1
|
Zhang H, Tang B, Zhang B, Huang K, Li S, Zhang Y, Zhang H, Bai L, Wu Y, Cheng Y, Yang Y, Han G. X-ray-activated polymerization expanding the frontiers of deep-tissue hydrogel formation. Nat Commun 2024; 15:3247. [PMID: 38622169 PMCID: PMC11018743 DOI: 10.1038/s41467-024-47559-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Photo-crosslinking polymerization stands as a fundamental pillar in the domains of chemistry, biology, and medicine. Yet, prevailing strategies heavily rely on ultraviolet/visible (UV/Vis) light to elicit in situ crosslinking. The inherent perils associated with UV radiation, namely the potential for DNA damage, coupled with the limited depth of tissue penetration exhibited by UV/Vis light, severely restrict the scope of photo-crosslinking within living organisms. Although near-infrared light has been explored as an external excitation source, enabling partial mitigation of these constraints, its penetration depth remains insufficient, particularly within bone tissues. In this study, we introduce an approach employing X-ray activation for deep-tissue hydrogel formation, surpassing all previous boundaries. Our approach harnesses a low-dose X-ray-activated persistent luminescent phosphor, triggering on demand in situ photo-crosslinking reactions and enabling the formation of hydrogels in male rats. A breakthrough of our method lies in its capability to penetrate deep even within thick bovine bone, demonstrating unmatched potential for bone penetration. By extending the reach of hydrogel formation within such formidable depths, our study represents an advancement in the field. This application of X-ray-activated polymerization enables precise and safe deep-tissue photo-crosslinking hydrogel formation, with profound implications for a multitude of disciplines.
Collapse
Affiliation(s)
- Hailei Zhang
- College of Chemistry & Materials Science, Hebei University, Baoding, 071002, P. R. China.
| | - Boyan Tang
- College of Chemistry & Materials Science, Hebei University, Baoding, 071002, P. R. China
| | - Bo Zhang
- College of Chemistry & Materials Science, Hebei University, Baoding, 071002, P. R. China
| | - Kai Huang
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, MA, 01605, USA
| | - Shanshan Li
- College of Chemistry & Materials Science, Hebei University, Baoding, 071002, P. R. China
| | - Yuangong Zhang
- College of Chemistry & Materials Science, Hebei University, Baoding, 071002, P. R. China
| | - Haisong Zhang
- Affiliated Hospital of Hebei University, Baoding, 071000, P. R. China
| | - Libin Bai
- College of Chemistry & Materials Science, Hebei University, Baoding, 071002, P. R. China
| | - Yonggang Wu
- College of Chemistry & Materials Science, Hebei University, Baoding, 071002, P. R. China
| | - Yongqiang Cheng
- College of Chemistry & Materials Science, Hebei University, Baoding, 071002, P. R. China
| | - Yanmin Yang
- College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei Key Lab of Optic-electronic Information and Materials, Hebei University, Baoding, 071002, P. R. China.
| | - Gang Han
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, MA, 01605, USA.
| |
Collapse
|
2
|
Peng K, Wang R, Zhou J. One-step fabrication of three-dimensional macropore copolymer-modified polycarbonate array by photo-crosslinking for protein immunoassay. RSC Adv 2023; 13:6936-6946. [PMID: 36865573 PMCID: PMC9973421 DOI: 10.1039/d3ra00696d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
A photocross-linked copolymer was prepared, and could rapidly form a macropore structure in phosphate buffer solution (PBS) without the addition of porogen. The photo-crosslinking process contained the crosslinking of the copolymer itself and that with the polycarbonate substrate. The three-dimensional (3D) surface was achieved through one-step photo-crosslinking of the macropore structure. The macropore structure can be finely regulated by multiple dimensions, including monomer structure of the copolymer, PBS and copolymer concentration. Compared with the two-dimensional (2D) surface, the 3D surface has a controllable structure, a high loading capacity (59 μg cm-2) and immobilization efficiency (92%), and the effect of inhibiting the coffee ring for protein immobilization. Immunoassay results show that a 3D surface immobilized by IgG has high sensitivity (LOD value of 5 ng mL-1) and broader dynamic range (0.005-50 μg mL-1). This simple and structure-controllable method for preparing 3D surfaces modified by macropore polymer has great potential applications in the fields of biochips and biosensing.
Collapse
Affiliation(s)
- Kaimei Peng
- School of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities Duyun 558000 China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province School of Biomedical Engineering, Sun Yat-sen University Guangzhou 510275 China
| | - Runping Wang
- School of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities Duyun 558000 China
| | - Jianhua Zhou
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province School of Biomedical Engineering, Sun Yat-sen University Guangzhou 510275 China
| |
Collapse
|
3
|
Zober M, Lienkamp K. “Just Antimicrobial Is Not Enough” Revisited – From Antimicrobial Polymers To Microstructured Dual‐Functional Surfaces, Self‐regenerating Polymer Surfaces, and Polymer Materials with Switchable Bioactivity. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Maria Zober
- Department of Microsystems Engineering (IMTEK) University of Freiburg Georges‐Köhler‐Allee 105 79110 Freiburg Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) University of Freiburg Georges‐Köhler‐Allee 105 79110 Freiburg Germany
| | - Karen Lienkamp
- Department of Microsystems Engineering (IMTEK) University of Freiburg Georges‐Köhler‐Allee 105 79110 Freiburg Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) University of Freiburg Georges‐Köhler‐Allee 105 79110 Freiburg Germany
- Professur für Polymerwerkstoffe Fachrichtung Materialwissenschaft und Werkstoffkunde Universität des Saarlandes Campus 66123 Saarbrücken Germany
| |
Collapse
|
4
|
Wang K, Dong H, Zhou D, Ito Y, Hu L, Zhang Z, Zhu X. Facile Fabrication of Semiconducting Single-Walled Carbon Nanotubes Patterns on Flexible Substrate Based on a Photoimmobilization Technique. ACS APPLIED MATERIALS & INTERFACES 2020; 12:8722-8729. [PMID: 31994380 DOI: 10.1021/acsami.9b21142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) have attracted significant attention due to their outstanding properties. For their wide applications in electronics and optoelectronics, pure semiconducting SWCNTs (s-SWCNTs) and their precise placement are preconditions. Recent advances have focused on developing effective strategies to separate s-SWCNTs from raw SWCNTs, a mixture of metallic and semiconducting nanotubes, and deposit s-SWCNTs on target substrates. Herein, a polyfluorene-based alternative copolymer (PFBP) containing the benzophenone group was employed. PFBP achieved higher yield for s-SWCNTs than the well-studied poly(9,9-dioctylfluorene) through solution process. Subsequently, the dispersed s-SWCNTs were immobilized on a flexible polyethylene terephthalate in a facile manner by the photoreactive benzophenone group upon exposure to UV irradiation, and chemically robust patterns were fabricated from micro to macro scales through photomasks. Our method accomplished by utilizing photoimmobilization is a simple cleaning procedure and an important step forward in pitch scaling for further applications of conjugated polymer wrapped s-SWCNTs.
Collapse
Affiliation(s)
- Kang Wang
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 215123 Suzhou , China
| | - Hao Dong
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 215123 Suzhou , China
| | - Di Zhou
- Jiangsu Key Laboratory of Advanced Functional Materials, School of Chemistry and Material Engineering , Changshu Institute of Technology , Changshu , Jiangsu 215500 , China
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory , RIKEN , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
| | - Lihua Hu
- Analysis and Testing Center , Soochow University , Suzhou 215123 , China
| | - Zhengbiao Zhang
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 215123 Suzhou , China
| | - Xiulin Zhu
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 215123 Suzhou , China
| |
Collapse
|
5
|
Abstract
Herein, recent developments in the 3D printing of materials with structural hierarchy and their future prospects are reviewed. It is shown that increasing the extent of ordering, is essential to access novel properties and functionalities.
Collapse
Affiliation(s)
- Joël Monti
- Institute of Nanotechnology
- Karlsruhe Institute of Technology (KIT)
- 76128 Karlsruhe
- Germany
| | - Eva Blasco
- Institute of Nanotechnology
- Karlsruhe Institute of Technology (KIT)
- 76128 Karlsruhe
- Germany
- Organisch-Chemisches Institut, University of Heidelberg
| |
Collapse
|
6
|
Elsayed SM, Widyaya VT, Shafi Y, Eickenscheidt A, Lienkamp K. Bifunctional Bioactive Polymer Surfaces with Micrometer and Submicrometer-sized Structure: The Effects of Structure Spacing and Elastic Modulus on Bioactivity. Molecules 2019; 24:E3371. [PMID: 31527527 PMCID: PMC6767307 DOI: 10.3390/molecules24183371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/16/2019] [Accepted: 08/27/2019] [Indexed: 11/16/2022] Open
Abstract
This study presents a comparison of two types of bifunctional structured surface that were made from the same polymer -- an antimicrobial polycation (a synthetic mimic of an antimicrobial peptide, SMAMP) and a protein-repellent polyzwitterion (poly(sulfobetaines), PSB). The first type of bifunctional surface was fabricated by a colloidal lithography (CL) based process where the two polymers were immobilized sequentially onto pre-structured surfaces with a chemical contrast (gold on silicon). This enabled site-selective covalent attachment. The CL materials had a spacing ranging from 200 nm to 2 µm. The second type of structured surface (spacing: 1 - 8.5 µm) was fabricated using a microcontact printing (µCP) process where SMAMP patches were printed onto a PSB network, so that 3D surface features were obtained. The thus obtained materials were studied by quantitative nanomechanical measurements using atomic force microscopy (QNM-AFM). The different architectures led to different local elastic moduli at the polymer-air interface, where the CL surfaces were much stiffer (Derjaguin-Muller-Toporov (DMT) modulus = 20 ± 0.8 GPa) compared to the structured 3D networks obtained by µCP (DMT modulus = 42 ± 1.1 MPa). The effects of the surface topology and stiffness on the antimicrobial activity against Escherichia coli, the protein repellency (using fibrinogen), and the compatibility with human gingival mucosal keratinocytes were investigated. The softer 3D µCP surfaces had simultaneous antimicrobial activity, protein repellency, and cell compatibility at all spacings. For the stiffer CL surfaces, quantitative simultaneous antimicrobial activity and protein repellency was not obtained. However, the cell compatibility could be maintained at all spacings. The optimum spacing for the CL materials was in the range of 500 nm-1 µm, with significantly reduced antimicrobial activity at 2 µm spacing. Thus, the soft polymer network obtained by µCP could be more easily optimized than the stiff CL surface, and had a broader topology range of optimal or near-optimal bioactivity.
Collapse
Affiliation(s)
- Sarah M Elsayed
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) and Department of Microsystems Engineering (IMTEK), Albert-Ludwigs-Universität, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Vania Tanda Widyaya
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) and Department of Microsystems Engineering (IMTEK), Albert-Ludwigs-Universität, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Yasir Shafi
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) and Department of Microsystems Engineering (IMTEK), Albert-Ludwigs-Universität, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Alice Eickenscheidt
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) and Department of Microsystems Engineering (IMTEK), Albert-Ludwigs-Universität, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Karen Lienkamp
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) and Department of Microsystems Engineering (IMTEK), Albert-Ludwigs-Universität, Georges-Köhler-Allee 105, 79110 Freiburg, Germany.
| |
Collapse
|
7
|
Widyaya VT, Müller C, Al-Ahmad A, Lienkamp K. Three-Dimensional, Bifunctional Microstructured Polymer Hydrogels Made from Polyzwitterions and Antimicrobial Polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1211-1226. [PMID: 30563333 PMCID: PMC7611509 DOI: 10.1021/acs.langmuir.8b03410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biofilm-associated infections of medical devices are a global problem. For the prevention of such infections, biomaterial surfaces are chemically or topographically modified to slow down the initial stages of biofilm formation. In the bifunctional material here presented, chemical and topographical cues are combined, so that protein and bacterial adhesion as well as bacterial proliferation are effectively inhibited. Upon changes in the surface topography parameters and investigation of the effect of these changes on bioactivity, structure-property relationships are obtained. The target material is obtained by microcontact printing (μCP), a soft lithography method. The antimicrobial component, poly(oxanorbornene)-based synthetic mimics of an antimicrobial peptide (SMAMP), was printed onto a protein-repellent polysulfobetaine hydrogel, so that bifunctional 3D structured polymer surfaces with 1, 2, and 8.5 μm spacing are obtained. These surfaces are characterized with fluorescence microscopy, surface plasmon resonance spectroscopy, atomic force microscopy, and contact angle measurements. Biological studies show that the bifunctional surfaces with 1 and 2 μm spacing are 100% antimicrobially active against Escherichia coli and Staphylococcus aureus, 100% fibrinogen-repellent, and nontoxic to human gingival mucosal keratinocytes. At 8.5 μm spacing, the broad-band antimicrobial activity and the protein repellency are compromised, which indicates that this spacing is above the upper limit for effective simultaneous antimicrobial activity and protein repellency of polyzwitterionic-polycationic materials.
Collapse
Affiliation(s)
- Vania Tanda Widyaya
- Bioactive Polymer Synthesis and Surface Engineering Group, Department of Microsystems Engineering (IMTEK) and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Claas Müller
- Laboratory for Process Technology, Department of Microsystem Engineering (IMTEK), Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| | - Ali Al-Ahmad
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine of the Albert-Ludwigs-Universität, Freiburg, Hugstetter Str. 55, 79106 Germany
| | - Karen Lienkamp
- Bioactive Polymer Synthesis and Surface Engineering Group, Department of Microsystems Engineering (IMTEK) and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
8
|
Photoreactive benzophenone as anchor of modifier to construct durable anti-platelets polymer surface. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.11.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Yuan L, Qu B, Chen J, Lv H, Yang X. Engineering modifiers bearing benzophenone with enhanced reactivity to construct surface microstructures. Polym Chem 2019. [DOI: 10.1039/c9py00764d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel strategy is proposed to construct a patterned surface with controllable thickness by designing the chain backbone of BP-capped modifiers.
Collapse
Affiliation(s)
- Liguang Yuan
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Baoliu Qu
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Jiayue Chen
- Wego Holding Company Limited
- Weihai 264210
- P.R. China
| | - Hongying Lv
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Xiaoniu Yang
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|