1
|
Mangolini F, Espinosa-Marzal RM, Nalam PC, Ruths M. Pioneers in Applied and Fundamental Interfacial Chemistry (PAFIC): Nicholas D. Spencer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:4403-4409. [PMID: 39995303 DOI: 10.1021/acs.langmuir.5c00588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Affiliation(s)
- Filippo Mangolini
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rosa M Espinosa-Marzal
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Prathima C Nalam
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, New York 14260, United States
| | - Marina Ruths
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
2
|
Srinivasan S, McGaughey AL, Ren ZJ, Zuo B, Priestley RD. Physical Aging of Poly(methyl methacrylate) Brushes and Spin-Coated Films. J Phys Chem B 2024; 128:11999-12007. [PMID: 39576256 DOI: 10.1021/acs.jpcb.4c05704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
While there is significant attention aimed at understanding how one-dimensional confinement and chain confirmations can impact the glass transition temperature (Tg) of polymer films, there remains a limited focus on similar effects on sub-Tg processes, notably, structural relaxation. Using spectroscopic ellipsometry, we investigated the combined influence of confinement and molecular packing on Tg and physical aging, i.e., the property changes that accompany structural relaxation, at select film thicknesses and aging temperatures (Ta). We used poly(methyl methacrylate) (PMMA) films in the brush and spin-coated morphologies as model systems. We found that whether a PMMA film exhibited a decrease or increase in physical aging rate with confinement was dependent on the morphology. Notably, PMMA brushes exhibited higher physical aging rates compared to similarly thick spin-coated films at all values of Ta. These intriguing findings reveal the strong effects of confinement and molecular packing on the structural relaxation of polymer films. Results from this study have the potential to aid in the design of thin-film materials with controllable long-term glassy-state properties.
Collapse
Affiliation(s)
- Sneha Srinivasan
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Allyson L McGaughey
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Zhiyong Jason Ren
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Biao Zuo
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Rodney D Priestley
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Princeton Materials Institute, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
3
|
Chen M, You S, Guo T, Ren H, Zhu L, Wang P, Sheng W, Gong C, Li W. CuBr-mediated surface-initiated controlled radical polymerization in air. Chem Sci 2024; 15:19604-19608. [PMID: 39568887 PMCID: PMC11575556 DOI: 10.1039/d4sc06012a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/05/2024] [Indexed: 11/22/2024] Open
Abstract
Herein, we present a straightforward CuBr-mediated surface-initiated controlled radical polymerization (SI-CRP) method for fabricating polymer brushes using microliter volumes of reaction solution in air and at room temperature. The key advantage of this method is its ability to rapidly grow polymer brushes with oxygen tolerance, driven by the controlled disproportionation of CuI into CuII and Cu0 by CuBr and ligand. We demonstrate the successful preparation of homo-, block, patterned, and wafer-scale polymer brushes. Additionally, the catalyst in CuBr-mediated SI-CRP is reusable, long-lasting, and compatible with various monomers. This work broadens the potential of CuBr for polymer brush growth, making it accessible to both experts and non-experts.
Collapse
Affiliation(s)
- Menglu Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Shuai You
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Tingting Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Haohao Ren
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Longzu Zhu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Peize Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Wenbo Sheng
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Chenliang Gong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Wei Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| |
Collapse
|
4
|
Wu D, Li W, Zhang T. Surface-Initiated Zerovalent Metal-Mediated Controlled Radical Polymerization (SI-Mt 0CRP) for Brush Engineering. Acc Chem Res 2023; 56:2329-2340. [PMID: 37616063 DOI: 10.1021/acs.accounts.3c00310] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
ConspectusThe surface-tethered polymer brush has become a powerful approach to tailoring the chemical and physical properties of surfaces and interfaces and revealed broad application prospects in widespread fields such as self-cleaning, surface lubrication, and antibiofouling. Access to these diverse functional polymer brushes is highly dependent on versatile and powerful surface-initiated controlled radical polymerization (SI-CRP) strategies. However, conventional SI-CRP typically requires oxygen exclusion, large amounts of catalysts and monomer solution, and a long reaction time, making it time-consuming and sophisticated. When using a two-plate system consisting of an initiator-bearing substrate and a metal plate, we and our collaborators introduced surface-initiated zerovalent metal-mediated controlled radical polymerization (SI-Mt0CRP). In the SI-Mt0CRP setup, a metal(0) plate (Cu, Fe, Zn, or Sn) is placed proximately to an initiator-functionalized substrate and forms a confined polymerization system which considerably simplifies the synthesis of a wide range of polymer brushes with high grafting densities over large areas (up to the meter scale).In comparison to classical SI-ATRP (catalyzed by metal salts), SI-Mt0CRP demonstrates oxygen tolerance, high controllability, good retention of chain-end functionality, and facile recyclability of the metal catalysts (i.e., metal foil/plate). Taking advantage of the confined geometry of the SI-Mt0CRP setup, polymer brushes with various conformations and architectures are easily accessible while consuming only microliter volumes of monomer solution and without complicated operations under ambient conditions. Owing to these attractive characteristics, SI-Mt0CRP has become a versatile technique for functionalizing materials for targeted applications, ranging from the areas of surface science to materials science and nanotechnology.In this Account, we summarize the recent advances of SI-Mt0CRP catalyzed by zerovalent metals (e.g., Cu, Fe, Zn, and Sn) and highlight the intrinsic advantages of the featured experimental setup, compared with the "classical" SI-CRP in which metal salt, powder, or wire is applied. We further discuss the synthetic features and proposed mechanism of SI-Mt0CRP while emphasizing the various external technologies' (including "on water" reaction, galvanic replacement, lithography, and capillary microfluidic) integrated polymerization systems. We also describe structural polymer brushes, including block copolymers, patterned and gradient structures, and arrayed and binary polymer brushes. Finally, we introduce the diverse polymer brushes that have been prepared using these techniques, with a focus on targeted and emerging applications. We anticipate that the discussion presented in this Account will promote a better understanding of the SI-Mt0CRP technique and advance the future development of practical surface brushing.
Collapse
Affiliation(s)
- Daheng Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Research Center for Advanced Interdisciplinary Sciences, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Wei Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Research Center for Advanced Interdisciplinary Sciences, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Gazzola G, Filipucci I, Rossa A, Matyjaszewski K, Lorandi F, Benetti EM. Oxygen Tolerance during Surface-Initiated Photo-ATRP: Tips and Tricks for Making Brushes under Environmental Conditions. ACS Macro Lett 2023; 12:1166-1172. [PMID: 37526233 DOI: 10.1021/acsmacrolett.3c00359] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Achieving tolerance toward oxygen during surface-initiated reversible deactivation radical polymerization (SI-RDRP) holds the potential to translate the fabrication of polymer brush-coatings into upscalable and technologically relevant processes for functionalizing materials. While focusing on surface-initiated photoinduced atom transfer radical polymerization (SI-photoATRP), we demonstrate that a judicious tuning of the composition of reaction mixtures and the adjustment of the polymerization setup enable to maximize the compatibility of this grafting technique toward environmental conditions. Typically, the presence of O2 in the polymerization medium limits the attainable thickness of polymer brushes and causes the occurrence of "edge effects", i.e., areas at the substrates' edges where continuous oxygen diffusion from the surrounding environment inhibits brush growth. However, the concentrations of the Cu-based catalyst and "free" alkyl halide initiator in solution emerge as key parameters to achieve a more efficient consumption of oxygen and yield uniform and thick brushes, even for polymerization mixtures that are more exposed to air. Precise variation of reaction conditions thus allows us to identify those variables that become determinants for making the synthesis of brushes more tolerant toward oxygen, and consequently more practical and upscalable.
Collapse
Affiliation(s)
- Gianluca Gazzola
- Laboratory for Macromolecular and Organic Chemistry, Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Irene Filipucci
- Laboratory for Macromolecular and Organic Chemistry, Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Andrea Rossa
- Laboratory for Macromolecular and Organic Chemistry, Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Francesca Lorandi
- Laboratory for Macromolecular and Organic Chemistry, Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Edmondo M Benetti
- Laboratory for Macromolecular and Organic Chemistry, Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
6
|
Dutta S, Shreyash N, Satapathy BK, Saha S. Advances in design of polymer brush functionalized inorganic nanomaterials and their applications in biomedical arena. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 15:e1861. [PMID: 36284373 DOI: 10.1002/wnan.1861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/23/2022] [Accepted: 09/12/2022] [Indexed: 02/01/2023]
Abstract
Grafting of polymer brush (assembly of polymer chains tethered to the substrate by one end) is emerging as one of the most viable approach to alter the surface of inorganic nanomaterials. Inorganic nanomaterials despite their intrinsic functional superiority, their applications remain restricted due to their incompatibility with organic or biological moieties vis-à-vis agglomeration issues. To overcome such a shortcoming, polymer brush modified surfaces of inorganic nanomaterials have lately proved to be of immense potential. For example, polymer brush-modified inorganic nanomaterials can act as efficient substrates/platforms in biomedical applications, ranging from drug-delivery to protein-array due to their integrated advantages such as amphiphilicity, stimuli responsiveness, enhanced biocompatibility, and so on. In this review, the current state of the art related to polymer brush-modified inorganic nanomaterials focusing, not only, on their synthetic strategies and applications in biomedical field but also the architectural influence of polymer brushes on the responsiveness properties of modified nanomaterials have comprehensively been discussed and its associated future perspective is also presented. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Soumyadip Dutta
- Department of Materials Science and Engineering Indian Institute of Technology Delhi Delhi India
| | - Nehil Shreyash
- Rajiv Gandhi Institute of Petroleum Technology Jais Uttar Pradesh India
| | - Bhabani Kumar Satapathy
- Department of Materials Science and Engineering Indian Institute of Technology Delhi Delhi India
| | - Sampa Saha
- Department of Materials Science and Engineering Indian Institute of Technology Delhi Delhi India
| |
Collapse
|
7
|
Dworakowska S, Lorandi F, Gorczyński A, Matyjaszewski K. Toward Green Atom Transfer Radical Polymerization: Current Status and Future Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106076. [PMID: 35175001 PMCID: PMC9259732 DOI: 10.1002/advs.202106076] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Indexed: 05/13/2023]
Abstract
Reversible-deactivation radical polymerizations (RDRPs) have revolutionized synthetic polymer chemistry. Nowadays, RDRPs facilitate design and preparation of materials with controlled architecture, composition, and functionality. Atom transfer radical polymerization (ATRP) has evolved beyond traditional polymer field, enabling synthesis of organic-inorganic hybrids, bioconjugates, advanced polymers for electronics, energy, and environmentally relevant polymeric materials for broad applications in various fields. This review focuses on the relation between ATRP technology and the 12 principles of green chemistry, which are paramount guidelines in sustainable research and implementation. The green features of ATRP are presented, discussing the environmental and/or health issues and the challenges that remain to be overcome. Key discoveries and recent developments in green ATRP are highlighted, while providing a perspective for future opportunities in this area.
Collapse
Affiliation(s)
- Sylwia Dworakowska
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
- Faculty of Chemical Engineering and TechnologyCracow University of TechnologyWarszawska 24Cracow31‐155Poland
| | - Francesca Lorandi
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
- Department of Industrial EngineeringUniversity of Padovavia Marzolo 9Padova35131Italy
| | - Adam Gorczyński
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
- Faculty of ChemistryAdam Mickiewicz UniversityUniwersytetu Poznańskiego 8Poznań61‐614Poland
| | | |
Collapse
|
8
|
Grishin ID. New Approaches to Atom Transfer Radical Polymerization and Their Realization in the Synthesis of Functional Polymers and Hybrid Macromolecular Structures. POLYMER SCIENCE SERIES C 2022. [DOI: 10.1134/s1811238222700035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Yin X, Wu D, Yang H, Wang J, Huang R, Zheng T, Sun Q, Chen T, Wang L, Zhang T. Seawater-Boosting Surface-Initiated Atom Transfer Radical Polymerization for Functional Polymer Brush Engineering. ACS Macro Lett 2022; 11:693-698. [PMID: 35570805 DOI: 10.1021/acsmacrolett.2c00138] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Iron-mediated surface-initiated reversible deactivation radical polymerization (Fe0 SI-RDRP) is an appealing approach to produce robust polymer surfaces with low toxicity and biocompatibility, while its application has been limited so far due to the poor activity of iron-based catalysts. Herein, we show that the iron(0)-mediated surface-initiated atom transfer radical polymerization (Fe0 SI-ATRP) could be significantly enhanced by simply using seawater as reaction media. In comparison, there was no polymer brush formation in deionized water. This method could convert a range of monomers to well-defined polymer brushes with unparalleled speed (up to 31.5 nm min-1) and a minor amount of monomer consumption (μL). Moreover, the resultant polymer brush shows chain-end fidelity which could be exemplified by repetitive Fe0 SI-ATRP to obtain tetrablock brushes. Finally, we show the preparation of polymer-brush-gated ion-selective membranes by Fe0 SI-ATRP for osmotic energy conversion, which gives excellent power densities of 5.93 W m-2, outperforming the most reported as well as commercialized benchmark (5 W m-2).
Collapse
Affiliation(s)
- Xiaodong Yin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Daheng Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Haoyong Yang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jianing Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Runhao Huang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Tianyue Zheng
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Qi Sun
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Liping Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
10
|
Fromel M, Benetti EM, Pester CW. Oxygen Tolerance in Surface-Initiated Reversible Deactivation Radical Polymerizations: Are Polymer Brushes Turning into Technology? ACS Macro Lett 2022; 11:415-421. [PMID: 35575317 DOI: 10.1021/acsmacrolett.2c00114] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Over the past three decades, the development of reversible deactivation radical polymerizations (RDRP), and advancements toward more user-friendly and accessible experimental setups have opened the door for nonexperts to design complex macromolecules with well-defined properties. External mediation, improved tolerance to oxygen, and increased reaction volumes for higher synthetic output are some of the many noteworthy technical improvements. The development of RDRPs in solution was paralleled by their application on solid substrates to synthesize surface-grafted "polymer brushes" via surface-initiated RDRP (SI-RDRP). This Viewpoint paper provides a current perspective on recent developments in SI-RDRP methods that are tolerant to oxygen, especially highlighting those that could potentially enable scaling up of the synthesis of brushes for the functionalization of technologically relevant materials.
Collapse
Affiliation(s)
- Michele Fromel
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Edmondo M. Benetti
- Dipartimento di Scienze Chimiche, University of Padua, 35122 Padova, Italy
| | - Christian W. Pester
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
11
|
Yin X, Wu D, Yang H, Wang J, Zhang X, Li H, Zheng T, Wang L, Zhang T. Galvanic-Replacement-Assisted Surface-Initiated Atom Transfer Radical Polymerization for Functional Polymer Brush Engineering. ACS Macro Lett 2022; 11:296-302. [PMID: 35575363 DOI: 10.1021/acsmacrolett.1c00781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Here we present a facile and robust strategy, namely, galvanic-replacement-assisted surface-initiated Cu(0)-mediated atom transfer radical polymerization (gr-SI-Cu0ATRP, or gr-SI-Cu0CRP) for polymer brush engineering under ambient conditions. In gr-SI-Cu0ATRP, highly active and nanostructured Cu(0) surfaces are obtained by a simple galvanic replacement on zinc/aluminum surfaces in dilute Cu2+ solution. Polymer brush growth rate is extremely high (up to ∼904 nm in 30 min polymerization); meanwhile, both nano Cu(0) surfaces and Cu2+ solution can be reused multiple times without losing grafting efficiency. We also demonstrate that the gr-SI-Cu0ATRP is advantageous for polymer brush engineering on arbitrary substrates, including flexible (polyethylene terephthalate), curved (polycarbonate), and porous (anodic aluminum oxide), and endow the substrates with various functionalities, for example, anti-icing, antifogging, and ion selectivity.
Collapse
Affiliation(s)
- Xiaodong Yin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Daheng Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Haoyong Yang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jianing Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xiaoxuan Zhang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - He Li
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Tianyue Zheng
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Liping Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
12
|
|
13
|
Albers RF, Magrini T, Romio M, Leite ER, Libanori R, Studart AR, Benetti EM. Fabrication of Three-Dimensional Polymer-Brush Gradients within Elastomeric Supports by Cu 0-Mediated Surface-Initiated ATRP. ACS Macro Lett 2021; 10:1099-1106. [PMID: 35549080 DOI: 10.1021/acsmacrolett.1c00446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cu0-mediated surface-initiated ATRP (Cu0 SI-ATRP) emerges as a versatile, oxygen-tolerant process to functionalize three-dimensional (3D), microporous supports forming single and multiple polymer-brush gradients with a fully tunable composition. When polymerization mixtures are dispensed on a Cu0-coated plate, this acts as oxygen scavenger and source of active catalyst. In the presence of an ATRP initiator-bearing microporous elastomer placed in contact with the metallic plate, the reaction solution infiltrates by capillarity through the support, simultaneously triggering the controlled growth of polymer brushes. The polymer grafting process proceeds with kinetics that are determined by the progressive infiltration of the reaction solution within the microporous support and by the continuous diffusion of catalyst regenerated at the Cu0 surface. The combination of these effects enables the accessible generation of 3D polymer-brush gradients extending across the microporous scaffolds used as supports, finally providing materials with a continuous variation of interfacial composition and properties.
Collapse
Affiliation(s)
- Rebecca Faggion Albers
- Complex Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, Switzerland
- Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos, SP Brazil
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Brazil
| | - Tommaso Magrini
- Complex Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
| | - Matteo Romio
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, Switzerland
| | - Edson R. Leite
- Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos, SP Brazil
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Brazil
| | - Rafael Libanori
- Complex Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
| | - André R. Studart
- Complex Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
| | - Edmondo M. Benetti
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, Switzerland
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
14
|
Li W, Sheng W, Li B, Jordan R. Surface Grafting “Band‐Aid” for “Everyone”: Filter Paper‐Assisted Surface‐Initiated Polymerization in the Presence of Air. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wei Li
- Chair of Macromolecular Chemistry Faculty of Chemistry and Food Chemistry School of Science Technische Universität Dresden Mommsenstr. 4 01069 Dresden Germany
| | - Wenbo Sheng
- Chair of Macromolecular Chemistry Faculty of Chemistry and Food Chemistry School of Science Technische Universität Dresden Mommsenstr. 4 01069 Dresden Germany
| | - Bin Li
- Physik Department TUM-Technische Universität München James-Franck-Straße 1 85748 Garching Germany
| | - Rainer Jordan
- Chair of Macromolecular Chemistry Faculty of Chemistry and Food Chemistry School of Science Technische Universität Dresden Mommsenstr. 4 01069 Dresden Germany
| |
Collapse
|
15
|
Li W, Sheng W, Li B, Jordan R. Surface Grafting "Band-Aid" for "Everyone": Filter Paper-Assisted Surface-Initiated Polymerization in the Presence of Air. Angew Chem Int Ed Engl 2021; 60:13621-13625. [PMID: 33751767 PMCID: PMC8252564 DOI: 10.1002/anie.202103182] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 11/18/2022]
Abstract
We report herein a facile and generalized approach to the modification of solid surfaces with polymer brushes under ambient conditions: filter paper-assisted surface-initiated Cu0 -mediated controlled radical polymerization (PSI-CuCRP). The polymerization solution wetted filter paper is sandwiched between a copper plate and an initiator-modified substrate, which allows the creation of a surface-initiated polymerization (SIP) "band-aid" so that everyone can perform the surface grafting selectively with good control over the quality of the polymer brushes employing low concentration and microliter amounts of the monomer solution. The versatility of this method is demonstrated by grafting different homo-, block-, and multicomponent polymer brushes by using the same activation system and reaction conditions, the polymerization process can be precisely controlled to yield uniform polymers and show high chain-end functionality which is exemplified by in situ tetra-copolymerization. The combination of photolithography and paper cutting enables to prepare arbitrary three-dimensional patterned polymer brushes on the surface.
Collapse
Affiliation(s)
- Wei Li
- Chair of Macromolecular ChemistryFaculty of Chemistry and Food ChemistrySchool of ScienceTechnische Universität DresdenMommsenstr. 401069DresdenGermany
| | - Wenbo Sheng
- Chair of Macromolecular ChemistryFaculty of Chemistry and Food ChemistrySchool of ScienceTechnische Universität DresdenMommsenstr. 401069DresdenGermany
| | - Bin Li
- Physik DepartmentTUM-Technische Universität MünchenJames-Franck-Straße 185748GarchingGermany
| | - Rainer Jordan
- Chair of Macromolecular ChemistryFaculty of Chemistry and Food ChemistrySchool of ScienceTechnische Universität DresdenMommsenstr. 401069DresdenGermany
| |
Collapse
|
16
|
Reversible-deactivation radical polymerization (Controlled/living radical polymerization): From discovery to materials design and applications. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101311] [Citation(s) in RCA: 302] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Słowikowska M, Chajec K, Michalski A, Zapotoczny S, Wolski K. Surface-Initiated Photoinduced Iron-Catalyzed Atom Transfer Radical Polymerization with ppm Concentration of FeBr 3 under Visible Light. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5139. [PMID: 33202639 PMCID: PMC7697009 DOI: 10.3390/ma13225139] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/22/2022]
Abstract
Reversible deactivation radical polymerizations with reduced amount of organometallic catalyst are currently a field of interest of many applications. One of the very promising techniques is photoinduced atom transfer radical polymerization (photo-ATRP) that is mainly studied for copper catalysts in the solution. Recently, advantageous iron-catalyzed photo-ATRP (photo-Fe-ATRP) compatible with high demanding biological applications was presented. In response to that, we developed surface-initiated photo-Fe-ATRP (SI-photo-Fe-ATRP) that was used for facile synthesis of poly(methyl methacrylate) brushes with the presence of only 200 ppm of FeBr3/tetrabutylammonium bromide catalyst (FeBr3/TBABr) under visible light irradiation (wavelength: 450 nm). The kinetics of both SI-photo-Fe-ATRP and photo-Fe-ATRP in solution were compared and followed by 1H NMR, atomic force microscopy (AFM) and gel permeation chromatography (GPC). Brush grafting densities were determined using two methodologies. The influence of the sacrificial initiator on the kinetics of brush growth was studied. It was found that SI-photo-Fe-ATRP could be effectively controlled even without any sacrificial initiators thanks to in situ production of ATRP initiator in solution as a result of reaction between the monomer and Br radicals generated in photoreduction of FeBr3/TBABr. The optimized and simplified reaction setup allowed synthesis of very thick (up to 110 nm) PMMA brushes at room temperature, under visible light with only 200 ppm of iron-based catalyst. The same reaction conditions, but with the presence of sacrificial initiator, enabled formation of much thinner layers (18 nm).
Collapse
Affiliation(s)
- Monika Słowikowska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (M.S.); (K.C.); (A.M.); (S.Z.)
| | - Kamila Chajec
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (M.S.); (K.C.); (A.M.); (S.Z.)
| | - Adam Michalski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (M.S.); (K.C.); (A.M.); (S.Z.)
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Szczepan Zapotoczny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (M.S.); (K.C.); (A.M.); (S.Z.)
| | - Karol Wolski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (M.S.); (K.C.); (A.M.); (S.Z.)
| |
Collapse
|
18
|
Arraez FJ, Van Steenberge PHM, D’hooge DR. Conformational Distributions near and on the Substrate during Surface-Initiated Living Polymerization: A Lattice-Based Kinetic Monte Carlo Approach. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00585] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Francisco J. Arraez
- Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 125, Zwijnaarde, Ghent 9052, Belgium
| | - Paul H. M. Van Steenberge
- Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 125, Zwijnaarde, Ghent 9052, Belgium
| | - Dagmar R. D’hooge
- Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 125, Zwijnaarde, Ghent 9052, Belgium
- Centre for Textile Science and Engineering, Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 70A, Zwijnaarde, Ghent 9052, Belgium
| |
Collapse
|
19
|
Li W, Sheng W, Wegener E, Du Y, Li B, Zhang T, Jordan R. Capillary Microfluidic-Assisted Surface Structuring. ACS Macro Lett 2020; 9:328-333. [PMID: 35648544 DOI: 10.1021/acsmacrolett.9b00921] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A facile and universal oxygen-tolerant, capillary microfluidic-derived, controlled radical polymerization for surface structuring (gradient and patterned polymer brushes) is reported. A syringe pump and a filter paper sheet are used as capillary microfluidic to supply the reaction solution (monomer, solvent, and ligand) to a sandwich-shaped setup by placing a flat copper plate onto an ATRP initiator-modified substrate and resulting in gradient polymer brush formation with controlled thickness, steepness, and grafting area, polymers are showing the high chain-end fidelity. Two different polymer brushes (binary polymer brushes) can be simultaneously grown from both ends of the initiator modified substrate by using this method, which can be used to study the interfacial properties of different polymer brushes.
Collapse
Affiliation(s)
- Wei Li
- Chair of Macromolecular Chemistry, Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstr. 4, 01069 Dresden, Germany
| | - Wenbo Sheng
- Chair of Macromolecular Chemistry, Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstr. 4, 01069 Dresden, Germany
| | - Erik Wegener
- Chair of Macromolecular Chemistry, Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstr. 4, 01069 Dresden, Germany
| | - Yunhao Du
- Chair of Macromolecular Chemistry, Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstr. 4, 01069 Dresden, Germany
| | - Bin Li
- Physik Department, TUM - Technische Universität München, James-Franck-Straße 1, 85748, Garching, Germany
| | - Tao Zhang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, China.,University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Rainer Jordan
- Chair of Macromolecular Chemistry, Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstr. 4, 01069 Dresden, Germany
| |
Collapse
|
20
|
Du Y, Zhang T, Gieseler D, Schneider M, Hafner D, Sheng W, Li W, Lange F, Wegener E, Amin I, Jordan R. Facile Fabrication of Bio- and Dual-Functional Poly(2-oxazoline) Bottle-Brush Brush Surfaces. Chemistry 2020; 26:2749-2753. [PMID: 31826315 PMCID: PMC7064997 DOI: 10.1002/chem.201905326] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Indexed: 11/10/2022]
Abstract
Poly(2-oxazoline)s (POx) bottle-brush brushes have excellent biocompatible and lubricious properties, which are promising for the functionalization of surfaces for biomedical devices. Herein, a facile synthesis of POx is reported which is based bottle-brush brushes (BBBs) on solid substrates. Initially, backbone brushes of poly(2-isopropenyl-2-oxazoline) (PIPOx) were fabricated via surface initiated Cu0 plate-mediated controlled radical polymerization (SI-Cu0 CRP). Poly(2-methyl-2-oxazoline) (PMeOx) side chains were subsequently grafted from the PIPOx backbone via living cationic ring opening polymerization (LCROP), which result in ≈100 % increase in brush thickness (from 58 to 110 nm). The resultant BBBs shows tunable thickness up to 300 nm and high grafting density (σ) with 0.42 chains nm-2 . The synthetic procedure of POx BBBs can be further simplified by using SI-Cu0 CRP with POx molecular brush as macromonomer (Mn =536 g mol-1 , PDI=1.10), which results in BBBs surface up to 60 nm with well-defined molecular structure. Both procedures are significantly superior to the state-of-art approaches for the synthesis of POx BBBs, which are promising to design bio-functional surfaces.
Collapse
Affiliation(s)
- Yunhao Du
- Chair of Macromolecular ChemistryFaculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstr. 401069DresdenGermany
| | - Tao Zhang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang ProvinceNingbo Institute of Material Technology and Engineering, Chinese Academy of SciencesZhongguan West Road, 1219315201NingboChina
| | - Dan Gieseler
- Chair of Macromolecular ChemistryFaculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstr. 401069DresdenGermany
| | - Maximilian Schneider
- Chair of Macromolecular ChemistryFaculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstr. 401069DresdenGermany
| | - Daniel Hafner
- Chair of Macromolecular ChemistryFaculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstr. 401069DresdenGermany
| | - Wenbo Sheng
- Chair of Macromolecular ChemistryFaculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstr. 401069DresdenGermany
| | - Wei Li
- Chair of Macromolecular ChemistryFaculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstr. 401069DresdenGermany
| | - Fred Lange
- Chair of Macromolecular ChemistryFaculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstr. 401069DresdenGermany
| | - Erik Wegener
- Chair of Macromolecular ChemistryFaculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstr. 401069DresdenGermany
| | - Ihsan Amin
- Van't Hoff Institute of Molecular Science, University of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Rainer Jordan
- Chair of Macromolecular ChemistryFaculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstr. 401069DresdenGermany
| |
Collapse
|
21
|
Zhang K, Yan W, Simic R, Benetti EM, Spencer ND. Versatile Surface Modification of Hydrogels by Surface-Initiated, Cu 0-Mediated Controlled Radical Polymerization. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6761-6767. [PMID: 31933355 PMCID: PMC7042955 DOI: 10.1021/acsami.9b21399] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/14/2020] [Indexed: 05/04/2023]
Abstract
Surface-initiated controlled radical polymerization mediated by a Cu0 plate (SI-Cu0 CRP) emerges as a versatile and efficient method for the functionalization of the exposed surfaces of hydrogels with a wide variety of polymer brushes. When a Cu0 plate is placed in contact with initiator-bearing hydrogel surfaces in the presence of ligand and monomer and under ambient conditions, it rapidly consumes dissolved oxygen from the reaction mixture, further acting as a source of catalyst and leading to the rapid growth of hydrogel-bound polymer chains. Three types of functional surfaces have been prepared as examples of the wide range of potential materials that can be synthesized in this way, including a hydrogel with a protective, hydrophobic surface, a lubricious hydrogel, as well as a hydrogel with thermally switchable frictional properties.
Collapse
Affiliation(s)
- Kaihuan Zhang
- Laboratory
for Surface Science and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - Wenqing Yan
- Laboratory
for Surface Science and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - Rok Simic
- Laboratory
for Surface Science and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - Edmondo M. Benetti
- Laboratory
for Surface Science and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
- Biointerfaces, Swiss Federal Laboratories
for Materials Science and
Technology (Empa), 9014 St. Gallen, Switzerland
| | - Nicholas D. Spencer
- Laboratory
for Surface Science and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
22
|
Layadi A, Kessel B, Yan W, Romio M, Spencer ND, Zenobi-Wong M, Matyjaszewski K, Benetti EM. Oxygen Tolerant and Cytocompatible Iron(0)-Mediated ATRP Enables the Controlled Growth of Polymer Brushes from Mammalian Cell Cultures. J Am Chem Soc 2020; 142:3158-3164. [PMID: 31967475 DOI: 10.1021/jacs.9b12974] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The use of zerovalent iron (Fe0)-coated plates, which act both as a source of catalyst and as a reducing agent during surface-initiated atom transfer radical polymerization (SI-ATRP), enables the controlled growth of a wide range of polymer brushes under ambient conditions utilizing either organic or aqueous reaction media. Thanks to its cytocompatibility, Fe0 SI-ATRP can be applied within cell cultures, providing a tool that can broadly and dynamically modify the substrate's affinity toward cells, without influencing their viability. Upon systematically assessing the application of Fe-based catalytic systems in the controlled grafting of polymers, Fe0 SI-ATRP emerges as an extremely versatile technique that could be applied to tune the physicochemical properties of a cell's microenvironments on biomaterials or within tissue engineering constructs.
Collapse
Affiliation(s)
- Amine Layadi
- Laboratory for Surface Science and Technology, Department of Materials , ETH Zürich ; Vladimir-Prelog-Weg 5 , 8093 Zürich , Switzerland
| | - Benjamin Kessel
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology , ETH Zürich , 8093 Zürich , Switzerland
| | - Wenqing Yan
- Laboratory for Surface Science and Technology, Department of Materials , ETH Zürich ; Vladimir-Prelog-Weg 5 , 8093 Zürich , Switzerland
| | - Matteo Romio
- Laboratory for Surface Science and Technology, Department of Materials , ETH Zürich ; Vladimir-Prelog-Weg 5 , 8093 Zürich , Switzerland.,Biointerfaces , Swiss Federal Laboratories for Materials Science and Technology (Empa) , Lerchenfeldstrasse 5 , CH-9014 , St. Gallen , Switzerland
| | - Nicholas D Spencer
- Laboratory for Surface Science and Technology, Department of Materials , ETH Zürich ; Vladimir-Prelog-Weg 5 , 8093 Zürich , Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology , ETH Zürich , 8093 Zürich , Switzerland
| | - Krzysztof Matyjaszewski
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Edmondo M Benetti
- Laboratory for Surface Science and Technology, Department of Materials , ETH Zürich ; Vladimir-Prelog-Weg 5 , 8093 Zürich , Switzerland.,Biointerfaces , Swiss Federal Laboratories for Materials Science and Technology (Empa) , Lerchenfeldstrasse 5 , CH-9014 , St. Gallen , Switzerland
| |
Collapse
|
23
|
Faggion Albers R, Yan W, Romio M, Leite ER, Spencer ND, Matyjaszewski K, Benetti EM. Mechanism and application of surface-initiated ATRP in the presence of a Zn0 plate. Polym Chem 2020. [DOI: 10.1039/d0py01233e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
SI-Zn0-ATRP enables the synthesis of chemically different polymer brushes under full ambient conditions, using just microliter volumes of reaction solutions.
Collapse
Affiliation(s)
| | - Wenqing Yan
- Laboratory for Surface Science and Technology
- Department of Materials
- ETH Zürich
- CH-8093 Zurich
- Switzerland
| | - Matteo Romio
- Laboratory for Surface Science and Technology
- Department of Materials
- ETH Zürich
- CH-8093 Zurich
- Switzerland
| | - Edson R. Leite
- Department of Chemistry
- Federal University of São Carlos
- 13565-905 São Carlos
- Brazil
- Brazilian Nanotechnology National Laboratory (LNNano)
| | - Nicholas D. Spencer
- Laboratory for Surface Science and Technology
- Department of Materials
- ETH Zürich
- CH-8093 Zurich
- Switzerland
| | | | - Edmondo M. Benetti
- Laboratory for Surface Science and Technology
- Department of Materials
- ETH Zürich
- CH-8093 Zurich
- Switzerland
| |
Collapse
|
24
|
Li M, Wang S, Li F, Zhou L, Lei L. Organocatalyzed atom transfer radical polymerization (ATRP) using triarylsulfonium hexafluorophosphate salt (THS) as a photocatalyst. Polym Chem 2020. [DOI: 10.1039/c9py01742a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Triarylsulfonium hexafluorophosphate salt (THS), an organic and inexpensive compound, was employed as a photocatalyst for metal free atom transfer radical polymerization (ATRP) of methacrylate monomers.
Collapse
Affiliation(s)
- Mengmeng Li
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education
- College of Chemistry and Materials Science/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry
- Northwest University
- Xi'an
- P. R. China
| | - Sixuan Wang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education
- College of Chemistry and Materials Science/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry
- Northwest University
- Xi'an
- P. R. China
| | - Feifei Li
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education
- College of Chemistry and Materials Science/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry
- Northwest University
- Xi'an
- P. R. China
| | - Lin Zhou
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education
- College of Chemistry and Materials Science/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry
- Northwest University
- Xi'an
- P. R. China
| | - Lin Lei
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education
- College of Chemistry and Materials Science/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry
- Northwest University
- Xi'an
- P. R. China
| |
Collapse
|
25
|
Brush-modified materials: Control of molecular architecture, assembly behavior, properties and applications. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2019.101180] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Li W, Sheng W, Jordan R, Zhang T. Boosting or moderating surface-initiated Cu(0)-mediated controlled radical polymerization with external additives. Polym Chem 2020. [DOI: 10.1039/d0py01061h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
External additives regulate the copper disproportionation/comproportionation equilibrium to control polymer brush growth in surface-initiated Cu(0)-mediated controlled radical polymerization.
Collapse
Affiliation(s)
- Wei Li
- Chair of Macromolecular Chemistry
- Faculty of Chemistry and Food Chemistry
- School of Science
- Technische Universität Dresden
- 01069 Dresden
| | - Wenbo Sheng
- Chair of Macromolecular Chemistry
- Faculty of Chemistry and Food Chemistry
- School of Science
- Technische Universität Dresden
- 01069 Dresden
| | - Rainer Jordan
- Chair of Macromolecular Chemistry
- Faculty of Chemistry and Food Chemistry
- School of Science
- Technische Universität Dresden
- 01069 Dresden
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies
- Zhejiang Key Laboratory of Marine Materials and Protective Technologies
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo 315201
| |
Collapse
|
27
|
Mocny P, Klok HA. Complex polymer topologies and polymer—nanoparticle hybrid films prepared via surface-initiated controlled radical polymerization. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2019.101185] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
28
|
Lian J, Xu H, Duan S, Ding X, Hu Y, Zhao N, Ding X, Xu FJ. Tunable Adhesion of Different Cell Types Modulated by Thermoresponsive Polymer Brush Thickness. Biomacromolecules 2019; 21:732-742. [DOI: 10.1021/acs.biomac.9b01437] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jiamin Lian
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Haifeng Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Shun Duan
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Xuejia Ding
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Yang Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Nana Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Xiaokang Ding
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| |
Collapse
|
29
|
Yan W, Ramakrishna SN, Romio M, Benetti EM. Bioinert and Lubricious Surfaces by Macromolecular Design. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13521-13535. [PMID: 31532689 DOI: 10.1021/acs.langmuir.9b02316] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The modification of a variety of biomaterials and medical devices often encompasses the generation of biopassive and lubricious layers on their exposed surfaces. This is valid when the synthetic supports are required to integrate within physiological media without altering their interfacial composition and when the minimization of shear stress prevents or reduces damage to the surrounding environment. In many of these cases, hydrophilic polymer brushes assembled from surface-interacting polymer adsorbates or directly grown by surface-initiated polymerizations (SIP) are chosen. Although growing efforts by polymer chemists have been focusing on varying the composition of polymer brushes in order to attain increasingly bioinert and lubricious surfaces, the precise modulation of polymer architecture has simultaneously enabled us to substantially broaden the tuning potential for the above-mentioned properties. This feature article concentrates on reviewing this latter strategy, comparatively analyzing how polymer brush parameters such as molecular weight and grafting density, the application of block copolymers, the introduction of branching and cross-links, or the variation of polymer topology beyond the simple, linear chains determine highly technologically relevant properties, such as biopassivity and lubrication.
Collapse
Affiliation(s)
- Wenqing Yan
- Polymer Surfaces Group, Laboratory for Surface Science and Technology, Department of Materials , Swiss Federal Institute of Technology (ETH Zürich) , Vladimir-Prelog-Weg 1-5/10 , CH-8093 Zurich , Switzerland
| | - Shivaprakash N Ramakrishna
- Polymer Surfaces Group, Laboratory for Surface Science and Technology, Department of Materials , Swiss Federal Institute of Technology (ETH Zürich) , Vladimir-Prelog-Weg 1-5/10 , CH-8093 Zurich , Switzerland
| | - Matteo Romio
- Polymer Surfaces Group, Laboratory for Surface Science and Technology, Department of Materials , Swiss Federal Institute of Technology (ETH Zürich) , Vladimir-Prelog-Weg 1-5/10 , CH-8093 Zurich , Switzerland
- Biointerfaces, Swiss Federal Laboratories for Materials Science and Technology (Empa) , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
| | - Edmondo M Benetti
- Polymer Surfaces Group, Laboratory for Surface Science and Technology, Department of Materials , Swiss Federal Institute of Technology (ETH Zürich) , Vladimir-Prelog-Weg 1-5/10 , CH-8093 Zurich , Switzerland
- Biointerfaces, Swiss Federal Laboratories for Materials Science and Technology (Empa) , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
| |
Collapse
|
30
|
Yan W, Ramakrishna SN, Spencer ND, Benetti EM. Brushes, Graft Copolymers, or Bottlebrushes? The Effect of Polymer Architecture on the Nanotribological Properties of Grafted-from Assemblies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11255-11264. [PMID: 31394039 DOI: 10.1021/acs.langmuir.9b01265] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Surface-grafted polyzwitterions (PZW) have gained a foothold in the design of synthetic materials that closely mimic the lubricious properties of articular joints in mammals. Besides their chemical composition, the architecture of PZW brushes strongly determines their morphological, nanomechanical, and nanotribological characteristics. This emerges while comparing the properties of linear poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) brushes with those displayed by graft copolymer and bottlebrush brushes, either featuring a low or a high content of PMPC side chains. Surface-initiated atom transfer radical polymerization (SI-ATRP) enabled the synthesis of different branched-brush architectures from multifunctional macroinitiators via multiple grafting steps, and allowed us to modulate their structure by tuning the polymerization conditions. At relatively low grafting densities (σ), long PMPC side segments extend at the interface of bottlebrush and graft copolymer brushes, providing both morphology and lubrication properties comparable to those shown by loosely grafted, linear PMPC brushes. When σ > 0.1 chains nm-2 the effect of the branched-brush architecture on the nanotribological properties of the films became evident. Linear PMPC brushes showed the lowest friction among the studied brush structures, with a coefficient of friction (μ) that reached 1 × 10-4, as measured by atomic force microscopy (AFM). Bottlebrush brushes showed comparatively higher friction, although the high content of hydrophilic PMPC side chains along their backbone substantially improved lubrication compared to that displayed by the more sparsely substituted graft copolymer brushes.
Collapse
Affiliation(s)
- Wenqing Yan
- Laboratory for Surface Science and Technology, Department of Materials , ETH Zürich , Zürich , Switzerland
| | - Shivaprakash N Ramakrishna
- Laboratory for Surface Science and Technology, Department of Materials , ETH Zürich , Zürich , Switzerland
| | - Nicholas D Spencer
- Laboratory for Surface Science and Technology, Department of Materials , ETH Zürich , Zürich , Switzerland
| | - Edmondo M Benetti
- Laboratory for Surface Science and Technology, Department of Materials , ETH Zürich , Zürich , Switzerland
- Biointerfaces , Swiss Federal Laboratories for Materials Science and Technology (Empa) , St. Gallen , Switzerland
| |
Collapse
|
31
|
Yan W, Fantin M, Ramakrishna S, Spencer ND, Matyjaszewski K, Benetti EM. Growing Polymer Brushes from a Variety of Substrates under Ambient Conditions by Cu 0-Mediated Surface-Initiated ATRP. ACS APPLIED MATERIALS & INTERFACES 2019; 11:27470-27477. [PMID: 31276375 DOI: 10.1021/acsami.9b09529] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cu0-mediated surface-initiated atom transfer radical polymerization (Cu0 SI-ATRP) is a highly versatile, oxygen-tolerant, and extremely controlled polymer-grafting technique that enables the modification of flat inorganic surfaces, as well as porous organic and polymeric supports of different compositions. Exploiting the intimate contact between a copper plate, acting as a source of catalyst and reducing agent, and an initiator-bearing support, Cu0 SI-ATRP enables the rapid growth of biopassive, lubricious brushes from large flat surfaces, as well as from various organic supports, including cellulose fibers and elastomers, using microliter volumes of reaction mixtures, and without the need for deoxygenation of reaction mixtures or an inert atmosphere. Thanks to a detailed analysis of its mechanism and the parameters governing the polymerization process, polymer brush growth by Cu0 SI-ATRP can be precisely modulated and adapted to be applied to morphologically and chemically different substrates, setting up the basis for translating SI-ATRP methods from academic studies into technologically relevant surface-modification approaches.
Collapse
Affiliation(s)
- Wenqing Yan
- Laboratory of Surface Science and Technology, Department of Materials , Swiss Federal Institute of Technology (ETH Zürich) , Vladimir-Prelog-Weg 1-5/10 , Zurich CH-8093 , Switzerland
| | - Marco Fantin
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Shivaprakash Ramakrishna
- Laboratory of Surface Science and Technology, Department of Materials , Swiss Federal Institute of Technology (ETH Zürich) , Vladimir-Prelog-Weg 1-5/10 , Zurich CH-8093 , Switzerland
| | - Nicholas D Spencer
- Laboratory of Surface Science and Technology, Department of Materials , Swiss Federal Institute of Technology (ETH Zürich) , Vladimir-Prelog-Weg 1-5/10 , Zurich CH-8093 , Switzerland
| | - Krzysztof Matyjaszewski
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Edmondo M Benetti
- Laboratory of Surface Science and Technology, Department of Materials , Swiss Federal Institute of Technology (ETH Zürich) , Vladimir-Prelog-Weg 1-5/10 , Zurich CH-8093 , Switzerland
- Laboratory for Biointerfaces , Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5 , St. Gallen CH-9014 , Switzerland
| |
Collapse
|
32
|
Yan W, Fantin M, Spencer ND, Matyjaszewski K, Benetti EM. Translating Surface-Initiated Atom Transfer Radical Polymerization into Technology: The Mechanism of Cu 0-Mediated SI-ATRP under Environmental Conditions. ACS Macro Lett 2019; 8:865-870. [PMID: 35619512 DOI: 10.1021/acsmacrolett.9b00388] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The exceptional features of Cu0-mediated surface-initiated atom transfer radical polymerization (Cu0 SI-ATRP), and its potential for implementation in technologically relevant surface functionalizations are demonstrated thanks to a comprehensive understanding of its mechanism. Cu0 SI-ATRP enables the synthesis of multifunctional polymer brushes with a remarkable degree of control, over extremely large areas and without the need for inert atmosphere or deoxygenation of monomer solutions. When a polymerization mixture is placed between a flat copper plate and an ATRP-initiator-functionalized substrate, the vertical distance between these two overlaying surfaces determines the tolerance of the grafting process toward the oxygen, while the composition of the polymerization solution emerges as the critical parameter regulating polymer-grafting kinetics. At very small distances between the copper plate and the initiating surfaces, the oxygen dissolved in the solution is rapidly consumed via oxidation of the metallic substrate. In the presence of ligand, copper species diffuse to the surface-immobilized initiators and trigger a rapid growth of polymer brushes. Concurrently, the presence and concentration of added CuII regulates the generation of CuI-based activators through comproportionation with Cu0. Hence, under oxygen-tolerant conditions, the extent of comproportionation, together with the solvent-dependent rate constant of activation (kact) of ATRP are the main determinants of the growth rate of polymer brushes.
Collapse
Affiliation(s)
- Wenqing Yan
- Laboratory of Surface Science and Technology, Department of Materials, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
| | - Marco Fantin
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Nicholas D. Spencer
- Laboratory of Surface Science and Technology, Department of Materials, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Edmondo M. Benetti
- Laboratory of Surface Science and Technology, Department of Materials, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
- Swiss Federal Laboratories for Materials Science and Technology (EMPA), Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland
| |
Collapse
|
33
|
Zhang T, Benetti EM, Jordan R. Surface-Initiated Cu(0)-Mediated CRP for the Rapid and Controlled Synthesis of Quasi-3D Structured Polymer Brushes. ACS Macro Lett 2019; 8:145-153. [PMID: 35619435 DOI: 10.1021/acsmacrolett.8b00912] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Surface-initiated controlled radical polymerization mediated by Cu(0) plate (SI-Cu(0)plate-CRP) is an extremely effective and versatile technique for the synthesis of functional polymer brushes from vinyl monomers on planar substrates. The advantages of SI-Cu(0)plate-CRP in comparison to "classical" SI-CRP methods not only rely on the easy accessibility, handling, and recycling of the catalyst source, but also on the faster brush growth rates, and exceptionally high reinitiation efficiencies and grafting densities for the obtained brushes. The confined geometry of the SI-Cu(0)plate-CRP reaction setup, with a Cu(0) plate placed in close proximity to the initiator bearing substrate, considerably simplifies the preparation of polymer brushes over large areas, and the fabrication of gradient, patterned and arrayed polymer brushes. In this viewpoint we summarize the recent developments and applications of SI-Cu(0)plate-CRP, emphasizing its mechanism, advantages, and standing challenges.
Collapse
Affiliation(s)
- Tao Zhang
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstr. 4, 01062, Dresden, Germany
| | - Edmondo M. Benetti
- Polymer Surfaces Group, Laboratory for Surface Science and Technology, Department of Materials, Swiss Federal Institute of Technology (ETH) Zürich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zürich, Switzerland
| | - Rainer Jordan
- Chair of Macromolecular Chemistry, Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstr. 4, 01062, Dresden, Germany
| |
Collapse
|
34
|
Navarro LA, Enciso AE, Matyjaszewski K, Zauscher S. Enzymatically Degassed Surface-Initiated Atom Transfer Radical Polymerization with Real-Time Monitoring. J Am Chem Soc 2019; 141:3100-3109. [PMID: 30674187 DOI: 10.1021/jacs.8b12072] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Polymer brush coatings are frequently prepared by radical polymerization, a notoriously oxygen sensitive process. Glucose oxidase (GOx) can inexpensively enable radical polymerization in solution by enzymatically consuming oxygen as it oxidizes glucose. Here, we report the growth of polymeric brushes using GOx-assisted atom transfer radical polymerization (ATRP) from a surface while open to air. Specifically, we grew a set of biomedically relevant polymer brushes, including poly(oligo(ethylene glycol) methacrylate) (POEGMA), poly(2-dimethylaminoethyl methacrylate) (PDMAEMA), poly(sulfobetaine methacrylate) (PSBMA), and poly(2-(methylsulfinyl)ethyl acrylate (PMSEA). For each of these polymers, we monitored GOx-assisted and GOx-free ATRP reaction kinetics in real time using quartz crystal microbalance (QCM) and verified findings with localized surface plasmon resonance (LSPR). We modeled brush growth kinetics considering bimolecular termination. This model fit our data well ( r2 > 0.987 for all samples) and shows the addition of GOx increased effective kinetic chain lengths, propagation rates, and reproducibility. We tested the antifouling properties of the polymer brush coatings against human blood plasma and were surprised to find that coatings prepared with GOx repelled more plasma proteins in all cases than their GOx-free counterparts.
Collapse
Affiliation(s)
- Luis A Navarro
- Department of Mechanical Engineering and Materials Science , Duke University , 101 Science Drive , Durham , North Carolina 27708 , United States
| | - Alan E Enciso
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Stefan Zauscher
- Department of Mechanical Engineering and Materials Science , Duke University , 101 Science Drive , Durham , North Carolina 27708 , United States
| |
Collapse
|
35
|
Che Y, Zhang T, Du Y, Amin I, Marschelke C, Jordan R. "On Water" Surface-initiated Polymerization of Hydrophobic Monomers. Angew Chem Int Ed Engl 2018; 57:16380-16384. [PMID: 30300921 DOI: 10.1002/anie.201809100] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/01/2018] [Indexed: 11/10/2022]
Abstract
We present the "on water" surface-initiated Cu-mediated controlled radical polymerization ("on water" SI-CuCRP) that converts hydrophobic monomers in aqueous reaction medium to polymer brushes at unparalleled speed and efficiency. The method allows the facile conversion of a variety of common monomers under most simple reaction conditions and with minimal monomer amounts to thick and homogeneous polymer brushes. The highly living character of the "on water" SI-CuCRP allowed the preparation of decablock (homo)polymer brushes and opens the pathway to sequentially controlled polymer brushes on solids.
Collapse
Affiliation(s)
- Yunjiao Che
- Chair of Macromolecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstr. 4, 01069, Dresden, Germany.,Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
| | - Tao Zhang
- Chair of Macromolecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstr. 4, 01069, Dresden, Germany
| | - Yunhao Du
- Chair of Macromolecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstr. 4, 01069, Dresden, Germany
| | - Ihsan Amin
- Chair of Macromolecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstr. 4, 01069, Dresden, Germany.,Leibniz-Institut für Plasmaforschung und Technologie, Felix-Hausdorff-Straße 2, 17489, Greifswald, Germany
| | - Claudia Marschelke
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
| | - Rainer Jordan
- Chair of Macromolecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstr. 4, 01069, Dresden, Germany
| |
Collapse
|
36
|
Che Y, Zhang T, Du Y, Amin I, Marschelke C, Jordan R. “On Water” Surface-initiated Polymerization of Hydrophobic Monomers. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yunjiao Che
- Chair of Macromolecular Chemistry; Faculty of Chemistry and Food Chemistry; Technische Universität Dresden; Mommsenstr. 4 01069 Dresden Germany
- Leibniz-Institut für Polymerforschung Dresden e.V.; Hohe Straße 6 01069 Dresden Germany
| | - Tao Zhang
- Chair of Macromolecular Chemistry; Faculty of Chemistry and Food Chemistry; Technische Universität Dresden; Mommsenstr. 4 01069 Dresden Germany
| | - Yunhao Du
- Chair of Macromolecular Chemistry; Faculty of Chemistry and Food Chemistry; Technische Universität Dresden; Mommsenstr. 4 01069 Dresden Germany
| | - Ihsan Amin
- Chair of Macromolecular Chemistry; Faculty of Chemistry and Food Chemistry; Technische Universität Dresden; Mommsenstr. 4 01069 Dresden Germany
- Leibniz-Institut für Plasmaforschung und Technologie; Felix-Hausdorff-Straße 2 17489 Greifswald Germany
| | - Claudia Marschelke
- Leibniz-Institut für Polymerforschung Dresden e.V.; Hohe Straße 6 01069 Dresden Germany
| | - Rainer Jordan
- Chair of Macromolecular Chemistry; Faculty of Chemistry and Food Chemistry; Technische Universität Dresden; Mommsenstr. 4 01069 Dresden Germany
| |
Collapse
|