1
|
Zhang J, Wang C, Zhao H. Dynamic surfaces of latex films and their antifouling applications. J Colloid Interface Sci 2024; 654:1281-1292. [PMID: 37907007 DOI: 10.1016/j.jcis.2023.10.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/02/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023]
Abstract
Latex polymer particles have been widely used in industry and everyday life. For decades the fabrication of "smart" latex film from latex particles has been a great challenge due to the difficulty in the synthesis of the functional latex particles by traditional emulsion polymerization using small molecular surfactants. In this manuscript, a simple and environmentally-friendly approach to the fabrication of "smart" latex films with dynamic surfaces is reported. Latex particles with poly(n-butyl methacrylate) (PnBMA) in the cores and zwitterionic poly-3-[dimethyl-[2-(2-methylprop-2-enoyloxy) ethyl]azaniumyl]propane-1-sulfonate (PDMAPS) in the shells are synthesized by reversible addition-fragmentation chain transfer (RAFT) mediated surfactant-free emulsion polymerization. The kinetics for the emulsion polymerization is studied, and the latex particles are analyzed by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and dynamic light scattering (DLS). Latex films are prepared by casting aqueous solutions of the latex particles at temperatures above the glass transition temperature (Tg) of PnBMA. On the dried latex film, the hydrophobic PnBMA blocks occupy the top surface; after water treatment, the hydrophilic PDMAPS blocks migrate to the surface. A change in the surface hydrophilicity results in a change in the water contact angle of the latex film. A mechanism for the formation of the dynamic surface structure is proposed in this research. Antifouling applications of the latex films are investigated. Experimental results indicate that the water-treated latex film is able to efficiently inhibit protein adsorption and resist bacterial adhesion.
Collapse
Affiliation(s)
- Jie Zhang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, PR China
| | - Chen Wang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, PR China
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, PR China.
| |
Collapse
|
2
|
Stouten J, Cao H, Pich A, Bernaerts KV. Renewable and Functional Latexes Synthesized by Polymerization-Induced Self-Assembly for UV-Curable Films. ACS APPLIED MATERIALS & INTERFACES 2023; 15. [PMID: 37927076 PMCID: PMC10658448 DOI: 10.1021/acsami.3c11657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/14/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
After the development of polymer coatings and films based on renewable resources, there remains a challenge of combining the advantages of water-borne acrylic latexes with the excellent physical properties of cross-linked solvent-borne coatings. After polymerization, the renewable 4-oxocyclopentenyl acrylate (4CPA) is capable of undergoing photocyclodimerization under UV light, yielding a cross-linked polyacrylate. In this work, we investigate the polymerization-induced self-assembly (PISA) of 4CPA with several renewable acrylic monomers in the presence of a macro-RAFT agent. The produced latexes have a small particle size, good colloidal stability, and are free of volatile organic compounds. After film formation and UV curing, flexible to rigid films can be obtained depending on the monomer composition and UV irradiation time. The cross-linked films show promise as oil and water barriers in paper coating applications. This work outlines the development and application of renewable and functional cross-linkable latexes synthesized by PISA.
Collapse
Affiliation(s)
- Jules Stouten
- Aachen-Maastricht
Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Huixing Cao
- Aachen-Maastricht
Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Andrij Pich
- Aachen-Maastricht
Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
- DWI
Leibniz-Institute for Interactive Materials, Aachen 52056, Germany
- Institute
of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen 52074, Germany
| | - Katrien V. Bernaerts
- Aachen-Maastricht
Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| |
Collapse
|
3
|
Sasaki Y, Nishizawa Y, Watanabe T, Kureha T, Uenishi K, Nakazono K, Takata T, Suzuki D. Nanoparticle-Based Tough Polymers with Crack-Propagation Resistance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37327130 DOI: 10.1021/acs.langmuir.3c01226] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Although thin elastomer films of polymer nanoparticles are regarded as environmentally friendly materials, the low mechanical strength of the films limits their use in various applications. In the present study, we investigated the fracture resistance of latex films composed of acrylic nanoparticles where a small quantity of a rotaxane crosslinker was introduced. In contrast to conventional nanoparticle-based elastomers, the latex films composed of the rotaxane-crosslinked nanoparticles exhibited unusual crack propagation behavior; the direction of crack propagation changed from a direction parallel to the crack to one perpendicular to the crack, resulting in an increase in tear resistance. These findings will help to broaden the scope of design of new types of tough polymers composed of environmentally friendly polymer nanoparticles.
Collapse
Affiliation(s)
- Yuma Sasaki
- Graduate School of Textile Science & Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Yuichiro Nishizawa
- Graduate School of Textile Science & Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Takumi Watanabe
- Graduate School of Textile Science & Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Takuma Kureha
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki 036-8561, Japan
| | - Kazuya Uenishi
- Yokohama Rubber Co., Ltd., 2-1 Oiwake, Hiratsuka, Kanagawa 254-8601, Japan
| | - Kazuko Nakazono
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Toshikazu Takata
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Daisuke Suzuki
- Graduate School of Textile Science & Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
- Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
4
|
Wang L, Wang Q, Rosqvist E, Smått JH, Yong Q, Lassila L, Peltonen J, Rosenau T, Toivakka M, Willför S, Eklund P, Xu C, Wang X. Template-Directed Polymerization of Binary Acrylate Monomers on Surface-Activated Lignin Nanoparticles in Toughening of Bio-Latex Films. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207085. [PMID: 36919307 DOI: 10.1002/smll.202207085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/02/2023] [Indexed: 06/15/2023]
Abstract
Fabricating bio-latex colloids with core-shell nanostructure is an effective method for obtaining films with enhanced mechanical characteristics. Nano-sized lignin is rising as a class of sustainable nanomaterials that can be incorporated into latex colloids. Fundamental knowledge of the correlation between surface chemistry of lignin nanoparticles (LNPs) and integration efficiency in latex colloids and from it thermally processed latex films are scarce. Here, an approach to integrate self-assembled nanospheres of allylated lignin as the surface-activated cores in a seeded free-radical emulsion copolymerization of butyl acrylate and methyl methacrylate is proposed. The interfacial-modulating function on allylated LNPs regulates the emulsion polymerization and it successfully produces a multi-energy dissipative latex film structure containing a lignin-dominated core (16% dry weight basis). At an optimized allyl-terminated surface functionality of 1.04 mmol g-1 , the LNPs-integrated latex film exhibits extremely high toughness value above 57.7 MJ m-3 . With multiple morphological and microstructural characterizations, the well-ordered packing of latex colloids under the nanoconfinement of LNPs in the latex films is revealed. It is concluded that the surface chemistry metrics of colloidal cores in terms of the abundance of polymerization-modulating anchors and their accessibility have a delicate control over the structural evolution of core-shell latex colloids.
Collapse
Affiliation(s)
- Luyao Wang
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, Turku, FI-20500, Finland
| | - Qingbo Wang
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, Turku, FI-20500, Finland
| | - Emil Rosqvist
- Physical Chemistry, Laboratory of Molecular Science and Engineering, Åbo Akademi University, Henrikinkatu 2, Turku, FI-20500, Finland
| | - Jan-Henrik Smått
- Physical Chemistry, Laboratory of Molecular Science and Engineering, Åbo Akademi University, Henrikinkatu 2, Turku, FI-20500, Finland
| | - Qiwen Yong
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, Turku, FI-20500, Finland
| | - Lippo Lassila
- Turku Clinical Biomaterials Centre, University of Turku, Itäinen Pitkäkatu 4b, Turku, FI-20520, Finland
| | - Jouko Peltonen
- Physical Chemistry, Laboratory of Molecular Science and Engineering, Åbo Akademi University, Henrikinkatu 2, Turku, FI-20500, Finland
| | - Thomas Rosenau
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, Turku, FI-20500, Finland
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna (BOKU University), Konrad-Lorenz-Strasse 24, Tulln, AT-3430, Austria
| | - Martti Toivakka
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, Turku, FI-20500, Finland
| | - Stefan Willför
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, Turku, FI-20500, Finland
| | - Patrik Eklund
- Organic Chemistry, Laboratory of Molecular Science and Engineering, Åbo Akademi University, Henrikinkatu 2, Turku, FI-20500, Finland
| | - Chunlin Xu
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, Turku, FI-20500, Finland
| | - Xiaoju Wang
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, Turku, FI-20500, Finland
| |
Collapse
|
5
|
Clothier GKK, Guimarães TR, Thompson SW, Rho JY, Perrier S, Moad G, Zetterlund PB. Multiblock copolymer synthesis via RAFT emulsion polymerization. Chem Soc Rev 2023; 52:3438-3469. [PMID: 37093560 DOI: 10.1039/d2cs00115b] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
A multiblock copolymer is a polymer of a specific structure that consists of multiple covalently linked segments, each comprising a different monomer type. The control of the monomer sequence has often been described as the "holy grail" of synthetic polymer chemistry, with the ultimate goal being synthetic access to polymers of a "perfect" structure, where each monomeric building block is placed at a desired position along the polymer chain. Given that polymer properties are intimately linked to the microstructure and monomer distribution along the constituent chains, it goes without saying that there exist seemingly endless opportunities in terms of fine-tuning the properties of such materials by careful consideration of the length of each block, the number and order of blocks, and the inclusion of monomers with specific functional groups. The area of multiblock copolymer synthesis remains relatively unexplored, in particular with regard to structure-property relationships, and there are currently significant opportunities for the design and synthesis of advanced materials. The present review focuses on the synthesis of multiblock copolymers via reversible addition-fragmentation chain transfer (RAFT) polymerization implemented as aqueous emulsion polymerization. RAFT emulsion polymerization offers intriguing opportunities not only for the advanced synthesis of multiblock copolymers, but also provides access to polymeric nanoparticles of specific morphologies. Precise multiblock copolymer synthesis coupled with self-assembly offers material morphology control on length scales ranging from a few nanometers to a micrometer. It is imperative that polymer chemists interact with physicists and material scientists to maximize the impact of these materials of the future.
Collapse
Affiliation(s)
- Glenn K K Clothier
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Thiago R Guimarães
- MACROARC, Queensland University of Technology, Brisbane City, QLD 4000, Australia
| | - Steven W Thompson
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Julia Y Rho
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Sébastien Perrier
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Graeme Moad
- CSIRO Manufacturing, Bag 10, Clayton South, VIC 3169, Australia
| | - Per B Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
6
|
Kennedy KM, Ngunjiri J, Binder JB, DeFelippis J, DenBleyker W, Mallozzi M, Pujari S. Variation in adhesion properties and film morphologies of waterborne pressure‐sensitive adhesives containing an acid‐rich diblock copolymer additive. J Appl Polym Sci 2022. [DOI: 10.1002/app.53335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Neal TJ, Bradley RD, Murray MW, Williams NSJ, Emmett SN, Ryan AJ, Spain SG, Mykhaylyk OO. Solution and Solid-State Behavior of Amphiphilic ABA Triblock Copolymers of Poly(acrylic acid- stat-styrene)- block-poly(butyl acrylate)- block-poly(acrylic acid- stat-styrene). Macromolecules 2022; 55:9726-9739. [PMID: 36397936 PMCID: PMC9648343 DOI: 10.1021/acs.macromol.2c01299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/26/2022] [Indexed: 11/29/2022]
Abstract
![]()
A combination of
statistical and triblock copolymer properties
is explored to produce stable aqueous polymer dispersions suitable
for the film formation. In order to perform an extensive structural
characterization of the products in the dissolved, dispersed, and
solid states, a wide range of symmetrical poly(acrylic acid-stat-styrene)x-block-poly(butyl acrylate)y-block-poly(acrylic acid-stat-styrene)x, poly(AA-st-St)x-b-PBAy-b-poly(AA-st-St)x, (x = 56, 108 and 140, y = 100–750;
the AA:St molar ratio is 42:58) triblock copolymers were synthesized
by reversible addition–fragmentation chain transfer (RAFT)
solution polymerization using a bifunctional symmetrical RAFT agent.
It is demonstrated that the amphiphilic statistical outer blocks can
provide sufficient stabilization to largely hydrophobic particles
in aqueous dispersions. Such a molecular design provides an advantage
over copolymers composed only of homoblocks, as a simple variation
of the statistical block component ratio provides an efficient way
to control the hydrophilicity of the stabilizer block, which ultimately
affects the copolymer morphology in solutions and solid films. It
was found by small-angle X-ray scattering (SAXS) that the copolymers
behaved as dissolved chains in methylethylketone (MEK) but self-assembled
in water into stable and well-defined spherical particles that increased
in size with the length of the hydrophobic PBA block. These particles
possessed an additional particulate surface structure formed by the
statistical copolymer stabilizer block, which self-folded through
the hydrophobic interactions between the styrene units. SAXS and atomic
force microscopy showed that the copolymer films cast from the MEK
solutions formed structures predicted by self-consistent field theory
for symmetrical triblock copolymers, while the aqueous dispersions
formed structural morphologies similar to a close-packed spheres,
as would be expected for copolymer particles trapped kinetically due
to the restricted movement of the blocks in the initial aqueous dispersion.
A strong correlation between the structural morphology and mechanical
properties of the films was observed. It was found that the properties
of the solvent cast films were highly dependent on the ratios of the
hard [poly(AA-st-St)] and soft (PBA) blocks, while
the aqueous cast films did not show such a dependence. The continuous
phase of hard blocks, always formed in the case of the aqueous cast
films, produced films with a higher elastic modulus and a lower extension-to-break
in a comparison with the solvent-cast films.
Collapse
Affiliation(s)
- Thomas J. Neal
- Department of Chemistry, The University of Sheffield, Dainton Building, Sheffield, South YourkshireS3 7HF, U.K
| | - Robert D. Bradley
- AkzoNobel Decorative Paints, Wexham Road, Slough, BerkshireSL2 5DS, U.K
| | - Martin W. Murray
- AkzoNobel Decorative Paints, Wexham Road, Slough, BerkshireSL2 5DS, U.K
| | | | - Simon N. Emmett
- AkzoNobel Decorative Paints, Wexham Road, Slough, BerkshireSL2 5DS, U.K
| | - Anthony J. Ryan
- Department of Chemistry, The University of Sheffield, Dainton Building, Sheffield, South YourkshireS3 7HF, U.K
| | - Sebastian G. Spain
- Department of Chemistry, The University of Sheffield, Dainton Building, Sheffield, South YourkshireS3 7HF, U.K
| | - Oleksandr O. Mykhaylyk
- Department of Chemistry, The University of Sheffield, Dainton Building, Sheffield, South YourkshireS3 7HF, U.K
| |
Collapse
|
8
|
Neal TJ, Penfold NJW, Armes SP. Reverse Sequence Polymerization-Induced Self-Assembly in Aqueous Media. Angew Chem Int Ed Engl 2022; 61:e202207376. [PMID: 35678548 PMCID: PMC9541501 DOI: 10.1002/anie.202207376] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 11/06/2022]
Abstract
We report a new aqueous polymerization-induced self-assembly (PISA) formulation that enables the hydrophobic block to be prepared first when targeting diblock copolymer nano-objects. This counter-intuitive reverse sequence approach uses an ionic reversible addition-fragmentation chain transfer (RAFT) agent for the RAFT aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA) to produce charge-stabilized latex particles. Chain extension using a water-soluble methacrylic, acrylic or acrylamide comonomer then produces sterically stabilized diblock copolymer nanoparticles in an aqueous one-pot formulation. In each case, the monomer diffuses into the PHPMA particles, which act as the locus for the polymerization. A remarkable change in morphology occurs as the ≈600 nm latex is converted into much smaller sterically stabilized diblock copolymer nanoparticles, which exhibit thermoresponsive behavior. Such reverse sequence PISA formulations enable the efficient synthesis of new functional diblock copolymer nanoparticles.
Collapse
Affiliation(s)
- Thomas J. Neal
- Department or ChemistryThe University of SheffieldBrook Hill, Sheffield, South YorkshireS3 7HFUK
| | - Nicholas J. W. Penfold
- Department or ChemistryThe University of SheffieldBrook Hill, Sheffield, South YorkshireS3 7HFUK
| | - Steven P. Armes
- Department or ChemistryThe University of SheffieldBrook Hill, Sheffield, South YorkshireS3 7HFUK
| |
Collapse
|
9
|
Neal TJ, Penfold NJW, Armes SP. Reverse Sequence Polymerization‐Induced Self‐Assembly in Aqueous Media. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Thomas J. Neal
- Department or Chemistry The University of Sheffield Brook Hill, Sheffield, South Yorkshire S3 7HF UK
| | - Nicholas J. W. Penfold
- Department or Chemistry The University of Sheffield Brook Hill, Sheffield, South Yorkshire S3 7HF UK
| | - Steven P. Armes
- Department or Chemistry The University of Sheffield Brook Hill, Sheffield, South Yorkshire S3 7HF UK
| |
Collapse
|
10
|
Xu K, Fan B, Putera K, Wawryk M, Wan J, Peng B, Banaszak Holl MM, Patti AF, Thang SH. Nanoparticle Surface Cross-Linking: A Universal Strategy to Enhance the Mechanical Properties of Latex Films. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ke Xu
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Bo Fan
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
- ARC Centre of Excellence for Enabling Eco-Efficient Beneficiation of Minerals, Monash Node, Clayton, Victoria 3800, Australia
| | - Kevin Putera
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Michaela Wawryk
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Jing Wan
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Bo Peng
- BASF Advanced Chemicals Co., Ltd., R&D I, No. 300, Jiangxinsha Road, 200137 Shanghai, China
| | - Mark M. Banaszak Holl
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Antonio F. Patti
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
- ARC-Industrial Transformation Training Centre - Green Chemistry in Manufacturing, Clayton, Victoria 3800, Australia
| | - San H. Thang
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
- ARC Centre of Excellence for Enabling Eco-Efficient Beneficiation of Minerals, Monash Node, Clayton, Victoria 3800, Australia
| |
Collapse
|
11
|
Preparation of poly(methyl methacrylate)-silica nanocomposites via DMP-assisted RAFT polymerization and NR/PMMA-RAFT-SiO2 hybrid membrane for pervaporation. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
Penfold NJW, Neal TJ, Plait C, Leigh AE, Chimonides G, Smallridge MJ, Armes SP. Reverse sequence polymerization-induced self-assembly in aqueous media: a counter-intuitive approach to sterically-stabilized diblock copolymer nano-objects. Polym Chem 2022. [DOI: 10.1039/d2py01064j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A 500 nm charge-stabilized latex is converted into 40 nm sterically-stabilized nanoparticles via reverse sequence polymerization-induced self-assembly (PISA).
Collapse
Affiliation(s)
- Nicholas J. W. Penfold
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | - Thomas J. Neal
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | - Corentin Plait
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | - Andrew E. Leigh
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | - Gwen Chimonides
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | | | - Steven P. Armes
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| |
Collapse
|
13
|
Qiu Z, Wang L, Wu J, Wang L, Li Z, Xu Z, Li W, Gui T. Study the synthesis and the properties of self‐crosslinking acrylic latex via a novel fluorescent labeling method. J Appl Polym Sci 2021. [DOI: 10.1002/app.49973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhenyu Qiu
- State Key Laboratory of Marine Coatings Marine Chemical Research Institute Co., Ltd. Qingdao China
- School of Material Science and Engineering Jiangsu University of Science and Technology Zhenjiang China
| | - Lijun Wang
- School of Material Science and Engineering Jiangsu University of Science and Technology Zhenjiang China
| | - Jiming Wu
- School of Material Science and Engineering Jiangsu University of Science and Technology Zhenjiang China
| | - Lei Wang
- School of Material Science and Engineering Jiangsu University of Science and Technology Zhenjiang China
| | - Zhaolei Li
- School of Material Science and Engineering Jiangsu University of Science and Technology Zhenjiang China
| | - Zexiao Xu
- Suzhou Jiren Hi‐Tech Material Co., Ltd Suzhou P. R. China
| | - Weili Li
- School of Material Science and Engineering Jiangsu University of Science and Technology Zhenjiang China
| | - Taijiang Gui
- State Key Laboratory of Marine Coatings Marine Chemical Research Institute Co., Ltd. Qingdao China
| |
Collapse
|
14
|
Synthesis of bio‐based poly(methacrylates) using
SG1
‐containing amphiphilic macroinitiators by nitroxide mediated miniemulsion polymerization. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20200870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Li Y, Guo L, Ye J, He L, Qiu T, Li X. The crosslinking directing dynamic behavior of polymer latex under the investigation toward waterborne damping coatings. J Appl Polym Sci 2021. [DOI: 10.1002/app.49676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yue Li
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing Chaoyang China
- Key Laboratory of Carbon Fiber and Functional Polymers Ministry of Education, Beijing University of Chemical Technology Beijing Chaoyang China
| | - Longhai Guo
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing Chaoyang China
- Key Laboratory of Carbon Fiber and Functional Polymers Ministry of Education, Beijing University of Chemical Technology Beijing Chaoyang China
| | - Jun Ye
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing Chaoyang China
- Key Laboratory of Carbon Fiber and Functional Polymers Ministry of Education, Beijing University of Chemical Technology Beijing Chaoyang China
| | - Lifan He
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing Chaoyang China
- Key Laboratory of Carbon Fiber and Functional Polymers Ministry of Education, Beijing University of Chemical Technology Beijing Chaoyang China
| | - Teng Qiu
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing Chaoyang China
- Key Laboratory of Carbon Fiber and Functional Polymers Ministry of Education, Beijing University of Chemical Technology Beijing Chaoyang China
| | - Xiaoyu Li
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing Chaoyang China
- Key Laboratory of Carbon Fiber and Functional Polymers Ministry of Education, Beijing University of Chemical Technology Beijing Chaoyang China
| |
Collapse
|
16
|
Huang LCS, Le D, Hsiao IL, Fritsch-Decker S, Hald C, Huang SC, Chen JK, Hwu JR, Weiss C, Hsu MH, Delaittre G. Boron-rich, cytocompatible block copolymer nanoparticles by polymerization-induced self-assembly. Polym Chem 2021. [DOI: 10.1039/d0py00710b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A new methacrylic boronate ester is synthesized and exploited to produce biocompatible nanoparticles with a boron-rich core by PISA.
Collapse
|
17
|
Fuentes-Exposito M, Norsic S, Février T, Dugas PY, Boutti S, Devisme S, Bonnet A, D'Agosto F, Lansalot M. Surfactant-free emulsion polymerization of vinylidene fluoride mediated by RAFT/MADIX reactive poly(ethylene glycol) polymer chains. Polym Chem 2021. [DOI: 10.1039/d1py00728a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Vinylidene fluoride (VDF) emulsion polymerization is conducted in the presence of xanthate-end functionalized poly(ethylene glycol)s leading to stable PVDF latexes.
Collapse
Affiliation(s)
- Mathieu Fuentes-Exposito
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5128, Catalysis, Polymerization, Processes and Materials (CP2M), 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France
| | - Sébastien Norsic
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5128, Catalysis, Polymerization, Processes and Materials (CP2M), 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France
| | - Thibaut Février
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5128, Catalysis, Polymerization, Processes and Materials (CP2M), 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France
| | - Pierre-Yves Dugas
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5128, Catalysis, Polymerization, Processes and Materials (CP2M), 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France
| | - Salima Boutti
- ARKEMA, Centre de Recherche Rhône-Alpes (CRRA), Rue Henri Moissan - CS 42063, 69491 Pierre-Bénite Cedex, France
| | - Samuel Devisme
- ARKEMA, Centre de recherche, développement, applications et technique de l'ouest (Cerdato), 13 route de Launay, 27470 Serquigny, France
| | - Anthony Bonnet
- ARKEMA, Centre de Recherche Rhône-Alpes (CRRA), Rue Henri Moissan - CS 42063, 69491 Pierre-Bénite Cedex, France
| | - Franck D'Agosto
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5128, Catalysis, Polymerization, Processes and Materials (CP2M), 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France
| | - Muriel Lansalot
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5128, Catalysis, Polymerization, Processes and Materials (CP2M), 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France
| |
Collapse
|
18
|
Boussiron C, Le Bechec M, Sabalot J, Lacombe S, Save M. Photoactive rose bengal-based latex via RAFT emulsion polymerization-induced self-assembly. Polym Chem 2021. [DOI: 10.1039/d0py01128b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rose bengal shell- or core-functionalized acrylic latex synthesized by RAFT emulsion PISA: interfacial photosensitized 1O2 production under visible light.
Collapse
Affiliation(s)
- Charlène Boussiron
- CNRS
- University Pau & Pays Adour
- E2S UPPA
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux
- IPREM
| | - Mickaël Le Bechec
- CNRS
- University Pau & Pays Adour
- E2S UPPA
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux
- IPREM
| | - Julia Sabalot
- CNRS
- University Pau & Pays Adour
- E2S UPPA
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux
- IPREM
| | - Sylvie Lacombe
- CNRS
- University Pau & Pays Adour
- E2S UPPA
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux
- IPREM
| | - Maud Save
- CNRS
- University Pau & Pays Adour
- E2S UPPA
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux
- IPREM
| |
Collapse
|
19
|
Guimarães TR, Bong YL, Thompson SW, Moad G, Perrier S, Zetterlund PB. Polymerization-induced self-assembly via RAFT in emulsion: effect of Z-group on the nucleation step. Polym Chem 2021. [DOI: 10.1039/d0py01311k] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
It is demonstrated that the nature of the Z-group of trithiocarbonate RAFT agents can have a major effect on the nucleation step of aqueous RAFT PISA performed as emulsion polymerization.
Collapse
Affiliation(s)
- Thiago R. Guimarães
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Y. Loong Bong
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Steven W. Thompson
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Graeme Moad
- CSIRO Manufacturing Flagship
- Clayton South
- Australia
| | - Sébastien Perrier
- Department of Chemistry
- University of Warwick
- Coventry
- UK
- Warwick Medical School
| | - Per B. Zetterlund
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| |
Collapse
|
20
|
Antoniv M, Chang S, Al‐Jabri N, Zhu SS. Surfactant‐free synthesis of poly (styrene‐
co
‐acrylamide) monodisperse nanoparticles using hybrid flow‐to‐batch chemistry. J Appl Polym Sci 2020. [DOI: 10.1002/app.49905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Marta Antoniv
- Aramco Services Company: Aramco Research Center–Boston Cambridge Massachusetts USA
| | - Sehoon Chang
- Aramco Services Company: Aramco Research Center–Boston Cambridge Massachusetts USA
| | | | - S. Sherry Zhu
- Aramco Services Company: Aramco Research Center–Boston Cambridge Massachusetts USA
| |
Collapse
|
21
|
Thompson SW, Guimarães TR, Zetterlund PB. RAFT Emulsion Polymerization: MacroRAFT Agent Self-Assembly Investigated Using a Solvachromatic Dye. Biomacromolecules 2020; 21:4577-4590. [DOI: 10.1021/acs.biomac.0c00685] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Steven W. Thompson
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Thiago R. Guimarães
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Per B. Zetterlund
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
22
|
Griveau L, Delorme J, Engström J, Dugas PY, Carlmark A, Malmström E, D’Agosto F, Lansalot M. Synergetic Effect of Water-Soluble PEG-Based Macromonomers and Cellulose Nanocrystals for the Stabilization of PMMA Latexes by Surfactant-Free Emulsion Polymerization. Biomacromolecules 2020; 21:4479-4491. [DOI: 10.1021/acs.biomac.0c00439] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Lucie Griveau
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2), 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France
| | - James Delorme
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2), 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France
| | - Joakim Engström
- Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- Wallenberg Wood Science Centre, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Pierre-Yves Dugas
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2), 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France
| | - Anna Carlmark
- Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- Wallenberg Wood Science Centre, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Eva Malmström
- Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- Wallenberg Wood Science Centre, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Franck D’Agosto
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2), 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France
| | - Muriel Lansalot
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2), 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France
| |
Collapse
|
23
|
D'Agosto F, Rieger J, Lansalot M. RAFT‐vermittelte polymerisationsinduzierte Selbstorganisation (PISA). Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911758] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Franck D'Agosto
- Univ Lyon Université Claude Bernard Lyon 1 CPE Lyon CNRS UMR 5265 Chemistry, Catalysis, Polymers and Processes (C2P2) 43 Bd du 11 Novembre 1918 69616 Villeurbanne Frankreich
| | - Jutta Rieger
- Sorbonne Université and CNRS UMR 8232 Institut Parisien de Chimie Moléculaire (IPCM), Polymer Chemistry Team (ECP) 4 Place Jussieu 75005 Paris Frankreich
| | - Muriel Lansalot
- Univ Lyon Université Claude Bernard Lyon 1 CPE Lyon CNRS UMR 5265 Chemistry, Catalysis, Polymers and Processes (C2P2) 43 Bd du 11 Novembre 1918 69616 Villeurbanne Frankreich
| |
Collapse
|
24
|
D'Agosto F, Rieger J, Lansalot M. RAFT‐Mediated Polymerization‐Induced Self‐Assembly. Angew Chem Int Ed Engl 2020; 59:8368-8392. [DOI: 10.1002/anie.201911758] [Citation(s) in RCA: 250] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Franck D'Agosto
- Univ Lyon Université Claude Bernard Lyon 1 CPE Lyon CNRS UMR 5265 Chemistry, Catalysis, Polymers and Processes (C2P2) 43 Bd du 11 Novembre 1918 69616 Villeurbanne France
| | - Jutta Rieger
- Sorbonne Université and CNRS UMR 8232 Institut Parisien de Chimie Moléculaire (IPCM) Polymer Chemistry Team (ECP) 4 Place Jussieu 75005 Paris France
| | - Muriel Lansalot
- Univ Lyon Université Claude Bernard Lyon 1 CPE Lyon CNRS UMR 5265 Chemistry, Catalysis, Polymers and Processes (C2P2) 43 Bd du 11 Novembre 1918 69616 Villeurbanne France
| |
Collapse
|
25
|
Deane OJ, Musa OM, Fernyhough A, Armes SP. Synthesis and Characterization of Waterborne Pyrrolidone-Functional Diblock Copolymer Nanoparticles Prepared via Surfactant-free RAFT Emulsion Polymerization. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02394] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Oliver J. Deane
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Osama M. Musa
- Ashland Specialty Ingredients, 1005 US 202/206, Bridgewater, New Jersey 08807, United States
| | - Alan Fernyhough
- Ashland Specialty Ingredients, Listers Mills, Heaton Road, Bradford, West Yorkshire BD9 4SH, U.K
| | - Steven P. Armes
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| |
Collapse
|
26
|
Polymerisable surfactants for polymethacrylates using catalytic chain transfer polymerisation (CCTP) combined with sulfur free-RAFT in emulsion polymerisation. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Zhang WJ, Kadirkhanov J, Wang CH, Ding SG, Hong CY, Wang F, You YZ. Polymerization-induced self-assembly for the fabrication of polymeric nano-objects with enhanced structural stability by cross-linking. Polym Chem 2020. [DOI: 10.1039/d0py00368a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review discusses the strategies of core-cross-linking in most of the PISA literatures (including post-polymerization cross-linking, photo-cross-linking and in situ cross-linking) and the applications of the cross-linked nano-objects.
Collapse
Affiliation(s)
- Wen-Jian Zhang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| | - Jamshid Kadirkhanov
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| | - Chang-Hui Wang
- Department of Cardiology
- First Affiliated Hospital of Anhui Medical University
- Hefei 230026
- China
| | - Sheng-Gang Ding
- Department of Pediatrics
- First Affiliated Hospital of Anhui Medical University
- Hefei 230026
- China
| | - Chun-Yan Hong
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| | - Fei Wang
- Neurosurgical Department
- The First Affiliated Hospital of USTC
- Division of Life Sciences and Medicine
- University of Science and Technology of China
- Hefei
| | - Ye-Zi You
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| |
Collapse
|
28
|
Delorme J, Boyron O, Dugas PY, Dufils PE, Wilson DJ, Monteil V, D'Agosto F, Lansalot M. Poly(vinyl acetate-co-ethylene) particles prepared by surfactant-free emulsion polymerization in the presence of a hydrophilic RAFT/MADIX macromolecular chain transfer agent. Polym Chem 2020. [DOI: 10.1039/d0py01266a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Poly(vinyl acetate-co-ethylene) latexes are prepared under a broad range of conditions by emulsion polymerization in the presence of a hydrophilic RAFT/MADIX macromolecular chain transfer agent.
Collapse
Affiliation(s)
- James Delorme
- Univ Lyon
- Université Claude Bernard Lyon 1
- CPE Lyon
- CNRS
- UMR 5265
| | - Olivier Boyron
- Univ Lyon
- Université Claude Bernard Lyon 1
- CPE Lyon
- CNRS
- UMR 5265
| | | | | | - D. James Wilson
- Solvay Novecare
- Research and Innovation Centre – Paris
- 93306 Aubervilliers
- France
| | - Vincent Monteil
- Univ Lyon
- Université Claude Bernard Lyon 1
- CPE Lyon
- CNRS
- UMR 5265
| | - Franck D'Agosto
- Univ Lyon
- Université Claude Bernard Lyon 1
- CPE Lyon
- CNRS
- UMR 5265
| | - Muriel Lansalot
- Univ Lyon
- Université Claude Bernard Lyon 1
- CPE Lyon
- CNRS
- UMR 5265
| |
Collapse
|
29
|
Jiménez N, Ballard N, Asua JM. Hydrogen Bond-Directed Formation of Stiff Polymer Films Using Naturally Occurring Polyphenols. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01694] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Nerea Jiménez
- POLYMAT and Departamento de Química Aplicada, Facultad de Ciencias Químicas, University of the Basque Country UPV/EHU, Joxe Mari Korta zentroa, Tolosa Hiribidea 72, Donostia-San Sebastián 20018, Spain
| | - Nicholas Ballard
- POLYMAT and Departamento de Química Aplicada, Facultad de Ciencias Químicas, University of the Basque Country UPV/EHU, Joxe Mari Korta zentroa, Tolosa Hiribidea 72, Donostia-San Sebastián 20018, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao 48013, Spain
| | - José M. Asua
- POLYMAT and Departamento de Química Aplicada, Facultad de Ciencias Químicas, University of the Basque Country UPV/EHU, Joxe Mari Korta zentroa, Tolosa Hiribidea 72, Donostia-San Sebastián 20018, Spain
| |
Collapse
|
30
|
|
31
|
Liu Y, Tran K, Zhou H, Heck A, Breul K, Emsermann J, Gonzalez-Alvarez MJ, Hoof L, Lu Y, Soleimani M, Winnik MA. Investigating Molecular Exchange between Partially Cross-Linked Polymer Particles Prepared by a Secondary Dispersion Process. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Mohsen Soleimani
- BASF Corporation, Advanced Materials and Systems Research, Wyandotte, Michigan 48192, United States
| | | |
Collapse
|
32
|
Martín-Fabiani I, Makepeace DK, Richardson PG, Lesage de la Haye J, Venero DA, Rogers SE, D'Agosto F, Lansalot M, Keddie JL. In Situ Monitoring of Latex Film Formation by Small-Angle Neutron Scattering: Evolving Distributions of Hydrophilic Stabilizers in Drying Colloidal Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3822-3831. [PMID: 30777761 DOI: 10.1021/acs.langmuir.8b04251] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The distribution of hydrophilic species, such as surfactants, in latex films is of critical importance for the performance of adhesives, coatings, and inks, among others. However, the evolution of this distribution during the film formation process and in the resulting dried films remains insufficiently elucidated. Here, we present in situ (wet) and ex situ (dry) small-angle neutron scattering (SANS) experiments that follow the film formation of two types of latex particles, which differ in their stabilizer: either a covalently bonded poly(methacrylic acid) (PMAA) segment or a physically adsorbed surfactant (sodium dodecyl sulfate, SDS). By fitting the experimental SANS data and combining with gravimetry experiments, we have ascertained the hydrophilic species distribution within the drying film and followed its evolution by correlating the size and shape of stabilizer clusters with the drying time. The evolution of the SDS distribution over drying time is being driven by a reduction in the interfacial free energy. However, the PMAA-based stabilizer macromolecules are restricted by their covalent bonding to core polymer chains and hence form high-surface area disclike phases at the common boundary between particles and PMAA micelles. Contrary to an idealized view of film formation, PMAA does not remain in the walls of a continuous honeycomb structure. The results presented here shed new light on the nanoscale distribution of hydrophilic species in drying and ageing latex films. We provide valuable insights into the influence of the stabilizer mobility on the final structure of latex films.
Collapse
Affiliation(s)
- Ignacio Martín-Fabiani
- Department of Materials , Loughborough University , Loughborough LE11 3TU , Leicestershire , U.K
| | - David K Makepeace
- Department of Physics , University of Surrey , Guildford GU2 7XH , U.K
| | | | - Jennifer Lesage de la Haye
- Université Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2) , 43 Bd du 11 Novembre 1918 , 69616 Villeurbanne , France
| | - Diego Alba Venero
- Science and Technology Facilities Council, Rutherford Appleton Laboratory , ISIS Pulsed Neutron and Muon Source , Harwell , Didcot, Oxford OX11 0QX , U.K
| | - Sarah E Rogers
- Science and Technology Facilities Council, Rutherford Appleton Laboratory , ISIS Pulsed Neutron and Muon Source , Harwell , Didcot, Oxford OX11 0QX , U.K
| | - Franck D'Agosto
- Université Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2) , 43 Bd du 11 Novembre 1918 , 69616 Villeurbanne , France
| | - Muriel Lansalot
- Université Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2) , 43 Bd du 11 Novembre 1918 , 69616 Villeurbanne , France
| | - Joseph L Keddie
- Department of Physics , University of Surrey , Guildford GU2 7XH , U.K
| |
Collapse
|
33
|
Engström J, Benselfelt T, Wågberg L, D'Agosto F, Lansalot M, Carlmark A, Malmström E. Tailoring adhesion of anionic surfaces using cationic PISA-latexes - towards tough nanocellulose materials in the wet state. NANOSCALE 2019; 11:4287-4302. [PMID: 30644950 DOI: 10.1039/c8nr08057g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cationic latexes with Tgs ranging between -40 °C and 120 °C were synthesised using n-butyl acrylate (BA) and/or methyl methacrylate (MMA) as the core polymers. Reversible addition-fragmentation chain transfer (RAFT) combined with polymerisation-induced self-assembly (PISA) allowed for in situ chain-extension of a cationic macromolecular RAFT agent (macroRAFT) of poly(N-[3-(dimethylamino)propyl] methacrylamide) (PDMAPMA), used as stabiliser in so-called surfactant-free emulsion polymerisation. The resulting narrowly distributed nanosized latexes adsorbed readily onto silica surfaces and to model surfaces of cellulose nanofibrils, as demonstrated by quartz crystal microbalance with dissipation monitoring (QCM-D) measurements. Adsorption to anionic surfaces increased when increasing ionic strength to 10 mM, indicating the influence of the polyelectrolyte effect exerted by the corona. The polyelectrolyte corona affected the interactions in the wet state, the stability of the latex and re-dispersibility after drying. The QCM-D measurements showed that a lower Tg of the core results in a more strongly interacting adsorbed layer at the solid-liquid interface, despite a comparable adsorbed mass, indicating structural differences of the investigated latexes in the wet state. The two latexes with Tg below room temperature (i.e. PBATg-40 and P(BA-co-MMA)Tg3) exhibited film formation in the wet state, as shown by AFM colloidal probe measurements. It was observed that P(BA-co-MMA)Tg3 latex resulted in the largest pull-off force, above 200 m Nm-1 after 120 s in contact. The strongest wet adhesion was achieved with PDMAPMA-stabilized latexes soft enough to allow for interparticle diffusion of polymer chains, and stiff enough to create a strong adhesive joint. Fundamental understanding of interfacial properties of latexes and cellulose enables controlled and predictive strategies to produce strong and tough materials with high nanocellulose content, both in the wet and dry state.
Collapse
Affiliation(s)
- J Engström
- KTH Royal Institute of Technology, School of Chemistry, Biotechnology and Health, Wallenberg Wood Science Center, SE-100 44, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
34
|
Peng H, Rübsam K, Hu C, Jakob F, Schwaneberg U, Pich A. Stimuli-Responsive Poly( N-Vinyllactams) with Glycidyl Side Groups: Synthesis, Characterization, and Conjugation with Enzymes. Biomacromolecules 2019; 20:992-1006. [PMID: 30608144 DOI: 10.1021/acs.biomac.8b01608] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herein we report the synthesis of new reactive stimuli-responsive polymers by RAFT copolymerization of glycidyl methacrylate and three cyclic N-vinyllactam derivatives. The copolymerization process was thoroughly investigated and the influence of the steric hindrance originating from the monomer structure of cyclic N-vinyllactams on the polymerization process and the properties of obtained copolymers were studied. A series of water-soluble copolymers with variable chemical composition, controlled molecular weight and narrow dispersity ( Đ) were synthesized and their properties are systematically investigated. Experimentally determined cloud points for different copolymers in aqueous solutions indicate shift of lower critical solution temperature (LCST) to lower values with the increase of GMA content in copolymers and increase of the lactam ring size. The obtained reactive stimuli-responsive copolymers can be efficiently used for encapsulation of cellulase in water-in-oil emulsions forming biohybrid nanogels. The enzymes entrapped in nanogels demonstrated significantly improved resistance against harsh store conditions, chaotropic agents, and organic solvents.
Collapse
Affiliation(s)
- Huan Peng
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry , RWTH Aachen University , Aachen , Germany.,DWI Leibniz Institute for Interactive Materials e.V. , Aachen , Germany
| | - Kristin Rübsam
- DWI Leibniz Institute for Interactive Materials e.V. , Aachen , Germany
| | - Chaolei Hu
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry , RWTH Aachen University , Aachen , Germany.,DWI Leibniz Institute for Interactive Materials e.V. , Aachen , Germany
| | - Felix Jakob
- Institute for Biotechnology , RWTH Aachen University , Aachen , Germany.,DWI Leibniz Institute for Interactive Materials e.V. , Aachen , Germany
| | - Ulrich Schwaneberg
- Institute for Biotechnology , RWTH Aachen University , Aachen , Germany.,DWI Leibniz Institute for Interactive Materials e.V. , Aachen , Germany
| | - Andrij Pich
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry , RWTH Aachen University , Aachen , Germany.,DWI Leibniz Institute for Interactive Materials e.V. , Aachen , Germany
| |
Collapse
|
35
|
Gurnani P, Cook AB, Richardson RAE, Perrier S. A study on the preparation of alkyne functional nanoparticlesviaRAFT emulsion polymerisation. Polym Chem 2019. [DOI: 10.1039/c8py01579a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We evaluate the parameters surrounding the preparation of colloidally stable alkyne functional latex nanoparticlesviaRAFT emulsion polymerisation.
Collapse
Affiliation(s)
| | | | | | - Sébastien Perrier
- Department of Chemistry
- University of Warwick
- Coventry
- UK
- Warwick Medical School
| |
Collapse
|
36
|
Le D, Keller D, Delaittre G. Reactive and Functional Nanoobjects by Polymerization-Induced Self-Assembly. Macromol Rapid Commun 2018; 40:e1800551. [DOI: 10.1002/marc.201800551] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/06/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Dao Le
- Institute of Toxicology and Genetics; Karlsruhe Institute of Technology; Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen Germany
- Macromolecular Architectures, Institute for Chemical Technology and Polymer Chemistry; Karlsruhe Institute of Technology; Engesserstr. 18, 76128 Karlsruhe Germany
| | - Dominic Keller
- Institute of Toxicology and Genetics; Karlsruhe Institute of Technology; Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen Germany
- Macromolecular Architectures, Institute for Chemical Technology and Polymer Chemistry; Karlsruhe Institute of Technology; Engesserstr. 18, 76128 Karlsruhe Germany
| | - Guillaume Delaittre
- Institute of Toxicology and Genetics; Karlsruhe Institute of Technology; Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen Germany
- Macromolecular Architectures, Institute for Chemical Technology and Polymer Chemistry; Karlsruhe Institute of Technology; Engesserstr. 18, 76128 Karlsruhe Germany
| |
Collapse
|
37
|
Zhou J, Yao H, Ma J. Recent advances in RAFT-mediated surfactant-free emulsion polymerization. Polym Chem 2018. [DOI: 10.1039/c8py00065d] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We summarized the RAFT-mediated surfactant-free emulsion polymerization using various RAFT agents and the polymerization types for the preparation of organic/inorganic hybrid materials.
Collapse
Affiliation(s)
- Jianhua Zhou
- College of Bioresources Chemical and Materials Engineering
- Shaanxi University of Science and Technology
- Xi'an 710021
- China
- National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science and Technology)
| | - Hongtao Yao
- College of Bioresources Chemical and Materials Engineering
- Shaanxi University of Science and Technology
- Xi'an 710021
- China
- National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science and Technology)
| | - Jianzhong Ma
- College of Bioresources Chemical and Materials Engineering
- Shaanxi University of Science and Technology
- Xi'an 710021
- China
- National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science and Technology)
| |
Collapse
|