1
|
Dong Y, Ren W, Sun Y, Duan X, Liu C. Aggregation-Augmented Magnetism of Lanthanide-Doped Nanoparticles and Enabling Magnetic Levitation-Based Exosome Sensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407013. [PMID: 38936410 DOI: 10.1002/adma.202407013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/25/2024] [Indexed: 06/29/2024]
Abstract
Due to the presence of unpaired electron orbitals in most lanthanide ions, lanthanide-doped nanoparticles (LnNPs) exhibit paramagnetism. However, as to biosensing applications, the magnetism of LnNPs is so weak that can hardly be employed in target separation. Herein, it is discovered that the magnetism of the LnNPs is highly associated with their concentration in a confined space, enabling aggregation-augmented magnetism to make them susceptive to a conventional magnet. Accordingly, a magnetic levitation (Maglev) sensing system is designed, in which the target exosomes can specifically introduce paramagnetic LnNPs to the microbeads' surface, allowing aggregation-augmented magnetism and further leverage the microbeads' levitation height in the Maglev device to indicate the target exosomes' content. It is demonstrated that this Maglev system can precisely distinguish healthy people's blood samples from those of breast cancer patients. This is the first work to report that LnNPs hold great promise in magnetic separation-based biological sample sorting, and the LnNP-permitted Maglev sensing system is proven to be promising for establishing a new generation of biosensing devices.
Collapse
Affiliation(s)
- Yuanyuan Dong
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Wei Ren
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Yuanyuan Sun
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, P. R. China
| | - Xinrui Duan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Chenghui Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
| |
Collapse
|
2
|
Komiyama N, Ohkubo T, Maeda Y, Saeki Y, Ichikuni N, Masu H, Kanoh H, Ohara K, Takahashi R, Wadati H, Takagi H, Miwa Y, Kutsumizu S, Kishikawa K, Kohri M. Magnetic Supramolecular Spherical Arrays: Direct Formation of Micellar Cubic Mesophase by Lanthanide Metallomesogens with 7-Coordination Geometry. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309226. [PMID: 38477513 PMCID: PMC11132039 DOI: 10.1002/advs.202309226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/09/2024] [Indexed: 03/14/2024]
Abstract
Here, an unprecedented phenomenon in which 7-coordinate lanthanide metallomesogens, which align via hydrogen bonds mediated by coordinated H2O molecules, form micellar cubic mesophases at room temperature, creating body-centered cubic (BCC)-type supramolecular spherical arrays, is reported. The results of experiments and molecular dynamics simulations reveal that spherical assemblies of three complexes surrounded by an amorphous alkyl domain spontaneously align in an energetically stable orientation to form the BCC structure. This phenomenon differs greatly from the conventional self-assembling behavior of 6-coordinated metallomesogens, which form columnar assemblies due to strong intermolecular interactions. Since the magnetic and luminescent properties of different lanthanides vary, adding arbitrary functions to spherical arrays is possible by selecting suitable lanthanides to be used. The method developed in this study using 7-coordinate lanthanide metallomesogens as building blocks is expected to lead to the rational development of micellar cubic mesophases.
Collapse
Affiliation(s)
- Nao Komiyama
- Department of Applied Chemistry and BiotechnologyGraduate School of EngineeringChiba University1–33 Yayoi‐cho, Inage‐kuChiba263‐8522Japan
| | - Takahiro Ohkubo
- Department of Applied Chemistry and BiotechnologyGraduate School of EngineeringChiba University1–33 Yayoi‐cho, Inage‐kuChiba263‐8522Japan
| | - Yoshiki Maeda
- Department of Applied Chemistry and BiotechnologyGraduate School of EngineeringChiba University1–33 Yayoi‐cho, Inage‐kuChiba263‐8522Japan
| | - Yuya Saeki
- Department of Applied Chemistry and BiotechnologyGraduate School of EngineeringChiba University1–33 Yayoi‐cho, Inage‐kuChiba263‐8522Japan
| | - Nobuyuki Ichikuni
- Department of Applied Chemistry and BiotechnologyGraduate School of EngineeringChiba University1–33 Yayoi‐cho, Inage‐kuChiba263‐8522Japan
| | - Hyuma Masu
- Department of Applied Chemistry and BiotechnologyGraduate School of EngineeringChiba University1–33 Yayoi‐cho, Inage‐kuChiba263‐8522Japan
- Center for Analytical InstrumentationChiba University1–33 Yayoi‐cho, Inage‐kuChiba263‐8522Japan
| | - Hirofumi Kanoh
- Department of ChemistryGraduate School of ScienceChiba University1–33 Yayoi‐cho, Inage‐kuChiba263‐8522Japan
| | - Koji Ohara
- Faculty of Materials for EnergyShimane University1060, Nishi‐Kawatsu‐choMatsueShimane690‐8504Japan
- Diffraction and Scattering DivisionJapan Synchrotron Radiation Research Institute1‐1‐1, Kouto, Sayo‐choSayo‐gunHyogo679‐5198Japan
| | - Ryunosuke Takahashi
- Department of Material ScienceGraduate School of ScienceUniversity of Hyogo3‐2‐1 Kouto, Kamigori‐choAko‐gunHyogo678‐1297Japan
| | - Hiroki Wadati
- Department of Material ScienceGraduate School of ScienceUniversity of Hyogo3‐2‐1 Kouto, Kamigori‐choAko‐gunHyogo678‐1297Japan
- Institute of Laser EngineeringOsaka University2–6 YamadaokaSuitaOsaka565‐0871Japan
| | - Hideaki Takagi
- Photon FactoryInstitute of Materials Structure ScienceHigh Energy Accelerator Research Organization1‐1 OhoTsukubaIbaraki305‐0801Japan
| | - Yohei Miwa
- Department of Chemistry and Biomolecular ScienceFaculty of EngineeringGifu University1‐1 YanagidoGifu501‐1193Japan
| | - Shoichi Kutsumizu
- Department of Chemistry and Biomolecular ScienceFaculty of EngineeringGifu University1‐1 YanagidoGifu501‐1193Japan
| | - Keiki Kishikawa
- Department of Applied Chemistry and BiotechnologyGraduate School of EngineeringChiba University1–33 Yayoi‐cho, Inage‐kuChiba263‐8522Japan
| | - Michinari Kohri
- Department of Applied Chemistry and BiotechnologyGraduate School of EngineeringChiba University1–33 Yayoi‐cho, Inage‐kuChiba263‐8522Japan
| |
Collapse
|
3
|
Ghosh T, Nandi S, Girigoswami A, Bhattacharyya SK, Ghosh SK, Mandal M, Ghorai UK, Banerji P, Das NC. Carbon Dots for Multiuse Platform: Intracellular pH Sensing and Complementary Intensified T1-T2 Dual Imaging Contrast Nanoprobes. ACS Biomater Sci Eng 2024; 10:1112-1127. [PMID: 38163852 DOI: 10.1021/acsbiomaterials.3c01389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Measurement of pH in living cells is a great and decisive factor for providing an early and accurate diagnosis factor. Along with this, the multimodal transverse and longitudinal relaxivity enhancement potentiality over single modality within a single platform in the magnetic resonance imaging (MRI) field is a very challenging issue for diagnostic purposes in the biomedical field of application. Therefore, this work aims to design a versatile platform by fabricating a novel nanoprobe through holmium- and manganese-ion doping in carbon quantum dots (Ho-Mn-CQDs), which can show nearly neutral intracellular pH sensing and MRI imaging at the same time. These manufactured Ho-Mn-CQDs acted as excellent pH sensors in the near-neutral range (4.01-8.01) with the linearity between 6.01 and 8.01, which could be useful for the intracellular pH-sensing capability. An innumerable number of carboxyl and amino groups are present on the surface of the prepared nanoprobe, making it an excellent candidate for pH sensing through fluorescence intensity quenching phenomena. Cellular uptake and cell viability experiments were also executed to affirm the intracellular accepting ability of Ho-Mn-CQDs. Furthermore, with this pH-sensing quality, these Ho-Mn-CQDs are also capable of acting as T1-T2 dual modal imaging contrast agents in comparison with pristine Ho-doped and Mn-doped CQDs. The Ho-Mn-CQDs showed an increment of r1 and r2 relaxivity values simultaneously compared with only the negative contrast agent, holmium in holmium-doped CQDs, and the positive contrast agent, manganese in manganese-doped CQDs. The above-mentioned observations elucidate that its tiny size, excitation dependence of fluorescence behavior, low cytotoxicity, and dual modal contrast imaging capability make it an ideal candidate for pH monitoring in the near-neutral range and also as a dual modal MRI imaging contrast enhancement nanoprobe at the same time.
Collapse
Affiliation(s)
- Trisita Ghosh
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Suvendu Nandi
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603 103, India
| | | | - Suman Kumar Ghosh
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Uttam Kumar Ghorai
- Department of Industrial Chemistry and Applied Chemistry, Ramakrishna Mission Vidyamandira, Howrah 711202, India
| | - Pallab Banerji
- Materials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Narayan Chandra Das
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
4
|
Narumi A, Sato SI, Shen X, Kakuchi T. Precision synthesis for well-defined linear and/or architecturally controlled thermoresponsive poly(N-substituted acrylamide)s. Polym Chem 2022. [DOI: 10.1039/d1py01449h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe the progress in precision polymerizations of specific kinds of N-alkylacrylamides and N,N-dialkylacrylamides to produce polymers showing thermoresponsive properties in aqueous media, which representatively include the reversible-deactivation radical polymerizations...
Collapse
|
5
|
Pang B, Yu Y, Zhang W. Thermoresponsive Polymers Based on Tertiary Amine Moieties. Macromol Rapid Commun 2021; 42:e2100504. [PMID: 34523742 DOI: 10.1002/marc.202100504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/08/2021] [Indexed: 12/20/2022]
Abstract
Thermoresponsive polymers exhibiting unique reversible phase transition properties in aqueous solution in response to temperature stimuli have been extensively investigated. In the past two decades, thermoresponsive polymers based on tertiary amine moieties have achieved considerable progress and become an important family of thermoresponsive polymers, including tertiary amine functionalized poly((meth)acrylamide)s, poly((meth)acrylate)s, poly(styrene)s, poly(vinyl alcohol)s, and poly(ethylene oxide)s, which exhibit lower critical solution temperature and/or upper critical solution temperature in water or aliphatic alcohols. Their phase transition behavior can be modulated by the solution pH and CO2 due to the protonation of tertiary amine moieties in acidic condition and deprotonation in alkaline condition and the charged ammonium bicarbonate formed by the tertiary amine moieties and CO2 . The aim of this review is to summarize the recent progress in the thermoresponsive polymers based on tertiary amine moieties.
Collapse
Affiliation(s)
- Bo Pang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yuewen Yu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
6
|
Tanaka F. Thermoreversible Gelation with Two-Component Mixed Cross-Link Junctions of Variable Multiplicity in Ternary Polymer Solutions. Gels 2021; 7:gels7030089. [PMID: 34287309 PMCID: PMC8293203 DOI: 10.3390/gels7030089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Abstract
Theoretical scheme is developed to study thermoreversible gelation interfering with liquid–liquid phase separation in mixtures of reactive f-functional molecules R{Af} and g-functional ones R{Bg} dissolved in a common solvent. Formed polymer networks are assumed to include multiple cross-link junctions containing arbitrary numbers k1 and k2 of functional groups A and B of each species. Sol-gel transition lines and spinodal lines are drawn on the ternary phase plane for some important models of multiple cross-link junctions with specified microscopic structure. It is shown that, if the cross-link structure satisfies a certain simple condition, there appears a special molar ratio of the two functional groups at which gelation takes place with a lowest concentration of the solute molecules, as has been often observed in the experiments. This optimal gelation concentration depends on f and g (functionality) of the solute molecules and the numbers k1 and k2 (multiplicity) of the functional groups in a cross-link junction. For cross-links which allow variable multiplicity, special attention is paid on the perfectly immiscible cross-links leading to interpenetrating polymer networks, and also on perfectly miscible cross-links leading to reentrant sol-gel-sol transition. Results are compared with recent observations on ion-binding polymer solutions, polymer solutions forming recognizable biomolecular complexes, polymer/surfactant mixtures, hydrogen-bonding polymers, and hydrophobically-modified amphiphilic water-soluble polymers.
Collapse
Affiliation(s)
- Fumihiko Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| |
Collapse
|
7
|
Wang S, Liu Q, Li L, Urban MW. Recent Advances in Stimuli-Responsive Commodity Polymers. Macromol Rapid Commun 2021; 42:e2100054. [PMID: 33749047 DOI: 10.1002/marc.202100054] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/19/2021] [Indexed: 12/14/2022]
Abstract
Known for their adaptability to surroundings, capability of transport control of molecules, or the ability of converting one type of energy to another as a result of external or internal stimuli, responsive polymers play a significant role in advancing scientific discoveries that may lead to an array of diverge applications. This review outlines recent advances in the developments of selected commodity polymers equipped with stimuli-responsiveness to temperature, pH, ionic strength, enzyme or glucose levels, carbon dioxide, water, redox agents, electromagnetic radiation, or electric and magnetic fields. Utilized diverse applications ranging from drug delivery to biosensing, dynamic structural components to color-changing coatings, this review focuses on commodity acrylics, epoxies, esters, carbonates, urethanes, and siloxane-based polymers containing responsive elements built into their architecture. In the context of stimuli-responsive chemistries, current technological advances as well as a critical outline of future opportunities and applications are also tackled.
Collapse
Affiliation(s)
- Siyang Wang
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Qianhui Liu
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Lei Li
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Marek W Urban
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| |
Collapse
|
8
|
Górka-Kumik W, Garbacz P, Lachowicz D, Dąbczyński P, Zapotoczny S, Szuwarzyński M. Tailoring cellular microenvironments using scaffolds based on magnetically-responsive polymer brushes. J Mater Chem B 2020; 8:10172-10181. [PMID: 33099591 DOI: 10.1039/d0tb01853h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A variety of polymeric scaffolds with the ability to control cell detachment has been created for cell culture using stimuli-responsive polymers. However, the widely studied and commonly used thermo-responsive polymeric substrates always affect the properties of the cultured cells due to the temperature stimulus. Here, we present a different stimuli-responsive approach based on poly(3-acrylamidopropyl)trimethylammonium chloride) (poly(APTAC)) brushes with homogeneously embedded superparamagnetic iron oxide nanoparticles (SPIONs). Neuroblastoma cell detachment was triggered by an external magnetic field, enabling a non-invasive process of controlled transfer into a new place without additional mechanical scratching and chemical/biochemical compound treatment. Hybrid scaffolds obtained in simultaneous surface-initiated atom transfer radical polymerization (SI-ATRP) were characterized by atomic force microscopy (AFM) working in the magnetic mode, secondary ion mass spectrometry (SIMS), and X-ray photoelectron spectroscopy (XPS) to confirm the magnetic properties and chemical structure. Moreover, neuroblastoma cells were cultured and characterized before and after exposure to a neodymium magnet. Controlled cell transfer triggered by a magnetic field is presented here as well.
Collapse
Affiliation(s)
- Weronika Górka-Kumik
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, Łojasiewicza 11, 30-348 Krakow, Poland
| | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Tanaka F, Nakagawa Y, Ohta S, Ito T. Thermoreversible gelation with ion-binding cross-links of variable multiplicity. J Chem Phys 2019; 150:174904. [PMID: 31067904 DOI: 10.1063/1.5096546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Thermoreversible gelation and liquid-liquid phase separation are theoretically studied for the gels of polyfunctional molecules (polymers) whose network junctions are formed by complexation of functional groups on the polymer chains with added metal ions. Phase diagrams on the polymer/ion/solvent concentration plane, including both sol-gel transition lines and liquid-liquid phase separation lines (spinodals), are derived as functions of the polymer functionality, molecular weight, maximum coordination number of ions, and temperature. Binding isotherms of ions are also calculated as functions of the ion concentration. Results of the calculated sol-gel transition lines are compared with our recent experimental data on gelation of star block and telechelic, acrylic copolymers cross-linked by iron ions. It is shown that, owing to reaction stoichiometry, there is an optimal ion concentration at which the solution gels for the lowest polymer concentration and also that a re-entrant sol phase appears in the ion concentrations higher than the optimal one. The effect of stepwise complex formation constants on the re-entrant phase is studied in detail.
Collapse
Affiliation(s)
| | - Yoshiyuki Nakagawa
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Seiichi Ohta
- Center for Disease Biology and Integrative Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Taichi Ito
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
11
|
Abstract
By selecting the core materials and grafted-hair polymers, hairy particles with polymer brushes can create various types of functional materials. In recent years, polydopamine (PDA) particles that are obtained by polymerizing dopamine, which is an amino acid derivative, have attracted attention for various applications. Herein, we present a novel approach for creating photonic and magnetic materials from hairy PDA particles. By grafting a hydrophilic hair polymer, we have succeeded in producing photonic materials capable of structural color changes. Furthermore, we have demonstrated the preparation of magnetic materials by immobilizing holmium, which is one of the lanthanide elements, by electrostatic interactions onto a cationic hair polymer. These results demonstrate the possibility of hairy PDA particles for a wide range of applications, such as for photonic and magnetic materials.
Collapse
|