint Research Center for Organic/Bio Electronics and Information DisplaysInstitute of Advanced Materials (IAM)Nanjing University of Posts and Telecommunications9 Wenyuan RoadNanjing210046P. R. China
| | - Gang Hai
- Key Laboratory for Organic Electronics and Information Displays (KLOEID)Jiangsu‐Singapore Joint Research Center for Organic/Bio Electronics and Information DisplaysInstitute of Advanced Materials (IAM)Nanjing University of Posts and Telecommunications9 Wenyuan RoadNanjing210046P. R. China
| | - Huizhi Sun
- Key Laboratory for Organic Electronics and Information Displays (KLOEID)Jiangsu‐Singapore Joint Research Center for Organic/Bio Electronics and Information DisplaysInstitute of Advanced Materials (IAM)Nanjing University of Posts and Telecommunications9 Wenyuan RoadNanjing210046P. R. China
| | - Jiewei Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816China
| | - Ruidong Xia
- Key Laboratory for Organic Electronics and Information Displays (KLOEID)Jiangsu‐Singapore Joint Research Center for Organic/Bio Electronics and Information DisplaysInstitute of Advanced Materials (IAM)Nanjing University of Posts and Telecommunications9 Wenyuan RoadNanjing210046P. R. China
| | - Yan Qian
- Key Laboratory for Organic Electronics and Information Displays (KLOEID)Jiangsu‐Singapore Joint Research Center for Organic/Bio Electronics and Information DisplaysInstitute of Advanced Materials (IAM)Nanjing University of Posts and Telecommunications9 Wenyuan RoadNanjing210046P. R. China
| | | | | | | |
Collapse
|
21
|
Lee M, Kim T, Nguyen HVT, Cho HW, Lee KK, Choi JH, Kim B, Kim JY. Regio-regular alternating diketopyrrolopyrrole-based D1–A–D2–A terpolymers for the enhanced performance of polymer solar cells. RSC Adv 2019; 9:42096-42109. [PMID: 35542833 PMCID: PMC9076513 DOI: 10.1039/c9ra08858j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/02/2019] [Indexed: 11/24/2022] Open
Abstract
We designed and synthesized regio-regular alternating diketopyrrolopyrrole (DPP)-based D1–A–D2–A terpolymers (PDPPF2T2DPP-T2, PDPPF2T2DPP-TVT, and PDPPF2T2DPP-DTT) using a primary donor (D1) [3,3′-difluoro-2,2′-bithiophene (F2T2)] and a secondary donor (D2) [2,2′-bithiophene (T2), (E)-1,2-di(thiophen-2-yl)ethene (TVT), or dithieno[3,2-b:2′,3′-d]thiophene (DTT)]. A PDPP2DT-F2T2 D–A polymer was synthesized as well to compare optical, electronic, and photovoltaic properties. The absorption peaks of the terpolymers (PDPPF2T2DPP-T2, PDPPF2T2DPP-TVT, and PDPPF2T2DPP-DTT) were longer (λmax = 801–810 nm) than the peak of the PDPP2DT-F2T2 polymer (λmax = 799 nm), which is associated with the high-lying HOMO levels of the terpolymers (−5.08 to −5.13 eV) compared with the level of the PDPP2DT-F2T2 polymer (−5.38 eV). The photovoltaic properties of these DPP-based polymers were investigated under simulated AM 1.5G sunlight (100 mW cm−2) with a conventional structure (ITO/PEDOT:PSS/polymer:PC71BM/Al). The open-circuit voltages (Voc) of photovoltaic devices containing the terpolymers were slightly lower (0.68–0.70 V) than the Voc of the device containing the PDPP2DT-F2T2 polymer (0.79 V). The short-circuit current (Jsc) of the PDPPF2T2DPP-DTT device was significantly improved (14.14 mA cm−2) compared with that of the PDPP2DT-F2T2 device (8.29 mA cm−2). As a result, the power conversion efficiency (PCE) of the PDPPF2T2DPP-DTT device (6.35%) was increased by 33% compared with that of the simple D–A-type PDPP2DT-F2T2 device (4.78%). The highest Jsc and PCE values (the PDPPF2T2DPP-DTT device) were attributed to an optimal nanoscopically mixed morphology and strong interchain packing with a high face-on orientation in the blend film state. The study demonstrated that our strategy of using multiple donors in a regio-regular alternating fashion could fine-tune the optical, electronic, and morphological properties of D–A-type polymers, enhancing the performance of polymer solar cells. We designed and synthesized regio-regular alternating diketopyrrolopyrrole (DPP)-based D1–A–D2–A terpolymers (PDPPF2T2DPP-T2, PDPPF2T2DPP-TVT, and PDPPF2T2DPP-DTT) for use in polymer solar cells.![]()
Collapse
Affiliation(s)
- Myeongjae Lee
- Department of Chemistry
- Korea University
- Seongbuk-gu
- Republic of Korea
| | - Taehyo Kim
- Green Materials and Processes Group
- Korea Institute of Industrial Technology
- Ulsan
- Republic of Korea
| | - Hoai Van T. Nguyen
- Department of Chemistry
- Kunsan National University
- Gunsan-si
- Republic of Korea
| | - Hye Won Cho
- School of Energy and Chemical Engineering
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Republic of Korea
| | - Kyung-Koo Lee
- Department of Chemistry
- Kunsan National University
- Gunsan-si
- Republic of Korea
| | - Jong-Ho Choi
- Department of Chemistry
- Korea University
- Seongbuk-gu
- Republic of Korea
| | - BongSoo Kim
- Department of Chemistry
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Republic of Korea
| | - Jin Young Kim
- School of Energy and Chemical Engineering
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Republic of Korea
| |
Collapse
|
22
|
|
23
|
Shi K, Zhang W, Zhou Y, Wei C, Huang J, Wang Q, Wang L, Yu G. Chalcogenophene-Sensitive Charge Carrier Transport Properties in A–D–A′′–D Type NBDO-Based Copolymers for Flexible Field-Effect Transistors. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01944] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Keli Shi
- CAS key Laboratory of Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Weifeng Zhang
- CAS key Laboratory of Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yankai Zhou
- CAS key Laboratory of Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Congyuan Wei
- CAS key Laboratory of Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jianyao Huang
- CAS key Laboratory of Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Qiang Wang
- CAS key Laboratory of Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Gui Yu
- CAS key Laboratory of Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
24
|
Ouyang G, Wu H, Qiao X, Zhang J, Li H. Modulating Surface Morphology and Thin-Film Transistor Performance of Bi-thieno[3,4- c]pyrrole-4,6-dione-Based Polymer Semiconductor by Altering Preaggregation in Solution. ACS OMEGA 2018; 3:9290-9295. [PMID: 31459061 PMCID: PMC6644335 DOI: 10.1021/acsomega.8b01690] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/01/2018] [Indexed: 06/10/2023]
Abstract
Due to their strong intermolecular interactions, polymer semiconductors aggregate in solution even at elevated temperature. With the aim to study the effect of this kind preaggregation on the order of thin films and further transistor performance, bi-thieno[3,4-c]pyrrole-4,6-dione and fluorinated oligothiophene copolymerized polymer semiconductor P1, which shows strong temperature-dependent aggregation behavior in solution, is synthesized. Its films are deposited through a temperature-controlled dip-coating technique. X-ray diffraction and atomic force microscopy results reveal that the aggregation behavior of P1 in solution affects the microstructures and order of P1 films. The charge transport properties of P1 films are investigated with bottom-gate top-contacted thin-film transistors. The variation of device performance (from 0.014 to 1.03 cm2 V-1 s-1) demonstrates the importance of optimizing preaggregation degree. The correlation between preaggregation degree and transistor performance of P1 films is explored.
Collapse
Affiliation(s)
- Guangcheng Ouyang
- Key
Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional
Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- The
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongzhuo Wu
- Key
Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional
Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- The
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolan Qiao
- Key
Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional
Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jidong Zhang
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, Changchun 130022, China
| | - Hongxiang Li
- Key
Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional
Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
25
|
Ma S, Zhang G, Wang F, Dai Y, Lu H, Qiu L, Ding Y, Cho K. Tuning the Energy Levels of Aza-Heterocycle-Based Polymers for Long-Term n-Channel Bottom-Gate/Top-Contact Polymer Transistors. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00839] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Kilwon Cho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH) and Center for Advance Soft Electronics (CASE), Pohang 790-784, Korea
| |
Collapse
|
26
|
Luo H, Dong X, Cai Z, Wang L, Liu Z. Pechmann Dye-Based Molecules Containing Fluorobenzene Moieties for Ambipolar Organic Semiconductors. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201700669] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hewei Luo
- Department of Material and Chemical Engineering; Zhengzhou University of Light Industry; 5 Dongfeng Road Zhengzhou 450002 P. R. China
| | - Xiaobiao Dong
- Beijing National Laboratories for Molecular Sciences, CAS Key Laboratories of Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Zhengxu Cai
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications; School of Material Science & Engineering; Beijing Institute of Technology; Beijing 100081 P. R. China
| | - Lizhen Wang
- Department of Material and Chemical Engineering; Zhengzhou University of Light Industry; 5 Dongfeng Road Zhengzhou 450002 P. R. China
| | - Zitong Liu
- Beijing National Laboratories for Molecular Sciences, CAS Key Laboratories of Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| |
Collapse
|
27
|
Liu F, Zhang Y, Wang H, Zhang S. Novel Conjugated Polymers Prepared by Direct (Hetero) arylation: An Eco-Friendly Tool for Organic Electronics. Molecules 2018; 23:E408. [PMID: 29438329 PMCID: PMC6017795 DOI: 10.3390/molecules23020408] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 11/16/2022] Open
Abstract
The phthalimide (PhI) moiety has been attracting more attention as an excellent acceptor building block in donor-acceptor (D-A) conjugated polymers. In this paper; three D-A conjugated polymers with or without thiocarbonyl moieties are successfully prepared by the direct (hetero)-arylation polymerization (DHAP), which is an atom efficient and facile synthetic strategy to obtain polymer materials. Compared with the traditional carbon-carbon coupling reactions, this method possesses more advantages, including: fewer synthetic steps, avoidance of the preparation of the organometallic reagents, higher atom economy and fewer toxic byproducts, better compatibility with chemically sensitive functional groups and so on. All three of these designed PhI-based polymers exhibited favourable optoelectronic and thermal performance. The optical, thermodynamic and electrochemical properties of the synthesized polymers were systematically investigated using ultraviolet-visible (UV-vis) spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and cyclic voltammetry (CV). The results of these three polymers indicated that thionation of the carbonyl was a highly effective methods to improve the properties of PhI-based polymers; and provided impetus for the development of thionated PhI derivatives for organic electronic applications.
Collapse
Affiliation(s)
- Fuchuan Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Yangqian Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Hang Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Shiming Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China.
- Nanjing Kuo Hua Electronics Technology Pte. Ltd., Innovation Building B816, Xinmofan Road 5, Nanjing 210009, China.
| |
Collapse
|
28
|
Lin Z, Liu X, Zhang W, Huang J, Wang Q, Shi K, Chen Z, Zhou Y, Wang L, Yu G. Cyanostyrylthiophene-Based Ambipolar Conjugated Polymers: Synthesis, Properties, and Analyses of Backbone Fluorination Effect. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zuzhang Lin
- Organic
Solids Laboratory, CAS Research/Education Center for Excellence in
Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School
of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Xiaotong Liu
- Organic
Solids Laboratory, CAS Research/Education Center for Excellence in
Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Weifeng Zhang
- Organic
Solids Laboratory, CAS Research/Education Center for Excellence in
Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jianyao Huang
- Organic
Solids Laboratory, CAS Research/Education Center for Excellence in
Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Qiang Wang
- Organic
Solids Laboratory, CAS Research/Education Center for Excellence in
Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School
of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Keli Shi
- Organic
Solids Laboratory, CAS Research/Education Center for Excellence in
Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zhihui Chen
- Organic
Solids Laboratory, CAS Research/Education Center for Excellence in
Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yankai Zhou
- Organic
Solids Laboratory, CAS Research/Education Center for Excellence in
Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School
of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Liping Wang
- School
of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Gui Yu
- Organic
Solids Laboratory, CAS Research/Education Center for Excellence in
Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese
Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
29
|
Do TT, Patil BB, Singh SP, Yambem SD, Feron K, Ostrikov K(K, Bell JM, Sonar P. Vinylene and benzo[c][1,2,5]thiadiazole: effect of the π-spacer unit on the properties of bis(2-oxoindolin-3-ylidene)-benzodifuran-dione containing polymers for n-channel organic field-effect transistors. RSC Adv 2018; 8:38919-38928. [PMID: 35558294 PMCID: PMC9090616 DOI: 10.1039/c8ra08890j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 11/05/2018] [Indexed: 11/21/2022] Open
Abstract
Two polymers based on (3E,7E)-3,7-bis(2-oxoindolin-3-ylidene)benzo[1,2-b:4,5-b′]difuran-2,6(3H,7H)-dione (BIBDF) coupled with (E)-2-(2-(thiophen-2-yl)vinyl)thiophene (TVT) or dithienylbenzothiadiazole (TBT), namely PBIBDF-TVT and PBIBDF-TBT were synthesized via the Stille coupling reaction. The effect of benzothiadiazole or vinylene-π spacer of the copolymers on optical properties, energy levels, electronic device performance and microstructure were studied. It was found that PBIBDF-TBT based OFET devices, annealed at 180 °C, showed better performance with the highest electron mobility of 2.9 × 10−2 cm2 V s−1 whereas PBIBDF-TVT polymer exhibited 5.0 × 10−4 cm2 V s−1. The two orders of magnitude higher electron mobility of PBIBDF-TBT over PBIBDT-TVT is a clear indicator of the better charge transport ability of this polymer semiconductor arising from its higher crystallinity and better donor–acceptor interaction. Bottom-gate-top-contact OFET device structure using PBIBDF-TVT and PBIBDF-TBT based polymer semiconductors.![]()
Collapse
Affiliation(s)
- Thu Trang Do
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - Basanagouda B. Patil
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - Samarendra P. Singh
- Department of Physics
- School of Natural Sciences
- Shiv Nadar University (SNU)
- India-201307
| | - Soniya D. Yambem
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - Krishna Feron
- CSIRO Energy Centre
- Australia
- Centre for Organic Electronics
- University of Newcastle
- Australia
| | - Kostya (Ken) Ostrikov
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - John M. Bell
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - Prashant Sonar
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| |
Collapse
|
30
|
Zhang W, Shi K, Wei C, Zhou Y, Wang L, Yu G. Tuning carrier transport properties of thienoisoindigo-based copolymers by loading fluorine atoms onto the diarylethylene-based electron-donating units. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.10.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|