1
|
Li SY, Duan BH, Liu N, Luo J, Chen Z, Wu ZQ. Helical Star-Shaped Bottlebrush Polymers: From Controlled Synthesis to Tunable Photoluminescence and Circularly Polarized Luminescence. ACS Macro Lett 2024; 13:1396-1402. [PMID: 39377270 DOI: 10.1021/acsmacrolett.4c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The controlled synthesis of star-shaped bottlebrush polymers with tunable topologies is a challenge. However, such materials may exhibit distinct photoluminescence properties. Bottlebrush polymers have polymerization-induced emission (PIE) properties due to their aggregated side chains, and aggregation-induced emission (AIE) is also a unique luminescent property. In this work, we prepared a variety of highly active alkyne Pd catalysts and polymerized poly(L/D-lactic acid) macromonomers containing polymerizable phenylisocyanide groups as end groups to obtain a variety of topologically structured bottlebrush polymers with controllable molecular weights and narrow molecular weight distributions. Bottlebrush polymers with tetraphenyl ethylene (TPE) units as the core exhibit tunable photoluminescence and circularly polarized luminescence properties. We propose that such properties are due to the unique AIE characteristics of the TPE unit combined with the PIE characteristics of the bottlebrush polymer.
Collapse
Affiliation(s)
- Shi-Yi Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Bing-Hui Duan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Na Liu
- The School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Jing Luo
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi, Hefei, Anhui 230022, China
| | - Zheng Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
2
|
Douglas JF, Horkay F. Influence of swelling on the elasticity of polymer networks cross-linked in the melt state: Test of the localization model of rubber elasticity. J Chem Phys 2024; 160:224903. [PMID: 38856072 PMCID: PMC11305141 DOI: 10.1063/5.0212901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024] Open
Abstract
The elasticity of polymer networks, formed by cross-linking high molecular mass polymers in the melt state and then swollen by a solvent, involves contributions from both the presence of cross-link network junctions and the interchain interactions associated with the combined effect of excluded volume interactions and topological constraints that become modified when the network is swollen. We test the capacity of the previously developed localization model of rubber elasticity, a mean field "tube model," to describe changes in elasticity observed in classical experimental studies of the mechanical properties of this type of network. In order to obtain a satisfactory comparison to the experiments, it was found to be necessary to account for the independently observed tendency of the network junctions to become localized in the network with appreciable swelling, as well as the interchain interactions emphasized in previous discussions of the localization model.
Collapse
Affiliation(s)
- Jack F. Douglas
- Material Measurement Laboratory, Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Ferenc Horkay
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
3
|
Clarke BR, Witt CL, Ilton M, Crosby AJ, Watkins JJ, Tew GN. Bottlebrush Networks: A Primer for Advanced Architectures. Angew Chem Int Ed Engl 2024; 63:e202318220. [PMID: 38588310 PMCID: PMC11634236 DOI: 10.1002/anie.202318220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
Bottlebrush networks (BBNs) are an exciting new class of materials with interesting physical properties derived from their unique architecture. While great strides have been made in our fundamental understanding of bottlebrush polymers and networks, an interdisciplinary approach is necessary for the field to accelerate advancements. This review aims to act as a primer to BBN chemistry and physics for both new and current members of the community. In addition to providing an overview of contemporary BBN synthetic methods, we developed a workflow and desktop application (LengthScale), enabling bottlebrush physics to be more approachable. We conclude by addressing several topical issues and asking a series of pointed questions to stimulate conversation within the community.
Collapse
Affiliation(s)
- Brandon R. Clarke
- University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Connor L. Witt
- University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Mark Ilton
- Department of Physics, Harvey Mudd College, Claremont, CA 91711, United States
| | - Alfred J. Crosby
- University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - James J. Watkins
- University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Gregory N. Tew
- University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
4
|
Adeli Y, Raman Venkatesan T, Mezzenga R, Nüesch FA, Opris DM. Synthesis of Bottlebrush Polymers with Spontaneous Self-Assembly for Dielectric Generators. ACS APPLIED POLYMER MATERIALS 2024; 6:4999-5010. [PMID: 38752017 PMCID: PMC11091855 DOI: 10.1021/acsapm.3c03053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 05/18/2024]
Abstract
Cross-linked bottlebrush polymers received significant attention as dielectrics in transducers due to their unique softness and strain stiffening caused by their structure. Despite some progress, there is still a great challenge in increasing their dielectric permittivity beyond 3.5 and cross-linking them to defect-free ultrathin films efficiently under ambient conditions. Here, we report the synthesis of bottlebrush copolymers based on ring-opening metathesis polymerization (ROMP) starting from a 5-norbornene-2-carbonitrile and a norbornene modified with a poly(dimethylsiloxane) (PDMS) chain as a macromonomer. The resulting copolymer was subjected to a postpolymerization modification, whereby the double bonds were used both for functionalization with thiopropionitrile and subsequent cross-linking via a thiol-ene reaction. The solutions of both bottlebrush copolymers formed free-standing elastic films by simple casting. DMA and broadband impedance spectroscopy revealed two glass transition temperatures uncommon for a random copolymer. The self-segregation of the nonpolar PDMS chains and the polynorbornane backbone is responsible for this and is supported by the interfacial polarization observed in broadband impedance spectroscopy and the scattering peaks observed in small-angle X-ray scattering (SAXS). Additionally, the modified bottlebrush copolymer was cross-linked to an elastomer that exhibits increased dielectric permittivity and good mechanical properties with significant strain stiffening, an attractive property of dielectric elastomer generators. It has a relative permittivity of 5.24, strain at break of 290%, elastic modulus at 10% strain of 380 kPa, a breakdown field of 62 V μm-1, and a small actuation of 5% at high electric fields of 48.5 V μm-1. All of these characteristics are attractive for dielectric elastomer generator applications. The current work is a milestone in designing functional elastomers based on bottlebrush polymers for transducer applications.
Collapse
Affiliation(s)
- Yeerlan Adeli
- Laboratory
for Functional Polymers, Swiss Federal Laboratories
for Materials Science and Technology Empa, Ueberlandstr. 129, CH-8600 Dübendorf, Switzerland
- Institute
of Chemical Sciences and Engineering, Ecole
Polytechnique Federale de Lausanne, EPFL, Station 6, CH-1015 Lausanne, Switzerland
| | - Thulasinath Raman Venkatesan
- Laboratory
for Functional Polymers, Swiss Federal Laboratories
for Materials Science and Technology Empa, Ueberlandstr. 129, CH-8600 Dübendorf, Switzerland
| | - Raffaele Mezzenga
- Department
of Health Sciences and Technology, ETH Zürich,
Laboratory of Food and Soft Materials, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Frank A. Nüesch
- Laboratory
for Functional Polymers, Swiss Federal Laboratories
for Materials Science and Technology Empa, Ueberlandstr. 129, CH-8600 Dübendorf, Switzerland
- Institute
of Chemical Sciences and Engineering, Ecole
Polytechnique Federale de Lausanne, EPFL, Station 6, CH-1015 Lausanne, Switzerland
| | - Dorina M. Opris
- Laboratory
for Functional Polymers, Swiss Federal Laboratories
for Materials Science and Technology Empa, Ueberlandstr. 129, CH-8600 Dübendorf, Switzerland
- Department
of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| |
Collapse
|
5
|
Clarke BR, Tew GN. Network Constitutional Isomers. Macromolecules 2023; 56:8565-8573. [PMID: 38239340 PMCID: PMC10795480 DOI: 10.1021/acs.macromol.3c01400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
Bottlebrush networks designed to be constitutional isomers of each other were synthesized for the first time. These network constitutional isomers (NCIs) have significantly different mechanical properties depending on their kinetic chain lengths (RK), which are controlled by the monomer-to-initiator ratio. Specifically, the low frequency moduli, yield behavior, elongation at break, and adhesive strength of these NCIs are different at the same cross-link densities. The NCI concept is extended to include RKs' dispersity through the choice of the catalyst. These NCIs highlight the impact of living polymerization chemistry on network formation. The use of living polymerization chemistry to synthesize new networks, including NCIs, is expected to significantly advance the development of next-generation materials.
Collapse
Affiliation(s)
- Brandon R Clarke
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Gregory N Tew
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
6
|
Mizuno T, Hayashi M, Takahashi R. Unusual Stress Upturn in Elastomers Prepared Using Macro Cross-Linkers with Multiple Vinyl Side Groups. Macromol Rapid Commun 2023; 44:e2200936. [PMID: 36840973 DOI: 10.1002/marc.202200936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/06/2023] [Indexed: 02/27/2023]
Abstract
In this study, the unique tensile properties of acrylate elastomers prepared using macro cross-linker polymers with multiple vinyl side groups are analyzed. For the preparation of the macro cross-linker, poly(ethyl acrylate) copolymers bearing hydroxy functional groups are synthesized, followed by the hydroxy-isocyanate reaction with 2-isocyanatoethyl acrylate. Subsequently, the elastomers samples are prepared by UV polymerization of ethyl acrylate in the presence of the macro cross-linkers. The tensile properties of the elastomers in the small elongation region are similar to those of typical elastomers prepared using divinyl cross-linkers, whereas the stress upturn in the large elongation region is considerably different. The stress upturn varies based on the fraction of vinyl side groups in the macro cross-linkers, whereas stress in the small elongation region remains unchanged. These properties are analyzed using various theoretical models. The results reveal that there is artificial inhomogeneity in the cross-link density for samples prepared by the macro cross-linkers, where the short poly(ethyl acrylate) strands inside the macro cross-linker limit the overall chain stretchability. On the whole, this study demonstrates a new method for tuning elastomer properties, especially at large deformation.
Collapse
Affiliation(s)
- Tatsuya Mizuno
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho Showa-ku, Nagoya-city, Aichi, 466-8555, Japan
| | - Mikihiro Hayashi
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho Showa-ku, Nagoya-city, Aichi, 466-8555, Japan
| | - Rintaro Takahashi
- Department of Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya-city, Aichi, 464-8603, Japan
| |
Collapse
|
7
|
Jacobs M, Tian Y, Dobrynin AV. Deformation Driven Deswelling of Brush Gels. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Michael Jacobs
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Yuan Tian
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
| | - Andrey V. Dobrynin
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
8
|
Zhang D, Vashahi F, Dashtimoghadam E, Hu X, Wang CJ, Garcia J, Bystrova AV, Vatankhah-Varnoosfaderani M, Leibfarth FA, Sheiko SS. Circular Upcycling of Bottlebrush Thermosets. Angew Chem Int Ed Engl 2023; 62:e202217941. [PMID: 36583627 DOI: 10.1002/anie.202217941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
The inability to re-process thermosets hinders their utility and sustainability. An ideal material should combine closed-loop recycling and upcycling capabilities. This trait is realized in polydimethylsiloxane bottlebrush networks using thermoreversible Diels-Alder cycloadditions to enable both reversible disassembly into a polymer melt and on-demand reconfiguration to an elastomer of either lower or higher stiffness. The crosslink density was tuned by loading the functionalized networks with a controlled fraction of dormant crosslinkers and crosslinker scavengers, such as furan-capped bis-maleimide and anthracene, respectively. The resulting modulus variations precisely followed the stoichiometry of activated furan and maleimide moieties, demonstrating the lack of side reactions during reprocessing. The presented circularity concept is independent from the backbone or side chain chemistry, making it potentially applicable to a wide range of brush-like polymers.
Collapse
Affiliation(s)
- Daixuan Zhang
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Foad Vashahi
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Erfan Dashtimoghadam
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xiaobo Hu
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Claire J Wang
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jessica Garcia
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Aleksandra V Bystrova
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, Moscow, 119334, Russian Federation
| | | | - Frank A Leibfarth
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sergei S Sheiko
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
9
|
Uhlik F, Rud OV, Borisov OV, Zhulina EB. Hairy Gels: A Computational Study. Gels 2022; 8:793. [PMID: 36547317 PMCID: PMC9777993 DOI: 10.3390/gels8120793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
We present results of MD and MC simulations of the equilibrium properties of swelling gels with comb-like or bottlebrush subchains and compare them to scaling-theory predictions. In accordance with theory, the simulation results demonstrate that swelling coefficient of the gel increases as a function of the polymerization degree of the main chains and exhibits a very weak maximum (or is virtually constant) as a function of the polymerization degree and grafting density of side chains. The bulk osmotic modulus passes through a shallow minimum as the polymerization degree of the side chains increases. This minimum is attributed to the onset of overlap of side chains belonging to different bottlebrush strands in the swollen gel.
Collapse
Affiliation(s)
- Filip Uhlik
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Oleg V. Rud
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | - Oleg V. Borisov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
- Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux, UMR 5254 CNRS UPPA, CEDEX 9, 64053 Pau, France
| | - Ekaterina B. Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
| |
Collapse
|
10
|
Kamble YL, Walsh DJ, Guironnet D. Precision of Architecture-Controlled Bottlebrush Polymer Synthesis: A Monte Carlo Analysis. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Yash Laxman Kamble
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois61801, United States
| | - Dylan J. Walsh
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois61801, United States
| | - Damien Guironnet
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois61801, United States
| |
Collapse
|
11
|
Zhulina EB, Sheiko SS, Borisov OV. Theoretical advances in molecular bottlebrushes and comblike (co)polymers: solutions, gels, and self-assembly. SOFT MATTER 2022; 18:8714-8732. [PMID: 36373559 DOI: 10.1039/d2sm01141g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We present an overview of state-of-the-art theory of (i) conformational properties of molecular bottlebrushes in solution, (ii) self-assembly of di- and triblock copolymers comprising comb-shaped and bottlebrush blocks in solutions and melts, and (iii) cross-linked and self-assembled gels with bottlebrush subchains. We demonstrate how theoretical models enable quantitative prediction and interpretation of experimental results and provide rational guidance for design of new materials with physical properties tunable by architecture of constituent bottlebrush blocks.
Collapse
Affiliation(s)
- Ekaterina B Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Sergei S Sheiko
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg, Russia
- Department of Chemistry, University of North Carolina at Chapel Hill, 27599, USA
| | - Oleg V Borisov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg, Russia
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254 CNRS UPPA, Pau, France.
| |
Collapse
|
12
|
Clarke BR, Kim H, Ilton M, Watkins JJ, Crosby AJ, Tew GN. The Impact of Polymerization Chemistry on the Mechanical Properties of Poly(dimethylsiloxane) Bottlebrush Elastomers. Macromolecules 2022. [PMID: 37502106 PMCID: PMC10373355 DOI: 10.1021/acs.macromol.2c01332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We compare the low-strain mechanical properties of bottlebrush elastomers (BBEs) synthesized using ring-opening metathesis and free radical polymerization. Through comparison of experimentally measured elastic moduli and those predicted by an ideal, affine model, we evaluate the efficiency of our networks in forming stress-supporting strands. This comparison allowed us to develop a structural efficiency ratio that facilitates the prediction of mechanical properties relative to polymerization chemistry (e.g., softer BBEs when polymerizing under dilute conditions). This work highlights the impact that polymerization chemistry has on the structural efficiency ratio and the resultant mechanical properties of BBEs with identical side chains, providing another "knob" by which to control polymer network properties.
Collapse
Affiliation(s)
- Brandon R. Clarke
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Hyemin Kim
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Mark Ilton
- Department of Physics, Harvey Mudd College, Claremont, California 91711, United States
| | - James J. Watkins
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Alfred J. Crosby
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Gregory N. Tew
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
13
|
Nian S, Cai LH. Dynamic Mechanical Properties of Self-Assembled Bottlebrush Polymer Networks. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shifeng Nian
- Soft Biomatter Laboratory, Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Li-Heng Cai
- Soft Biomatter Laboratory, Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
14
|
Jacobs M, Vashahi F, Maw M, Sheiko SS, Dobrynin AV. Brush Gels: Where Theory, Simulations, and Experiments Meet. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael Jacobs
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
| | - Foad Vashahi
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
| | - Mitchell Maw
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
| | - Sergei S. Sheiko
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
| | - Andrey V. Dobrynin
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
15
|
Sheiko SS, Vashahi F, Morgan BJ, Maw M, Dashtimoghadam E, Fahimipour F, Jacobs M, Keith AN, Vatankhah-Varnosfaderani M, Dobrynin AV. Mechanically Diverse Gels with Equal Solvent Content. ACS CENTRAL SCIENCE 2022; 8:845-852. [PMID: 35756385 PMCID: PMC9228556 DOI: 10.1021/acscentsci.2c00472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Indexed: 05/05/2023]
Abstract
Mechanically diverse polymer gels are commonly integrated into biomedical devices, soft robots, and tissue engineering scaffolds to perform distinct yet coordinated functions in wet environments. Such multigel systems are prone to volume fluctuations and shape distortions due to differential swelling driven by osmotic solvent redistribution. Living systems evade these issues by varying proximal tissue stiffness at nearly equal water concentration. However, this feature is challenging to replicate with synthetic gels: any alteration of cross-link density affects both the gel's swellability and mechanical properties. In contrast to the conventional coupling of physical properties, we report a strategy to tune the gel modulus independent of swelling ratio by regulating network strand flexibility with brushlike polymers. Chemically identical gels were constructed with a broad elastic modulus range at a constant solvent fraction by utilizing multidimensional network architectures. The general design-by-architecture framework is universally applicable to both organogels and hydrogels and can be further adapted to different practical applications.
Collapse
Affiliation(s)
- Sergei S. Sheiko
- Department of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | | | | | | | | | - Farahnaz Fahimipour
- Department of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | | | - Andrew N. Keith
- Department of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | | | - Andrey V. Dobrynin
- Department of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
16
|
Abstract
We report the synthesis of novel poly(ethylene glycol) and poly(dimethyl siloxane) (PEG and PDMS, respectively) bottlebrush amphiphilic polymer co-networks (B-APCNs) with high gel fractions by a grafting-through ring-opening metathesis polymerization. By varying the volume fraction of PEG (ϕPEG), we alter the crystallinity of the networks, achieving complete suppression of PEG crystallinity at ϕPEG=0.35. Furthermore, we show that the crystallinity of these networks can be tuned to alter their moduli. Through dynamic mechanical analysis, we show that the storage and loss moduli of networks with completely suppressed crystallinity (ϕPEG=0.35) behave similarly to a PDMS homopolymer bottlebrush network. These bottlebrush networks represent an unexplored architecture for the field of amphiphilic polymer co-networks.
Collapse
Affiliation(s)
- Brandon R. Clarke
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Gregory N. Tew
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
17
|
Blosch SE, Scannelli SJ, Alaboalirat M, Matson JB. Complex Polymer Architectures Using Ring-Opening Metathesis Polymerization: Synthesis, Applications, and Practical Considerations. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Sarah E. Blosch
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Samantha J. Scannelli
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Mohammed Alaboalirat
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - John B. Matson
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
18
|
Clarke BR, Tew GN. Synthesis and characterization of poly(ethylene glycol) bottlebrush networks via ring-opening metathesis polymerization. JOURNAL OF POLYMER SCIENCE 2022; 60:1501-1510. [PMID: 35967758 PMCID: PMC9373913 DOI: 10.1002/pol.20210865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/12/2022] [Indexed: 12/20/2022]
Abstract
Herein it is reported how the overlap concentration (C*) can be used to overcome crosslinking due to diol impurities in commercial PEG, allowing for the synthesize of bottlebrush polymers with good control over molecular weight. Additionally, PEG-based bottlebrush networks are synthesized via ROMP, attaining high conversions with minimal sol fractions (<2%). The crystallinity and mechanical properties of these networks are then further altered by solvent swelling with phosphate buffer solution (PBS) and 1-ethyl-3-methylimidazolium ethyl sulfate/DCM cosolvents. The syntheses reported here highlight the potential of the bottlebrush network architecture for use in the rational design of new materials.
Collapse
Affiliation(s)
- Brandon R Clarke
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, 01003, United States
| | - Gregory N Tew
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, 01003, United States
| |
Collapse
|
19
|
Maw M, Morgan BJ, Dashtimoghadam E, Tian Y, Bersenev EA, Maryasevskaya AV, Ivanov DA, Matyjaszewski K, Dobrynin AV, Sheiko SS. Brush Architecture and Network Elasticity: Path to the Design of Mechanically Diverse Elastomers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mitchell Maw
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Benjamin J. Morgan
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Erfan Dashtimoghadam
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yuan Tian
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Egor A. Bersenev
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Semenov Av. 1, Chernogolovka 142432 Moscow Region, Russian Federation
| | - Alina V. Maryasevskaya
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Semenov Av. 1, Chernogolovka 142432 Moscow Region, Russian Federation
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/51, Moscow 119991, Russia
| | - Dimitri A. Ivanov
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Semenov Av. 1, Chernogolovka 142432 Moscow Region, Russian Federation
- CNRS UMR 7361, Institut de Sciences des Matériaux de Mulhouse, IS2M, 15, rue Jean Starcky, F-68057 Mulhouse, France
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/51, Moscow 119991, Russia
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Andrey V. Dobrynin
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sergei S. Sheiko
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
20
|
Self J, Reynolds VG, Blankenship J, Mee E, Guo J, Albanese K, Xie R, Hawker CJ, de Alaniz JR, Chabinyc ML, Bates CM. Carbon Nanotube Composites with Bottlebrush Elastomers for Compliant Electrodes. ACS POLYMERS AU 2022; 2:27-34. [PMID: 36855747 PMCID: PMC9954388 DOI: 10.1021/acspolymersau.1c00034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Wearable electronics and biointerfacing technology require materials that are both compliant and conductive. The typical design strategy exploits polymer composites containing conductive particles, but the addition of a hard filler generally leads to a substantial increase in modulus that is not well-matched to biological tissue. Here, we report a new class of supersoft, conductive composites comprising carbon nanotubes (CNT) embedded in bottlebrush polymer networks. By virtue of the bottlebrush polymer architecture, these materials are several orders of magnitude softer than comparable composites in the literature involving linear polymer networks. For example, a CNT content of 0.25 wt % yields a shear modulus of 66 kPa while maintaining a typical conductivity for a CNT composite (ca. 10-2 S/m). An added benefit of this bottlebrush matrix chemistry is the presence of dynamic polyester bonds that facilitate thermal (re)processing. This unique strategy of designing soft composites provides new opportunities to tailor the structure and properties of sustainable advanced materials.
Collapse
Affiliation(s)
- Jeffrey
L. Self
- Department
of Chemistry & Biochemistry, University
of California, Santa
Barbara, California 93106, United States
| | - Veronica G. Reynolds
- Materials
Department, University of California, Santa Barbara, California 93106, United States
| | - Jacob Blankenship
- Department
of Chemistry & Biochemistry, University
of California, Santa
Barbara, California 93106, United States
| | - Erin Mee
- Materials
Department, University of California, Santa Barbara, California 93106, United States
| | - Jiaqi Guo
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Kaitlin Albanese
- Department
of Chemistry & Biochemistry, University
of California, Santa
Barbara, California 93106, United States
| | - Renxuan Xie
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Craig J. Hawker
- Department
of Chemistry & Biochemistry, University
of California, Santa
Barbara, California 93106, United States
- Materials
Department, University of California, Santa Barbara, California 93106, United States
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Javier Read de Alaniz
- Department
of Chemistry & Biochemistry, University
of California, Santa
Barbara, California 93106, United States
| | - Michael L. Chabinyc
- Materials
Department, University of California, Santa Barbara, California 93106, United States
| | - Christopher M. Bates
- Department
of Chemistry & Biochemistry, University
of California, Santa
Barbara, California 93106, United States
- Materials
Department, University of California, Santa Barbara, California 93106, United States
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
21
|
Zhulina EB, Borisov OV. Bottlebrush polymer gels: architectural control over swelling and osmotic bulk modulus. SOFT MATTER 2022; 18:1239-1246. [PMID: 35043819 DOI: 10.1039/d1sm01575c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Swelling behaviour and bulk moduli of polymer gels comprising of crosslinked bottlebrush subchains enable fine tuning by varying polymerization degrees of the main and side chains of the bottlebrush strands as well as their grafting densities. By using scaling approach we predict power law dependences of structural and elastic properties of swollen bottlebrush gels on the set of relevant architectural parameters and construct phase diagrams consisting of regions corresponding to different power law asymptotics for these dependences. In particular, our theory predict that bulk elastic modulus of the gel exhibits non-monotonous dependence on the degree of polymerization of side chains of the bottlebrush strands.
Collapse
Affiliation(s)
- Ekaterina B Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Oleg V Borisov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg, Russia
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254 CNRS UPPA, Pau, France.
| |
Collapse
|
22
|
Alaboalirat M, Vu C, Matson JB. Radical–radical coupling effects in the direct-growth grafting-through synthesis of bottlebrush polymers using RAFT and ROMP. Polym Chem 2022. [DOI: 10.1039/d2py00794k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The direct-growth technique was used to synthesize macromonomers from four classes of vinyl monomers, and the influence of monomer type and conversion on coupling reactions was followed in grafting-through ring-opening metathesis polymerization.
Collapse
Affiliation(s)
- Mohammed Alaboalirat
- Department of Chemistry and, Macromolecules Innovation Institute, 1040 Drillfield Dr., Blacksburg, VA 24061, USA
| | - Clark Vu
- Department of Chemistry and, Macromolecules Innovation Institute, 1040 Drillfield Dr., Blacksburg, VA 24061, USA
| | - John B. Matson
- Department of Chemistry and, Macromolecules Innovation Institute, 1040 Drillfield Dr., Blacksburg, VA 24061, USA
| |
Collapse
|
23
|
Kim KH, Nam J, Choi J, Seo M, Bang J. From macromonomers to bottlebrush copolymers with sequence control: synthesis, properties, and applications. Polym Chem 2022. [DOI: 10.1039/d2py00126h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bottlebrush polymers (BBPs) are a type of comb-like macromolecules with densely grafted polymeric sidechains attached to the polymer backbones, and many intriguing properties and applications have been demonstrated due to...
Collapse
|
24
|
Cushman K, Keith A, Tanaka J, Sheiko SS, You W. Investigating the Stress–Strain Behavior in Ring-Opening Metathesis Polymerization-Based Brush Elastomers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Kyle Cushman
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Andrew Keith
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Joji Tanaka
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sergei S. Sheiko
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Wei You
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
25
|
Affiliation(s)
- Ning Ren
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
26
|
|
27
|
Nakagawa S, Yoshie N. Synthesis of a Bottlebrush Polymer Gel with a Uniform and Controlled Network Structure. ACS Macro Lett 2021; 10:186-191. [PMID: 35570783 DOI: 10.1021/acsmacrolett.0c00791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A structurally controlled polymer gel was synthesized by end-linking a monodisperse star polymer in which each arm was a bottlebrush (BB) polymer densely grafted with side chains. The combination of atom transfer radical polymerization and postpolymerization modification yielded a four-arm star-shaped BB polymer with a controlled polymerization degree of the backbone and side chains. The reactive end groups introduced at the end of each arm reacted with small bifunctional linkers in solution, leading to the formation of a BB polymer gel. The elasticity study on the BB polymer gel suggested its uniform network structure. Our method enables precise and uniform tuning of essential structural parameters across the entire BB polymer network, which will be beneficial for developing soft materials with desired mechanical responses.
Collapse
Affiliation(s)
- Shintaro Nakagawa
- Institute of Industrial Science, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8505, Japan
| | - Naoko Yoshie
- Institute of Industrial Science, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
28
|
Keith AN, Clair C, Lallam A, Bersenev EA, Ivanov DA, Tian Y, Dobrynin AV, Sheiko SS. Independently Tuning Elastomer Softness and Firmness by Incorporating Side Chain Mixtures into Bottlebrush Network Strands. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01725] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andrew N. Keith
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Charles Clair
- Laboratoire de Physique et Mécanique Textiles, Université de Haute Alsace, 11 rue Alfred Werner, F-68093 Cedex Mulhouse, France
| | - Abdelaziz Lallam
- Laboratoire de Physique et Mécanique Textiles, Université de Haute Alsace, 11 rue Alfred Werner, F-68093 Cedex Mulhouse, France
| | - Egor A. Bersenev
- Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russian Federation
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region 142432, Russian Federation
| | - Dimitri A. Ivanov
- CNRS UMR 7361, Institut de Sciences des Matériaux de Mulhouse-IS2M, 15, rue Jean Starcky, F-68057 Mulhouse, France
- Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russian Federation
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region 142432, Russian Federation
| | - Yuan Tian
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Andrey V. Dobrynin
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sergei S. Sheiko
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
29
|
Chen K, Hu X, Zhu N, Guo K. Design, Synthesis, and Self-Assembly of Janus Bottlebrush Polymers. Macromol Rapid Commun 2020; 41:e2000357. [PMID: 32844547 DOI: 10.1002/marc.202000357] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/02/2020] [Indexed: 12/12/2022]
Abstract
Janus bottlebrush polymers are a class of special molecular brushes, which have two immiscible side chains on the repeating unit of the backbone. The characteristic architectures of Janus bottlebrush polymers enable unique self-assembly properties and broad applications. Recently, remarkable advances of Janus bottlebrush polymers have been achieved for polymer chemistry and material science. This review summarizes the synthetic strategies of Janus bottlebrush polymers, and highlights the self-assembly applications. Finally, the challenges and opportunities are proposed for the further development.
Collapse
Affiliation(s)
- Kerui Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 S. Puzhu Road, Nanjing, Jiangsu, 211800, China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 S. Puzhu Road, Nanjing, Jiangsu, 211800, China
| | - Xin Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 S. Puzhu Road, Nanjing, Jiangsu, 211800, China.,College of Materials Science and Engineering, Nanjing Tech University, 30 S. Puzhu Road, Nanjing, Jiangsu, 211800, China
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 S. Puzhu Road, Nanjing, Jiangsu, 211800, China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 S. Puzhu Road, Nanjing, Jiangsu, 211800, China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 S. Puzhu Road, Nanjing, Jiangsu, 211800, China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 S. Puzhu Road, Nanjing, Jiangsu, 211800, China
| |
Collapse
|
30
|
Self JL, Sample CS, Levi AE, Li K, Xie R, de Alaniz JR, Bates CM. Dynamic Bottlebrush Polymer Networks: Self-Healing in Super-Soft Materials. J Am Chem Soc 2020; 142:7567-7573. [PMID: 32227998 DOI: 10.1021/jacs.0c01467] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We introduce a design strategy to expand the range of accessible mechanical properties in covalent adaptable networks (CANs) using bottlebrush polymer building blocks. Well-defined bottlebrush polymers with rubbery poly(4-methylcaprolactone) side chains were cross-linked in formulations that include a bislactone and strong Lewis acid (tin ethylhexanoate). The resulting materials exhibit tunable stress-relaxation rates at elevated temperatures (160-180 °C) due to dynamic ester cross-links that undergo transesterification with residual hydroxy groups. Varying the cross-linker loading or bottlebrush backbone degree of polymerization yields predictable low-frequency shear moduli ca. 10-100 kPa, well below values typical of linear polymer CANs (1 MPa). These extensible networks can be stretched to strains as large as 350% before failure and undergo efficient self-healing to recover >85% of their original toughness upon repeated fracture and melt processing. In summary, molecular architecture creates new opportunities to tailor the mechanical properties of CANs in ways that are otherwise difficult to achieve.
Collapse
|
31
|
Sarapas JM, Martin TB, Chremos A, Douglas JF, Beers KL. Bottlebrush polymers in the melt and polyelectrolytes in solution share common structural features. Proc Natl Acad Sci U S A 2020; 117:5168-5175. [PMID: 32094183 PMCID: PMC7071916 DOI: 10.1073/pnas.1916362117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Uncharged bottlebrush polymer melts and highly charged polyelectrolytes in solution exhibit correlation peaks in scattering measurements and simulations. Given the striking superficial similarities of these scattering features, there may be a deeper structural interrelationship in these chemically different classes of materials. Correspondingly, we constructed a library of isotopically labeled bottlebrush molecules and measured the bottlebrush correlation peak position [Formula: see text] by neutron scattering and in simulations. We find that the correlation length scales with the backbone concentration, [Formula: see text], in striking accord with the scaling of ξ with polymer concentration cP in semidilute polyelectrolyte solutions [Formula: see text] The bottlebrush correlation peak broadens with decreasing grafting density, similar to increasing salt concentration in polyelectrolyte solutions. ξ also scales with sidechain length to a power in the range of 0.35-0.44, suggesting that the sidechains are relatively collapsed in comparison to the bristlelike configurations often imagined for bottlebrush polymers.
Collapse
Affiliation(s)
- Joel M Sarapas
- Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899
| | - Tyler B Martin
- Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899
| | - Alexandros Chremos
- Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899
| | - Jack F Douglas
- Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899
| | - Kathryn L Beers
- Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899
| |
Collapse
|
32
|
Mukherjee S, Xie R, Reynolds VG, Uchiyama T, Levi AE, Valois E, Wang H, Chabinyc ML, Bates CM. Universal Approach to Photo-Crosslink Bottlebrush Polymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02210] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Sanjoy Mukherjee
- Materials Research Laboratory, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Mitsubishi Center for Advanced Materials, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Renxuan Xie
- Materials Research Laboratory, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Mitsubishi Center for Advanced Materials, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Veronica G. Reynolds
- Materials Department, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Mitsubishi Center for Advanced Materials, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Takumi Uchiyama
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Adam E. Levi
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Mitsubishi Center for Advanced Materials, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Eric Valois
- Biomolecular Science and Engineering Graduate Program, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Hengbin Wang
- Mitsubishi Center for Advanced Materials, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Michael L. Chabinyc
- Materials Department, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Mitsubishi Center for Advanced Materials, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Christopher M. Bates
- Materials Department, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
33
|
Duncan TT, Chan EP, Beers KL. Maximizing Contact of Supersoft Bottlebrush Networks with Rough Surfaces To Promote Particulate Removal. ACS APPLIED MATERIALS & INTERFACES 2019; 11:45310-45318. [PMID: 31714735 PMCID: PMC11005111 DOI: 10.1021/acsami.9b17602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Efficient removal of particulates from a rough surface with a soft material through a "press and peel" method (i.e., an adhesion and release approach) depends on good conformal contact at the interface; a material should be sufficiently soft to maximize contact with a particle while also conforming to rough surface features to clean the entire substrate surface. Here, we investigate the use of bottlebrush networks-extremely soft elastomers composed of macromolecules with polymeric side chains-as materials for cleaning model substrates of varying roughness. Formed through free-radical polymerization of mono- and dimethacrylate functionalized polysiloxanes, these solvent-free supersoft elastomers exhibit moduli comparable to those of solvated gels, allowing for a lower moduli regime of elastomers to be used in contact experiments than previously possible. By varying the macromonomer to cross-linker ratio, we study the effect of modulus on conformal contact and cleaning for materials that are as soft as gels while minimizing/negating physical and/or chemical concerns that using a traditional material may involve (e.g., changes in component concentrations, solvent evaporation, and syneresis). We study cleaning efficacy by quantifying the conformal contact between soft materials and rough substrates via a contact adhesion-based measurement. These results give insight into the correlation between shear modulus and conformal contact with surfaces of varying feature height. Not only does a decrease in shear modulus leads to improved conformal contact with rough surfaces, but also it facilitates adhesion to particulates situated on the rough surface, thus aiding removal. We highlight this property control with a case study illustrating the removal of an artificial soil mixture from a rough, acrylic surface via peeling rather than rubbing, which can cause damage to delicate surfaces.
Collapse
Affiliation(s)
- Teresa T. Duncan
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Edwin P. Chan
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Kathryn L. Beers
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
34
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2018. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Jacobs M, Liang H, Dashtimoghadam E, Morgan BJ, Sheiko SS, Dobrynin AV. Nonlinear Elasticity and Swelling of Comb and Bottlebrush Networks. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00956] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Michael Jacobs
- Department of Polymer Science, University of Akron, Akron, Ohio 44325, United States
| | - Heyi Liang
- Department of Polymer Science, University of Akron, Akron, Ohio 44325, United States
| | - Erfan Dashtimoghadam
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3220, United States
| | - Benjamin J. Morgan
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3220, United States
| | - Sergei S. Sheiko
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3220, United States
| | - Andrey V. Dobrynin
- Department of Polymer Science, University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
36
|
Walsh DJ, Dutta S, Sing CE, Guironnet D. Engineering of Molecular Geometry in Bottlebrush Polymers. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00845] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
37
|
Cuthbert J, Zhang T, Biswas S, Olszewski M, Shanmugam S, Fu T, Gottlieb E, Kowalewski T, Balazs AC, Matyjaszewski K. Structurally Tailored and Engineered Macromolecular (STEM) Gels as Soft Elastomers and Hard/Soft Interfaces. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01880] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Julia Cuthbert
- Department of Chemistry, Center for Macromolecular Engineering, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Tao Zhang
- Chemical Engineering Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Santidan Biswas
- Chemical Engineering Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Mateusz Olszewski
- Department of Chemistry, Center for Macromolecular Engineering, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Sivaprakash Shanmugam
- Department of Chemistry, Center for Macromolecular Engineering, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Travis Fu
- Department of Chemistry, Center for Macromolecular Engineering, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Eric Gottlieb
- Department of Chemistry, Center for Macromolecular Engineering, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Tomasz Kowalewski
- Department of Chemistry, Center for Macromolecular Engineering, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Anna C. Balazs
- Chemical Engineering Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Center for Macromolecular Engineering, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
38
|
Neary WJ, Fultz BA, Kennemur JG. Well-Defined and Precision-Grafted Bottlebrush Polypentenamers from Variable Temperature ROMP and ATRP. ACS Macro Lett 2018; 7:1080-1086. [PMID: 35632939 DOI: 10.1021/acsmacrolett.8b00576] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polypentenamer macroinitiators are synthesized through variable temperature ring opening metathesis polymerization of 3-cyclopentenyl α-bromoisobutyrate, which has sufficient ring strain (ΔHp = -22.6 kJ mol-1) to produce targeted molar mass (<5% from theoretical), low dispersity (1.17 ≤ Đ ≤ 1.23), and high conversion (∼72%). An initiation site for atom-transfer radical polymerization at every fifth backbone carbon allows "grafting-from" of styrene with quantitative initiation and linear molar mass increase with time. These bottlebrushes retain a low dispersity (Đ ≤ 1.34) at varying graft degrees of polymerization (5 ≤ Nsc ≤ 49) and have a glass transition temperature highly sensitized to graft length. Extension of the grafts with methyl methacrylate produces a core-shell brush polymer with high molar mass (>1000 kg mol-1) and Đ = 1.33. This system exhibits high synthetic versatility and control with a unique flexible backbone to expand the suite of densely grafted polymers.
Collapse
Affiliation(s)
- William J. Neary
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Brandon A. Fultz
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Justin G. Kennemur
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
39
|
Sunday DF, Chang AB, Liman CD, Gann E, Delongchamp DM, Thomsen L, Matsen MW, Grubbs RH, Soles CL. Self-Assembly of ABC Bottlebrush Triblock Terpolymers with Evidence for Looped Backbone Conformations. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01370] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Daniel F. Sunday
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Alice B. Chang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Christopher D. Liman
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Eliot Gann
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Dean M. Delongchamp
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Lars Thomsen
- Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Mark W. Matsen
- Department of Chemical Engineering, Department of Physics and Astronomy, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Robert H. Grubbs
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Christopher L. Soles
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
40
|
Chremos A, Douglas JF. A comparative study of thermodynamic, conformational, and structural properties of bottlebrush with star and ring polymer melts. J Chem Phys 2018; 149:044904. [PMID: 30068167 PMCID: PMC11446256 DOI: 10.1063/1.5034794] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Thermodynamic, conformational, and structural properties of bottlebrush polymer melts are investigated with molecular dynamics simulations and compared to linear, regular star, and unknotted ring polymer melts to gauge the influence of molecular topology on polymer melt properties. We focus on the variation of the backbone chain length, the grafting density along the backbone, and the length of the side chains at different temperatures above the melt glass transition temperature. Based on these comparisons, we find that the segmental density, isothermal compressibility, and isobaric thermal expansion of bottlebrush melts are quantitatively similar to unknotted ring polymer melts and star polymer melts having a moderate number ( f = 5 to 6) of arms. These similarities extend to the mass scaling of the chain radius of gyration. Our results together indicate that the configurational properties of bottlebrush polymers in their melt state are more similar to randomly branched polymers than linear polymer chains. We also find that the average shape of bottlebrush polymers having short backbone chains with respect to the side chain length is also rather similar to the unknotted ring and moderately branched star polymers in their melt state. As a general trend, the molecular shape of bottlebrush polymers becomes more spherically symmetric when the length of the side chains has a commensurate length as the backbone chain. Finally, we calculate the partial static structure factor of the backbone segments and we find the emergence of a peak at the length scales that characterizes the average distance between the backbone chains. This peak is absent when we calculate the full static structure factor. We characterize the scaling of this peak with parameters characterizing the bottlebrush molecular architecture to aid in the experimental characterization of these molecules by neutron scattering.
Collapse
Affiliation(s)
- Alexandros Chremos
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD
| | - Jack F. Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD
| |
Collapse
|
41
|
Frieberg BR, Garatsa RS, Jones RL, Bachert JO, Crawshaw B, Liu XM, Chan EP. Viscoplastic fracture transition of a biopolymer gel. SOFT MATTER 2018; 14:4696-4701. [PMID: 29856452 PMCID: PMC11036888 DOI: 10.1039/c8sm00722e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Physical gels are swollen polymer networks consisting of transient crosslink junctions associated with hydrogen or ionic bonds. Unlike covalently crosslinked gels, these physical crosslinks are reversible thus enabling these materials to display highly tunable and dynamic mechanical properties. In this work, we study the polymer composition effects on the fracture behavior of a gelatin gel, which is a thermoreversible biopolymer gel consisting of denatured collagen chains bridging physical network junctions formed from triple helices. Below the critical volume fraction for chain entanglement, which we confirm via neutron scattering measurements, we find that the fracture behavior is consistent with a viscoplastic type process characterized by hydrodynamic friction of individual polymer chains through the polymer mesh to show that the enhancement in fracture scales inversely with the squared of the mesh size of the gelatin gel network. Above this critical volume fraction, the fracture process can be described by the Lake-Thomas theory that considers fracture as a chain scission process due to chain entanglements.
Collapse
Affiliation(s)
- Bradley R Frieberg
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Weaver JA, Morelly SL, Alvarez NJ, Magenau AJD. Grafting-through ROMP for gels with tailorable moduli and crosslink densities. Polym Chem 2018. [DOI: 10.1039/c8py01324a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A new class of chemically-crosslinked network was synthesized by grafting-through macrocrosslinkers with ROMP, exhibiting highly-tailorable storage moduli through independent control of the network junction functionality and molecular weight between crosslinks.
Collapse
Affiliation(s)
- Jessica A. Weaver
- Department of Materials Science and Engineering
- Drexel University College of Engineering
- Philadelphia
- USA
| | - Samantha L. Morelly
- Department of Chemical and Biological Engineering
- Drexel University College of Engineering
- Philadelphia
- USA
| | - Nicolas J. Alvarez
- Department of Chemical and Biological Engineering
- Drexel University College of Engineering
- Philadelphia
- USA
| | - Andrew J. D. Magenau
- Department of Materials Science and Engineering
- Drexel University College of Engineering
- Philadelphia
- USA
| |
Collapse
|