1
|
Parisi C, Laneri F, Martins TJ, Fraix A, Sortino S. Nitric Oxide-Photodelivering Materials with Multiple Functionalities: From Rational Design to Therapeutic Applications. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39445390 DOI: 10.1021/acsami.4c13478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The achievement of materials that are able to release therapeutic agents under the control of light stimuli to improve therapeutic efficacy is a significant challenge in health care. Nitric oxide (NO) is one of the most studied molecules in the fascinating realm of biomedical sciences, not only for its crucial role as a gaseous signaling molecule in the human body but also for its great potential as an unconventional therapeutic in a variety of diseases including cancer, bacterial and viral infections, and neurodegeneration. Handling difficulties due to its gaseous nature, reduced region of action due to its short half-life, and strict dependence of the biological effects on its concentration and generation site are critical questions to be solved for appropriate therapeutic uses of NO. Light-activatable NO precursors, namely, NO photodonors (NOPDs), address the above issues since they are stable in the dark and permit in a noninvasive fashion the remote-controlled delivery of NO on demand with great spatiotemporal precision. Engineering biocompatible materials with NOPDs and their combination with additional imaging, therapeutic, and phototherapeutic components leads to intriguing light-responsive multifunctional constructs exhibiting promising potential for biomedical applications. This contribution illustrates the most significant progress made over the last five years in achieving engineered materials including nanoparticles, gels, and thin films, sharing the common feature to deliver NO under the exclusive control of the biocompatible visible/near infrared light inputs. We will highlight the logical design behind the fabrication of these systems, illustrating the potential therapeutic applications with particular emphasis on cancer and bacterial infections.
Collapse
Affiliation(s)
- Cristina Parisi
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Francesca Laneri
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Tassia J Martins
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Aurore Fraix
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Salvatore Sortino
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| |
Collapse
|
2
|
da Silva J, de Almeida EA, Karoleski GE, Koloshe E, Peron AP, Job AE, Leimann FV, Shirai MA, da Silva Gonzalez R. Synthesis of a Bioactive Nitric Oxide-Releasing Polymer from S-Nitrosated Starch. ACS OMEGA 2024; 9:41268-41278. [PMID: 39398142 PMCID: PMC11465258 DOI: 10.1021/acsomega.4c03255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024]
Abstract
The incorporation of nitric oxide (NO) into polymeric matrices minimizes degradation and facilitates controlled release. This optimization increases the field of application of NO, in dressings, food protective films, and implant devices, among others. This work presents an economical and easy way to manufacture bioactive nitric oxide-releasing polymer (BioNOR-P) and evaluates its bactericidal and antioxidant activity (AA), mechanical behavior, cytotoxicity, and genotoxicity, seeking future use in different applications. The BioNOR-P film was obtained by a casting method, forming a homogeneous, transparent film with good mechanical properties. The release of NO in an aqueous medium showed the film's ability to release NO slowly, at a rate of 0.58 nmol/g-1 min-1. Furthermore, the noncytotoxicity and antioxidant activity observed by NO release from BioNOR-P, as well as the ability to inhibit bacterial growth, may aid in the development of a NO-released polymer with different areas of application.
Collapse
Affiliation(s)
- Jéssica
Fernanda da Silva
- Food
Engineering Course, Federal Technological
University of Paraná (UTFPR), Campo Mourão Campus, Campo Mourão 87301-899, Paraná, Brazil
| | - Edson Araujo de Almeida
- Post-graduation
Program of Chemistry, State University of
Maringá (UEM), Maringá 87020-900, Paraná, Brazil
| | - Geovana Ellen Karoleski
- Chemical
Engineering Course, Federal Technological
University of Paraná, Campo
Mourão 87301-899, Paraná, Brazil
| | - Everton Koloshe
- Chemical
Course, Federal Technological University
of Paraná, Campo Mourão 87301-899, Paraná, Brazil
| | - Ana Paula Peron
- Department
of Biodiversity and Nature Conservation, Federal Technological University of Paraná, Campo Mourão 87301-899, Paraná, Brazil
| | - Aldo Eloizo Job
- Department
of Physics, State University Paulista “Julio
de Mesquita Filho”, Campus, Presidente Prudente 19060-900, São Paulo, Brazil
| | - Fernanda Vitória Leimann
- Postgraduate
Program in Food Technology, Federal Technological
University of Paraná, Campo Mourão 87301-899, Paraná, Brazil
| | - Marianne Ayumi Shirai
- Postgraduate
Program in Food Technology, Federal Technological
University of Paraná, Campo Mourão 87301-899, Paraná, Brazil
| | - Regiane da Silva Gonzalez
- Postgraduate
Program in Food Technology, Federal Technological
University of Paraná, Campo Mourão 87301-899, Paraná, Brazil
- Department
of Chemistry, Federal Technological University
of Paraná, Campo Mourão 87301-899, Paraná, Brazil
| |
Collapse
|
3
|
Mondal A, Paul S, De P. Recent Advancements in Polymeric N-Nitrosamine-Based Nitric Oxide (NO) Donors and their Therapeutic Applications. Biomacromolecules 2024; 25:5592-5608. [PMID: 39116284 DOI: 10.1021/acs.biomac.4c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Nitric oxide (NO), a gasotransmitter, is known for its wide range of effects in vasodilation, cardiac relaxation, and angiogenesis. This diatomic free radical also plays a pivotal role in reducing the risk of platelet aggregation and thrombosis. Furthermore, NO demonstrates promising potential in cancer therapy as well as in antibacterial and antibiofilm activities at higher concentrations. To leverage their biomedical activities, numerous NO donors have been developed. Among these, N-nitrosamines are emerging as a notable class, capable of releasing NO under suitable photoirradiation and finding a broad range of therapeutic applications. This review discusses the design, synthesis, and biological applications of polymeric N-nitrosamines, highlighting their advantages over small molecular NO donors in terms of stability, NO payload, and target-specific delivery. Additionally, various small-molecule N-nitrosamines are explored to provide a comprehensive overview of this burgeoning field. We anticipate that this review will aid in developing next-generation polymeric N-nitrosamines with improved physicochemical properties.
Collapse
Affiliation(s)
- Anushree Mondal
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Soumya Paul
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| |
Collapse
|
4
|
Yang C, Mu GF, Liang X, Yan Q. Gas-Responsive and Gas-Releasing Polymer Assemblies. Chemphyschem 2024; 25:e202400413. [PMID: 38747673 DOI: 10.1002/cphc.202400413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/13/2024] [Indexed: 06/28/2024]
Abstract
In order to explore the unique physiological roles of gas signaling molecules and gasotransmitters in vivo, chemists have engineered a variety of gas-responsive polymers that can monitor their changes in cellular milieu, and gas-releasing polymers that can orchestrate the release of gases. These have advanced their potential applications in the field of bio-imaging, nanodelivery, and theranostics. Since these polymers are of different chain structures and properties, the morphology of their assemblies will manifest distinct transitions after responding to gas or releasing gas. In this review, we summarize the fundamental design rationale of gas-responsive and gas-releasing polymers in structure and their controlled transition in self-assembled morphology and function, as well as present some perspectives in this prosperous field. Emerging challenges faced for the future research are also discussed.
Collapse
Affiliation(s)
- Cuiqin Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, No.220, Handan Rd., Shanghai, 200433, China
| | - Gui-Fang Mu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, No.220, Handan Rd., Shanghai, 200433, China
| | - Xin Liang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, No.220, Handan Rd., Shanghai, 200433, China
| | - Qiang Yan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, No.220, Handan Rd., Shanghai, 200433, China
| |
Collapse
|
5
|
Li X, Lin S, Wang Y, Chen Y, Zhang W, Shu G, Li H, Xu F, Lin J, Peng G, Fu H. Application of biofilm dispersion-based nanoparticles in cutting off reinfection. Appl Microbiol Biotechnol 2024; 108:386. [PMID: 38896257 PMCID: PMC11186951 DOI: 10.1007/s00253-024-13120-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 06/21/2024]
Abstract
Bacterial biofilms commonly cause chronic and persistent infections in humans. Bacterial biofilms consist of an inner layer of bacteria and an autocrine extracellular polymeric substance (EPS). Biofilm dispersants (abbreviated as dispersants) have proven effective in removing the bacterial physical protection barrier EPS. Dispersants are generally weak or have no bactericidal effect. Bacteria dispersed from within biofilms (abbreviated as dispersed bacteria) may be more invasive, adhesive, and motile than planktonic bacteria, characteristics that increase the probability that dispersed bacteria will recolonize and cause reinfection. The dispersants should be combined with antimicrobials to avoid the risk of severe reinfection. Dispersant-based nanoparticles have the advantage of specific release and intense penetration, providing the prerequisite for further antibacterial agent efficacy and achieving the eradication of biofilms. Dispersant-based nanoparticles delivered antimicrobial agents for the treatment of diseases associated with bacterial biofilm infections are expected to be an effective measure to prevent reinfection caused by dispersed bacteria. KEY POINTS: • Dispersed bacteria harm and the dispersant's dispersion mechanisms are discussed. • The advantages of dispersant-based nanoparticles in bacteria biofilms are discussed. • Dispersant-based nanoparticles for cutting off reinfection in vivo are highlighted.
Collapse
Affiliation(s)
- Xiaojuan Li
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shiyu Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yueli Wang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yang Chen
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Wei Zhang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Gang Shu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Haohuan Li
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Funeng Xu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Juchun Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guangneng Peng
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hualin Fu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
6
|
Beach M, Nayanathara U, Gao Y, Zhang C, Xiong Y, Wang Y, Such GK. Polymeric Nanoparticles for Drug Delivery. Chem Rev 2024; 124:5505-5616. [PMID: 38626459 PMCID: PMC11086401 DOI: 10.1021/acs.chemrev.3c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
7
|
Bhowmik R, Roy M. Recent advances on the development of NO-releasing molecules (NORMs) for biomedical applications. Eur J Med Chem 2024; 268:116217. [PMID: 38367491 DOI: 10.1016/j.ejmech.2024.116217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/19/2024]
Abstract
Nitric oxide (NO) is an important biological messenger as well as a signaling molecule that participates in a broad range of physiological events and therapeutic applications in biological systems. However, due to its very short half-life in physiological conditions, its therapeutic applications are restricted. Efforts have been made to develop an enormous number of NO-releasing molecules (NORMs) and motifs for NO delivery to the target tissues. These NORMs involve organic nitrate, nitrite, nitro compounds, transition metal nitrosyls, and several nanomaterials. The controlled release of NO from these NORMs to the specific site requires several external stimuli like light, sound, pH, heat, enzyme, etc. Herein, we have provided a comprehensive review of the biochemistry of nitric oxide, recent advancements in NO-releasing materials with the appropriate stimuli of NO release, and their biomedical applications in cancer and other disease control.
Collapse
Affiliation(s)
- Rintu Bhowmik
- Department of Chemistry, National Institute of Technology Manipur, Langol, 795004, Imphal West, Manipur, India
| | - Mithun Roy
- Department of Chemistry, National Institute of Technology Manipur, Langol, 795004, Imphal West, Manipur, India.
| |
Collapse
|
8
|
Li Z, Wang S, Zhao L, Gu J, Che H. Nitric Oxide-Releasing Tubular Polymersomes toward Advanced Gas Therapeutic Carriers. ACS Macro Lett 2024; 13:87-93. [PMID: 38174957 DOI: 10.1021/acsmacrolett.3c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Nitric oxide (NO) not only plays a vital role in a series of physiological processes but also has great potential for therapeutic applications. One of the existing challenges in using NO as a gas therapeutic is the inconvenience of gaseous NO storage, and thus, it is of importance to develop NO-releasing vehicle platforms. Although a variety of polymer-based NO-releasing nanoparticles have been constructed, a majority of the systems are limited to spherical morphologies. Here we present the preparation of biodegradable NO-releasing amphiphilic block copolymers containing poly(ethylene glycol) (PEG) and poly(trimethylene carbonate-4-nitro-3-(trifluoromethyl)) (PTMC-NF), which can self-assemble into tubular polymersomes. The tubular polymersomes with high aspect ratio structures showed much faster NO-releasing behavior, in contrast to their spherical counterparts under light irradiation. We found that the amount of NO released from tubular polymersomes is 1.5 times that from spherical polymersomes. More importantly, the tubular polymersomes have an enhanced anticancer performance compared to spherical polymersomes, demonstrating that the morphology of the NO-releasing polymersomes has a significant effect on their anticancer ability. In view of the benefits of NO-releasing tubular polymersomes, we expect that they can be used as an efficient NO delivery system for enhanced gas therapy.
Collapse
Affiliation(s)
- Zhezhe Li
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Suzhen Wang
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Lili Zhao
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jian Gu
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Hailong Che
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
9
|
Paul S, Ashrit P, Kumar M, Mete S, Ghosh S, Vemula PK, Mukherjee A, De P. Photostimulated Extended Nitric Oxide (NO) Release from Water-Soluble Block Copolymer to Enhance Antibacterial Activity. Biomacromolecules 2024; 25:77-88. [PMID: 38048403 DOI: 10.1021/acs.biomac.3c00822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
N-Nitrosamines are well established motifs to release nitric oxide (NO) under photoirradiation. Herein, a series of amphiphilic N-nitrosamine-based block copolymers (BCPx-NO) are developed to attain controlled NO release under photoirradiation (365 nm, 3.71 mW/cm2). The water-soluble BCPx-NO forms micellar architecture in aqueous medium and exhibits a sustained NO release of 92-160 μM within 11.5 h, which is 36.8-64.0% of the calculated value. To understand the NO release mechanism, a small molecular NO donor (NOD) resembling the NO releasing functional motif of BCPx-NO is synthesized, which displays a burst NO release in DMSO within 2.5 h. The radical nature of the released NO is confirmed by electron paramagnetic resonance (EPR) spectroscopy. The gradual NO release from micellar BCPx-NO enhances antibacterial activity over NOD and exhibits a superior bactericidal effect on Gram-positive Staphylococcus aureus. In relation to biomedical applications, this work offers a comprehensive insight into tuning light-triggered NO release to improve antibacterial activity.
Collapse
Affiliation(s)
| | - Priya Ashrit
- Institute for Stem Cell Science and Regenerative Medicine (InStem), UAS-GKVK Campus, Bellary Road, Bangalore 560065, Karnataka, India
| | | | - Sourav Mete
- Institute for Stem Cell Science and Regenerative Medicine (InStem), UAS-GKVK Campus, Bellary Road, Bangalore 560065, Karnataka, India
| | | | - Praveen Kumar Vemula
- Institute for Stem Cell Science and Regenerative Medicine (InStem), UAS-GKVK Campus, Bellary Road, Bangalore 560065, Karnataka, India
| | | | | |
Collapse
|
10
|
Guo Y, Mao Z, Ran F, Sun J, Zhang J, Chai G, Wang J. Nanotechnology-Based Drug Delivery Systems to Control Bacterial-Biofilm-Associated Lung Infections. Pharmaceutics 2023; 15:2582. [PMID: 38004561 PMCID: PMC10674810 DOI: 10.3390/pharmaceutics15112582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 11/26/2023] Open
Abstract
Airway mucus dysfunction and impaired immunological defenses are hallmarks of several lung diseases, including asthma, cystic fibrosis, and chronic obstructive pulmonary diseases, and are mostly causative factors in bacterial-biofilm-associated respiratory tract infections. Bacteria residing within the biofilm architecture pose a complex challenge in clinical settings due to their increased tolerance to currently available antibiotics and host immune responses, resulting in chronic infections with high recalcitrance and high rates of morbidity and mortality. To address these unmet clinical needs, potential anti-biofilm therapeutic strategies are being developed to effectively control bacterial biofilm. This review focuses on recent advances in the development and application of nanoparticulate drug delivery systems for the treatment of biofilm-associated respiratory tract infections, especially addressing the respiratory barriers of concern for biofilm accessibility and the various types of nanoparticles used to combat biofilms. Understanding the obstacles facing pulmonary drug delivery to bacterial biofilms and nanoparticle-based approaches to combatting biofilm may encourage researchers to explore promising treatment modalities for bacterial-biofilm-associated chronic lung infections.
Collapse
Affiliation(s)
- Yutong Guo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zeyuan Mao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Fang Ran
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Jingfeng Zhang
- The Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo 315000, China
| | - Guihong Chai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510180, China
| |
Collapse
|
11
|
Kauser A, Parisini E, Suarato G, Castagna R. Light-Based Anti-Biofilm and Antibacterial Strategies. Pharmaceutics 2023; 15:2106. [PMID: 37631320 PMCID: PMC10457815 DOI: 10.3390/pharmaceutics15082106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Biofilm formation and antimicrobial resistance pose significant challenges not only in clinical settings (i.e., implant-associated infections, endocarditis, and urinary tract infections) but also in industrial settings and in the environment, where the spreading of antibiotic-resistant bacteria is on the rise. Indeed, developing effective strategies to prevent biofilm formation and treat infections will be one of the major global challenges in the next few years. As traditional pharmacological treatments are becoming inadequate to curb this problem, a constant commitment to the exploration of novel therapeutic strategies is necessary. Light-triggered therapies have emerged as promising alternatives to traditional approaches due to their non-invasive nature, precise spatial and temporal control, and potential multifunctional properties. Here, we provide a comprehensive overview of the different biofilm formation stages and the molecular mechanism of biofilm disruption, with a major focus on the quorum sensing machinery. Moreover, we highlight the principal guidelines for the development of light-responsive materials and photosensitive compounds. The synergistic effects of combining light-triggered therapies with conventional treatments are also discussed. Through elegant molecular and material design solutions, remarkable results have been achieved in the fight against biofilm formation and antibacterial resistance. However, further research and development in this field are essential to optimize therapeutic strategies and translate them into clinical and industrial applications, ultimately addressing the global challenges posed by biofilm and antimicrobial resistance.
Collapse
Affiliation(s)
- Ambreen Kauser
- Department of Biotechnology, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; (A.K.); (E.P.)
- Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena 3, LV-1048 Riga, Latvia
| | - Emilio Parisini
- Department of Biotechnology, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; (A.K.); (E.P.)
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Giulia Suarato
- Istituto di Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni, Consiglio Nazionale delle Ricerche, CNR-IEIIT, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Rossella Castagna
- Department of Biotechnology, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; (A.K.); (E.P.)
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
12
|
Wang Z, Jin A, Yang Z, Huang W. Advanced Nitric Oxide Generating Nanomedicine for Therapeutic Applications. ACS NANO 2023; 17:8935-8965. [PMID: 37126728 PMCID: PMC10395262 DOI: 10.1021/acsnano.3c02303] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nitric oxide (NO), a gaseous transmitter extensively present in the human body, regulates vascular relaxation, immune response, inflammation, neurotransmission, and other crucial functions. Nitrite donors have been used clinically to treat angina, heart failure, pulmonary hypertension, and erectile dysfunction. Based on NO's vast biological functions, it further can treat tumors, bacteria/biofilms and other infections, wound healing, eye diseases, and osteoporosis. However, delivering NO is challenging due to uncontrolled blood circulation release and a half-life of under five seconds. With advanced biotechnology and the development of nanomedicine, NO donors packaged with multifunctional nanocarriers by physically embedding or chemically conjugating have been reported to show improved therapeutic efficacy and reduced side effects. Herein, we review and discuss recent applications of NO nanomedicines, their therapeutic mechanisms, and the challenges of NO nanomedicines for future scientific studies and clinical applications. As NO enables the inhibition of the replication of DNA and RNA in infectious microbes, including COVID-19 coronaviruses and malaria parasites, we highlight the potential of NO nanomedicines for antipandemic efforts. This review aims to provide deep insights and practical hints into design strategies and applications of NO nanomedicines.
Collapse
Affiliation(s)
- Zhixiong Wang
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Albert Jin
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhen Yang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian 350117, China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian 350117, China
| | - Wei Huang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian 350117, China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian 350117, China
| |
Collapse
|
13
|
Zhang HL, Wang Y, Tang Q, Ren B, Yang SP, Liu JG. A mesoporous MnO 2-based nanoplatform with near infrared light-controlled nitric oxide delivery and tumor microenvironment modulation for enhanced antitumor therapy. J Inorg Biochem 2023; 241:112133. [PMID: 36708626 DOI: 10.1016/j.jinorgbio.2023.112133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/06/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
A hollow mesoporous manganese dioxide-based (H-MnO2) multifunctional nanoplatform, H-MnO2 @AFIPB@PDA@Ru-NO@FA (MAPRF NPs), was prepared for synergistic cancer treatment, in which a histone deacetylase inhibitor AFIPB was loaded in its hollow cavity and a ruthenium nitrosyl donor (Ru-NO) and a folic acid (FA) targeting group were covalently decorated on its covered polydopamine (PDA) layer. The MAPRF NPs showed tumor microenvironment (TME)-responsive properties of depletion of glutathione (GSH) to disrupt the antioxidant defense system and on-demand drug delivery. And the released Mn2+ further catalyzed the decomposition of endogenous H2O2 to produce highly toxic hydroxyl radicals (·OH) for enhanced chemodynamic therapy (CDT). Furthermore, upon 808 nm light irradiation MAPRF NPs exhibited controlled nitric oxide (NO) delivery and simultaneously produced significant photothermal effect. Consequently, MAPRF NPs showed high mortality toward cancer cells in the presence of 808 nm light irradiation. This work provides a paradigm of multimodal synergistic therapy that combines NO-based gas therapy with TME modulation for efficient antitumor therapy.
Collapse
Affiliation(s)
- Hai-Lin Zhang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yi Wang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Qi Tang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Bing Ren
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Shi-Ping Yang
- Key Lab of Resource Chemistry of MOE & Shanghai Key Lab of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Jin-Gang Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| |
Collapse
|
14
|
Navale GR, Singh S, Ghosh K. NO donors as the wonder molecules with therapeutic potential: Recent trends and future perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
15
|
Seabra AB, Pieretti JC, de Melo Santana B, Horue M, Tortella GR, Castro GR. Pharmacological applications of nitric oxide-releasing biomaterials in human skin. Int J Pharm 2022; 630:122465. [PMID: 36476664 DOI: 10.1016/j.ijpharm.2022.122465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO) is an important endogenous molecule that plays several roles in biological systems. NO is synthesized in human skin by three isoforms of nitric oxide synthase (NOS) and, depending on the produced NO concentration, it can actuate in wound healing, dermal vasodilation, or skin defense against different pathogens, for example. Besides being endogenously produced, NO-based pharmacological formulations have been developed for dermatological applications targeting diverse pathologies such as bacterial infection, wound healing, leishmaniasis, and even esthetic issues such as acne and skin aging. Recent strategies focus mainly on developing smart NO-releasing nanomaterials/biomaterials, as they enable a sustained and targeted NO release, promoting an improved therapeutic effect. This review aims to overview and discuss the main mechanisms of NO in human skin, the recent progress in the field of dermatological formulations containing NO, and their application in several skin diseases, highlighting promising advances and future perspectives in the field.
Collapse
Affiliation(s)
- Amedea B Seabra
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil.
| | - Joana C Pieretti
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Bianca de Melo Santana
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Manuel Horue
- Laboratorio de Nanobiomateriales, CINDEFI - Facultad de Ciencias Exactas, Universidad Nacional de La Plata- CONICET (CCT La Plata), Argentina
| | - Gonzalo R Tortella
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile; Centro de Excelencia en Investigación Biotecnologica Aplicada al Medio Ambiente (CIBAMA-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Guillermo R Castro
- Nanobiotechnology Area, Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC). Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPIbpC, MPG) - CONICET. Maipú 1065, S2000 Rosario, Santa Fe, Argentina; Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), Santo André, SP, Brazil.
| |
Collapse
|
16
|
Doolan JA, Williams GT, Hilton KLF, Chaudhari R, Fossey JS, Goult BT, Hiscock JR. Advancements in antimicrobial nanoscale materials and self-assembling systems. Chem Soc Rev 2022; 51:8696-8755. [PMID: 36190355 PMCID: PMC9575517 DOI: 10.1039/d1cs00915j] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 11/21/2022]
Abstract
Antimicrobial resistance is directly responsible for more deaths per year than either HIV/AIDS or malaria and is predicted to incur a cumulative societal financial burden of at least $100 trillion between 2014 and 2050. Already heralded as one of the greatest threats to human health, the onset of the coronavirus pandemic has accelerated the prevalence of antimicrobial resistant bacterial infections due to factors including increased global antibiotic/antimicrobial use. Thus an urgent need for novel therapeutics to combat what some have termed the 'silent pandemic' is evident. This review acts as a repository of research and an overview of the novel therapeutic strategies being developed to overcome antimicrobial resistance, with a focus on self-assembling systems and nanoscale materials. The fundamental mechanisms of action, as well as the key advantages and disadvantages of each system are discussed, and attention is drawn to key examples within each field. As a result, this review provides a guide to the further design and development of antimicrobial systems, and outlines the interdisciplinary techniques required to translate this fundamental research towards the clinic.
Collapse
Affiliation(s)
- Jack A Doolan
- School of Chemistry and Forensic Science, University of Kent, Canterbury, Kent CT2 7NH, UK.
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - George T Williams
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Kira L F Hilton
- School of Chemistry and Forensic Science, University of Kent, Canterbury, Kent CT2 7NH, UK.
| | - Rajas Chaudhari
- School of Chemistry and Forensic Science, University of Kent, Canterbury, Kent CT2 7NH, UK.
| | - John S Fossey
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - Jennifer R Hiscock
- School of Chemistry and Forensic Science, University of Kent, Canterbury, Kent CT2 7NH, UK.
| |
Collapse
|
17
|
Opoku‐Damoah Y, Zhang R, Ta HT, Xu ZP. Therapeutic gas-releasing nanomedicines with controlled release: Advances and perspectives. EXPLORATION (BEIJING, CHINA) 2022; 2:20210181. [PMID: 37325503 PMCID: PMC10190986 DOI: 10.1002/exp.20210181] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/15/2022] [Indexed: 06/16/2023]
Abstract
Nanoparticle-based drug delivery has become one of the most popular approaches for maximising drug therapeutic potentials. With the notable improvements, a greater challenge hinges on the formulation of gasotransmitters with unique challenges that are not met in liquid and solid active ingredients. Gas molecules upon release from formulations for therapeutic purposes have not really been discussed extensively. Herein, we take a critical look at four key gasotransmitters, that is, carbon monoxide (CO), nitric oxide (NO), hydrogen sulphide (H2S) and sulphur dioxide (SO2), their possible modification into prodrugs known as gas-releasing molecules (GRMs), and their release from GRMs. Different nanosystems and their mediatory roles for efficient shuttling, targeting and release of these therapeutic gases are also reviewed extensively. This review thoroughly looks at the diverse ways in which these GRM prodrugs in delivery nanosystems are designed to respond to intrinsic and extrinsic stimuli for sustained release. In this review, we seek to provide a succinct summary for the development of therapeutic gases into potent prodrugs that can be adapted in nanomedicine for potential clinical use.
Collapse
Affiliation(s)
- Yaw Opoku‐Damoah
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
| | - Run Zhang
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
| | - Hang T. Ta
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
- School of Environment and ScienceGriffith UniversityBrisbaneQueenslandAustralia
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQueenslandAustralia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
18
|
Chug MK, Brisbois EJ. Smartphone compatible nitric oxide releasing insert to prevent catheter-associated infections. J Control Release 2022; 349:227-240. [PMID: 35777483 PMCID: PMC9680949 DOI: 10.1016/j.jconrel.2022.06.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 10/17/2022]
Abstract
A large fraction of nosocomial infections is associated with medical devices that are deemed life-threatening in immunocompromised patients. Medical device-related infections are a result of bacterial colonization and biofilm formation on the device surface that affects >1 million people annually in the US alone. Over the past few years, light-based antimicrobial therapy has made substantial advances in tackling microbial colonization. Taking the advantage of light and antibacterial properties of nitric oxide (NO), for the first time, a robust, biocompatible, anti-infective approach to design a universal disposable catheter disinfection insert (DCDI) that can both prevent bacterial adhesion and disinfect indwelling catheters in situ is reported. The DCDI is engineered using a photo-initiated NO donor molecule, incorporated in polymer tubing that is mounted on a side glow fiber optic connected to an LED light source. Using a smartphone application, the NO release from DCDI is photoactivated via white light resulting in tunable physiological levels of NO for up to 24 h. When challenged with microorganisms S. aureus and E. coli, the NO-releasing DCDI statistically reduced microbial attachment by >99% versus the controls with just 4 h of exposure. The DCDI also eradicated ∼97% of pre-colonized bacteria on the CVC catheter model demonstrating the ability to exterminate an established catheter infection. The smart, mobile-operated novel universal antibacterial device can be used to both prevent catheter infections or can be inserted within an infected catheter to eradicate the bacteria without complex surgical interventions. The therapeutic levels of NO generated via illuminating fiber optics can be the next-generation biocompatible solution for catheter-related bloodstream infections.
Collapse
Affiliation(s)
- Manjyot Kaur Chug
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, GA, USA
| | - Elizabeth J Brisbois
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, GA, USA.
| |
Collapse
|
19
|
Liu Y, Chen X, Lai X, Dzuvor CKO, Lyu L, Chow SH, He L, Yu L, Wang Y, Song J, Hsu HY, Lin TW, Chan PWH, Shen HH. Coassembled Nitric Oxide-Releasing Nanoparticles with Potent Antimicrobial Efficacy against Methicillin-Resistant Staphylococcus aureus (MRSA) Strains. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37369-37379. [PMID: 35951370 DOI: 10.1021/acsami.2c08833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nitric oxide (NO)-releasing nanoparticles are effective nanomedicines with diverse therapeutic advantages compared with small molecule-based NO donors. Here, we report a new class of furoxan-based NO-releasing nanoparticles using a simple, creative yet facile coassembly approach. This is the first time we demonstrated that the coassembled NO-releasing nanoparticles with poly(ethylene glycol)101-block-poly(propylene glycol)56-block-poly(ethylene glycol)101 (Pluronic F127) had potent antimicrobial efficacies against methicillin-resistant Staphylococcus aureus (MRSA) strains. Nanoparticles obtained from the coassembly of either 4-(1-(3-methylpentan-5-ol)oxyl)(3-phenylsulfonyl) furoxan (compound 1) or 4-methoxy(3-phenylsulfonyl) furoxan (compound 2) with Pluronic F127 exhibit 4-fold improved antimicrobial activities compared to their self-assembled counterparts without Pluronic F127. 5(6)-Carboxylfluorescein (CF) leakage experiments further reveal that both coassembled NO-releasing nanoparticles show stronger interactions with lipid bilayers than those self-assembled alone. Subsequently, their strong plasma membrane-damaging capabilities are confirmed under both high-resolution optical microscopy and scanning electron microscopy characterizations. This coassembly approach could be readily applied to other small molecule-based antimicrobials, providing new solutions and important insights to further antimicrobial recipe design.
Collapse
Affiliation(s)
- Yiyi Liu
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Xiaoyu Chen
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Xiangfeng Lai
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Christian K O Dzuvor
- Department of Chemical and Biological Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Letian Lyu
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Seong Hoong Chow
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Lizhong He
- Department of Chemical and Biological Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Lei Yu
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Yajun Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Jiangning Song
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Hsien-Yi Hsu
- School of Energy and Environment & Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong 999077, Hong Kong, China
| | - Tsung-Wu Lin
- Department of Chemistry, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung 40704, Taiwan
| | | | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
20
|
Blackman LD, Sutherland TD, De Barro PJ, Thissen H, Locock KES. Addressing a future pandemic: how can non-biological complex drugs prepare us for antimicrobial resistance threats? MATERIALS HORIZONS 2022; 9:2076-2096. [PMID: 35703580 DOI: 10.1039/d2mh00254j] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Loss of effective antibiotics through antimicrobial resistance (AMR) is one of the greatest threats to human health. By 2050, the annual death rate resulting from AMR infections is predicted to have climbed from 1.27 million per annum in 2019, up to 10 million per annum. It is therefore imperative to preserve the effectiveness of both existing and future antibiotics, such that they continue to save lives. One way to conserve the use of existing antibiotics and build further contingency against resistant strains is to develop alternatives. Non-biological complex drugs (NBCDs) are an emerging class of therapeutics that show multi-mechanistic antimicrobial activity and hold great promise as next generation antimicrobial agents. We critically outline the focal advancements for each key material class, including antimicrobial polymer materials, carbon nanomaterials, and inorganic nanomaterials, and highlight the potential for the development of antimicrobial resistance against each class. Finally, we outline remaining challenges for their clinical translation, including the need for specific regulatory pathways to be established in order to allow for more efficient clinical approval and adoption of these new technologies.
Collapse
Affiliation(s)
- Lewis D Blackman
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia.
| | - Tara D Sutherland
- CSIRO Health & Biosecurity, Clunies Ross Street, Black Mountain, ACT 2601, Australia
| | - Paul J De Barro
- CSIRO Health & Biosecurity, Boggo Road, Dutton Park, QLD 4102, Australia
| | - Helmut Thissen
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia.
| | | |
Collapse
|
21
|
Zhu K, Qian S, Guo H, Wang Q, Chu X, Wang X, Lu S, Peng Y, Guo Y, Zhu Z, Qin T, Liu B, Yang YW, Wang B. pH-Activatable Organic Nanoparticles for Efficient Low-Temperature Photothermal Therapy of Ocular Bacterial Infection. ACS NANO 2022; 16:11136-11151. [PMID: 35749223 DOI: 10.1021/acsnano.2c03971] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Low-temperature photothermal therapy (PTT) systems constructed by integrating organic photothermal agents with other bactericidal components that initiate bacterial apoptosis at low hyperthermia possess a promising prospect. However, these multicomponent low-temperature PTT nanoplatforms have drawbacks in terms of the tedious construction process, suboptimal synergy effect of diverse antibacterial therapies, and high laser dose needed, compromising their biosafety in ocular bacterial infection treatment. Herein, a mild PTT nanotherapeutic platform is formulated via the self-assembly of a pH-responsive phenothiazinium dye. These organic nanoparticles with photothermal conversion efficiency up to 84.5% necessitate only an ultralow light dose of 36 J/cm2 to achieve efficient low-temperature photothermal bacterial inhibition at pH 5.5 under 650 nm laser irradiation. In addition, this intelligent mild photothermal nanoplatform undergoes negative to positive charge reversion in acid biofilms, exhibiting good penetration and highly efficient elimination of drug-resistant E. coli biofilms under photoirradiation. Further in vivo animal tests demonstrated efficient bacterial elimination and inflammatory mitigation as well as superior biocompatibility and biosafety of the photothermal nanoparticles in ocular bacterial infection treatment. Overall, this efficient single-component mild PTT system featuring simple construction processes holds great potential for wide application and clinical transformation.
Collapse
Affiliation(s)
- Kangning Zhu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Siyuan Qian
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Hanwen Guo
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Qingying Wang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Xiaoying Chu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Xinyi Wang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Si Lu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Yaou Peng
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Yishun Guo
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Zhongqiang Zhu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Tianyi Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Bin Liu
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, Changchun 130012, China
| | - Bailiang Wang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| |
Collapse
|
22
|
Credit authorship contribution statementHengrui Zhang: designed experiments, data curation, writing-original draft; Wenya Jiang, Yaou Peng, Xiaoying Chu, Ziyue Long, Renlong Li, Qiuwei Liang, Hao Suo, Shuting Wang, Mei Yang: performed experiments and data curation; Jie Yang, Ying-Wei Yang, Dan Ding, Ji Qi, Bailiang Wang: funding acquisition, writing- review & editing.Killing three birds with one stone: Near-infrared light triggered nitric oxide release for enhanced photodynamic and anti-inflammatory therapy in refractory keratitis. Biomaterials 2022; 286:121577. [DOI: 10.1016/j.biomaterials.2022.121577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/26/2022] [Accepted: 05/11/2022] [Indexed: 02/07/2023]
|
23
|
Huang Y, Zou L, Wang J, Jin Q, Ji J. Stimuli-responsive nanoplatforms for antibacterial applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1775. [PMID: 35142071 DOI: 10.1002/wnan.1775] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022]
Abstract
The continuously increasing bacterial resistance has become a big threat to public health worldwide, which makes it urgent to develop innovative antibacterial strategies. Nanotechnology-based drug delivery systems are considered as promising strategies in combating bacterial infections which are expected to improve the therapeutic efficacy and minimize the side effects. Unfortunately, the conventional nanodrug delivery systems always suffer from practical dilemmas, including incomplete and slow drug release, insufficient accumulation in infected sites, and weak biofilm penetration ability. Stimuli-responsive nanoplatforms are hence developed to overcome the disadvantages of conventional nanoparticles. In this review, we provide an extensive review of the recent progress of endogenous and exogenous stimuli-responsive nanoplatforms in the antibacterial area, including planktonic bacteria, intracellular bacteria, and bacterial biofilms. Taking advantage of the specific infected microenvironment (pH, enzyme, redox, and toxin), the mechanisms and strategies of the design of endogenous stimuli-responsive nanoplatforms are discussed, with an emphasis on how to improve the therapeutic efficacy and minimize side effects. How to realize controlled drug delivery using exogenous stimuli-responsive nanoplatforms especially light-responsive nanoparticles for improved antibacterial effects is another topic of this review. We especially highlight photothermal-triggered drug delivery systems by the combination of photothermal agents and thermo-responsive materials. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Yue Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Lingyun Zou
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Jing Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Li M, Qiu W, Wang Q, Li N, Liu L, Wang X, Yu J, Li X, Li F, Wu D. Nitric Oxide-Releasing Tryptophan-Based Poly(ester urea)s Electrospun Composite Nanofiber Mats with Antibacterial and Antibiofilm Activities for Infected Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15911-15926. [PMID: 35373564 DOI: 10.1021/acsami.1c24131] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bacterial biofilms on wounds can lead to ongoing inflammation and delayed reepithelialization, which brings a heavy burden to the medical systems. Nitric oxide based treatment has attracted attention because it is a promising strategy to eliminate biofilms and heal infected wounds. Herein, a series of tryptophan-based poly(ester urea)s with good biodegradation and biocompatibility were developed for the preparation of composite mats by electrospinning. Furthermore, the mats were grafted with a nitric oxide donor (nitrosoglutathione, GSNO) to provide one type of NO loading cargo. The mats were found to have a prolonged NO release profile for 408 h with a maximum release of 1.0 μmol/L, which had a significant effect on killing bacteria and destructing biofilms. The designed mats were demonstrated to promote the growth of cells, regulate inflammatory factors, and significantly improve collagen deposition in the wound, eventually accelerating wound-size reduction. Thus, the studies presented herein provide insights into the production of NO-releasing wound dressings and support the application of full-thickness wound healing.
Collapse
Affiliation(s)
- Mengna Li
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Weiwang Qiu
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Qian Wang
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Na Li
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Lu Liu
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xueli Wang
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Xiaoran Li
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Faxue Li
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Dequn Wu
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| |
Collapse
|
25
|
Chen Y, Huang Y, Jin Q. Polymeric nanoplatforms for the delivery of antibacterial agents. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yongcheng Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education Department of Polymer Science and Engineering Zhejiang University Hangzhou Zhejiang 310027 PR China
| | - Yue Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education Department of Polymer Science and Engineering Zhejiang University Hangzhou Zhejiang 310027 PR China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education Department of Polymer Science and Engineering Zhejiang University Hangzhou Zhejiang 310027 PR China
| |
Collapse
|
26
|
Poh WH, Rice SA. Recent Developments in Nitric Oxide Donors and Delivery for Antimicrobial and Anti-Biofilm Applications. Molecules 2022; 27:molecules27030674. [PMID: 35163933 PMCID: PMC8839391 DOI: 10.3390/molecules27030674] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/10/2022] Open
Abstract
The use of nitric oxide (NO) is emerging as a promising, novel approach for the treatment of antibiotic resistant bacteria and biofilm infections. Depending on the concentration, NO can induce biofilm dispersal, increase bacteria susceptibility to antibiotic treatment, and induce cell damage or cell death via the formation of reactive oxygen or reactive nitrogen species. The use of NO is, however, limited by its reactivity, which can affect NO delivery to its target site and result in off-target effects. To overcome these issues, and enable spatial or temporal control over NO release, various strategies for the design of NO-releasing materials, including the incorporation of photo-activable, charge-switchable, or bacteria-targeting groups, have been developed. Other strategies have focused on increased NO storage and delivery by encapsulation or conjugation of NO donors within a single polymeric framework. This review compiles recent developments in NO drugs and NO-releasing materials designed for applications in antimicrobial or anti-biofilm treatment and discusses limitations and variability in biological responses in response to the use of NO for bacterial eradiation.
Collapse
Affiliation(s)
- Wee Han Poh
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore;
- Correspondence:
| | - Scott A. Rice
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore;
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- The iThree Institute, The University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
27
|
Xu Y, Li H, Xu S, Liu X, Lin J, Chen H, Yuan Z. Light-Triggered Fluorescence Self-Reporting Nitric Oxide Release from Coumarin Analogues for Accelerating Wound Healing and Synergistic Antimicrobial Applications. J Med Chem 2021; 65:424-435. [PMID: 34918930 DOI: 10.1021/acs.jmedchem.1c01591] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO) has an important class of endogenous diatomic molecules that play a key regulatory role in many physiological and biochemical processes. However, the type of nitrosamine NO donor stimulated by light has many advantages compared to the conventional NO donors such as diazeniumdiolates and S-nitrosothiols compounds, including easy synthesis, good stability, and controllable release. In addition, NO release can be regulated by light induction with a built-in calibration mechanism fluorescence. Here, we report that the migration and proliferation of human umbilical vein vascular endothelial cells could be accelerated by the light-triggered NO donors, leading to the angiogenesis. Meanwhile, the screened NO donor 3a with Levofloxacin (Lev) showed synergistic effects to eradicate Methicillin-resistant Staphylococcus aureus (MRSA) biofilms in vitro and treat bacteria-infected wound in vivo.
Collapse
Affiliation(s)
- Yue Xu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, China
| | - Hua Li
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, China
| | - Shufen Xu
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing 210000, Jiangsu, China.,Department of Oncology, Second Clinical Medical College of Nanjing Medical University, Nanjing 210000, Jiangsu, China
| | - Xian Liu
- The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Jingjing Lin
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, China
| | - Haiyan Chen
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, China
| | - Zhenwei Yuan
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, China
| |
Collapse
|
28
|
Hu J, Fang Y, Huang X, Qiao R, Quinn JF, Davis TP. Engineering macromolecular nanocarriers for local delivery of gaseous signaling molecules. Adv Drug Deliv Rev 2021; 179:114005. [PMID: 34687822 DOI: 10.1016/j.addr.2021.114005] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/30/2021] [Accepted: 10/11/2021] [Indexed: 02/08/2023]
Abstract
In addition to being notorious air pollutants, nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) have also been known as endogenous gaseous signaling molecules (GSMs). These GSMs play critical roles in maintaining the homeostasis of living organisms. Importantly, the occurrence and development of many diseases such as inflammation and cancer are highly associated with the concentration changes of GSMs. As such, GSMs could also be used as new therapeutic agents, showing great potential in the treatment of many formidable diseases. Although clinically it is possible to directly inhale GSMs, the precise control of the dose and concentration for local delivery of GSMs remains a substantial challenge. The development of gaseous signaling molecule-releasing molecules provides a great tool for the safe and convenient delivery of GSMs. In this review article, we primarily focus on the recent development of macromolecular nanocarriers for the local delivery of various GSMs. Learning from the chemistry of small molecule-based donors, the integration of these gaseous signaling molecule-releasing molecules into polymeric matrices through physical encapsulation, post-modification, or direct polymerization approach renders it possible to fabricate numerous macromolecular nanocarriers with optimized pharmacokinetics and pharmacodynamics, revealing improved therapeutic performance than the small molecule analogs. The development of GSMs represents a new means for many disease treatments with unique therapeutic outcomes.
Collapse
|
29
|
Tang Y, Wang T, Feng J, Rong F, Wang K, Li P, Huang W. Photoactivatable Nitric Oxide-Releasing Gold Nanocages for Enhanced Hyperthermia Treatment of Biofilm-Associated Infections. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50668-50681. [PMID: 34669372 DOI: 10.1021/acsami.1c12483] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With the increasing clinical use of invasive medical devices, various healthcare-associated infections (HAIs) caused by bacterial biofilm colonization of biomedical devices have posed serious threats to patients. The formation of biofilms makes it much more difficult and costly to treat infections. Here, we report a nitric oxide (NO)-releasing gold nanocage (AuNC@NO) that is stimulated by near-infrared (NIR) irradiation to deliver NO and generate hyperthermia for biofilm elimination. AuNC@NO was prepared by immobilizing a temperature-responsive NO donor onto gold nanocages (AuNCs) through thiol-gold interactions. AuNC@NO possesses stable and excellent photothermal conversion efficiency, as well as the characteristics of slow NO release at physiological temperature and on-demand quick NO release under NIR irradiation. Based on these features, AuNC@NO exhibits enhanced in vitro bactericidal and antibiofilm efficacy compared with AuNCs, which could achieve 4 orders of magnitude bacterial reduction and 85.4% biofilm elimination under NIR irradiation. In addition, we constructed an implant biofilm infection model and a subcutaneous biofilm infection model to evaluate the anti-infective effect of AuNC@NO. The in vivo results indicated that after 5 min of 0.5 W cm-2 NIR irradiation, NO release from AuNC@NO was significantly accelerated, which induced the dispersal of methicillin-resistant Staphylococcus aureus (MRSA) biofilms and synergized with photothermal therapy (PTT) to kill planktonic MRSA that had lost its biofilm protection. Meanwhile, the surrounding tissues showed little damage because of controlled photothermal temperature and toxicity. In view of the above-mentioned results, the AuNC@NO nanocomposite developed in this work reveals potential application prospects as a useful antibiofilm agent in the field of biofilm-associated infection treatment.
Collapse
Affiliation(s)
- Yizhang Tang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Tengjiao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Jiahao Feng
- Queen Mary University of London Engineering School, Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Fan Rong
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Kun Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
30
|
Hajipour MJ, Saei AA, Walker ED, Conley B, Omidi Y, Lee K, Mahmoudi M. Nanotechnology for Targeted Detection and Removal of Bacteria: Opportunities and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100556. [PMID: 34558234 PMCID: PMC8564466 DOI: 10.1002/advs.202100556] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 08/06/2021] [Indexed: 05/04/2023]
Abstract
The emergence of nanotechnology has created unprecedented hopes for addressing several unmet industrial and clinical issues, including the growing threat so-termed "antibiotic resistance" in medicine. Over the last decade, nanotechnologies have demonstrated promising applications in the identification, discrimination, and removal of a wide range of pathogens. Here, recent insights into the field of bacterial nanotechnology are examined that can substantially improve the fundamental understanding of nanoparticle and bacteria interactions. A wide range of developed nanotechnology-based approaches for bacterial detection and removal together with biofilm eradication are summarized. The challenging effects of nanotechnologies on beneficial bacteria in the human body and environment and the mechanisms of bacterial resistance to nanotherapeutics are also reviewed.
Collapse
Affiliation(s)
- Mohammad J. Hajipour
- Department of Radiology and Precision Health ProgramMichigan State UniversityEast LansingMI48824USA
| | - Amir Ata Saei
- Division of Physiological Chemistry IDepartment of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholm171 65Sweden
| | - Edward D. Walker
- Department of EntomologyMichigan State UniversityEast LansingMI48824USA
- Department of Microbiology and Molecular GeneticsMichigan State UniversityEast LansingMI48824USA
| | - Brian Conley
- Department of Chemistry and Chemical BiologyRutgersThe State University of New JerseyPiscatawayNJ08854USA
| | - Yadollah Omidi
- Department of Pharmaceutical SciencesCollege of PharmacyNova Southeastern UniversityFort LauderdaleFL33328USA
| | - Ki‐Bum Lee
- Department of Chemistry and Chemical BiologyRutgersThe State University of New JerseyPiscatawayNJ08854USA
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health ProgramMichigan State UniversityEast LansingMI48824USA
| |
Collapse
|
31
|
Yang T, Zhou Y, Cheong S, Kong C, Mazur F, Liang K, Chandrawati R. Modulating nitric oxide-generating activity of zinc oxide by morphology control and surface modification. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112428. [PMID: 34702513 DOI: 10.1016/j.msec.2021.112428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/22/2022]
Abstract
Zinc oxide (ZnO) has emerged as a promising material for nitric oxide (NO) delivery owing to its intrinsic enzyme-mimicking activities to catalyze NO prodrugs S-nitrosoglutathione (GSNO) and β-gal-NONOate for NO generation. The catalytic performance of enzyme mimics is strongly dependent on their size, shape, and surface chemistry; however, no studies have evaluated the influence of the aforementioned factors on the NO-generating activity of ZnO. Understanding these factors will provide an opportunity to tune NO generation profiles to accommodate diverse biomedical applications. In this paper, for the first time, we demonstrate that the activity of ZnO towards catalytic NO generation is shape-dependent, resulting from the different crystal growth directions of these particles. We modified the surfaces of ZnO particles with zeolitic imidazolate framework (ZIF-8) by in situ synthesis and observed that ZnO/ZIF-8 retained 60% of its NO-generating potency. The newly formed ZnO/ZIF-8 particles were shown to catalytically decompose both endogenous (GSNO) and exogenous (β-gal-NONOate and S-nitroso-N-acetylpenicillamine (SNAP)) prodrugs to generate NO at physiological conditions. In addition, we design the first platform that combines NO-generating and superoxide radical scavenging properties by encapsulating a natural enzyme, superoxidase dismutase (SOD), into ZnO/ZIF-8 particles, which holds great promise towards combinatorial therapy.
Collapse
Affiliation(s)
- Tao Yang
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Yingzhu Zhou
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Soshan Cheong
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Charlie Kong
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Federico Mazur
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Kang Liang
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia; Graduate School of Biomedical Engineering, The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
| |
Collapse
|
32
|
Li M, Li N, Qiu W, Wang Q, Jia J, Wang X, Yu J, Li X, Li F, Wu D. Phenylalanine-based poly(ester urea)s composite films with nitric oxide-releasing capability for anti-biofilm and infected wound healing applications. J Colloid Interface Sci 2021; 607:1849-1863. [PMID: 34688976 DOI: 10.1016/j.jcis.2021.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 12/28/2022]
Abstract
Infected wounds show delayed and incomplete healing processes and even render patients at a high risk of death due to the formed bacterial biofilms in the wound site, which protect bacteria against antimicrobial treatments and immune response. Nitric oxide based therapy is considered a promising strategy for eliminating biofilms and enhancing wound healing, which encounters a significant challenge of controlling the NO release behavior at the wound site. Herein, a kind of phenylalanine based poly(ester urea)s with high thermal stability are synthesized and fabricated to electrospun films as NO loading vehicle for infected wound treatment. The resultant films can continuously and stably release nitric oxide for 360 h with a total concentration of 1.15 μmol L-1, which presents obvious advantages in killing the bacteria and removing biofilms. The results exhibit the films have no cytotoxicity and may accelerate the wound repair without causing inflammation, hemolysis, or cytotoxic reactions as well as stimulate the proliferation of fibroblasts and increase the synthesis of collagen. Therefore, the films may be a suitable NO releasing dressing for removing biofilms and repairing infected wounds.
Collapse
Affiliation(s)
- Mengna Li
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| | - Na Li
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| | - Weiwang Qiu
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| | - Qian Wang
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| | - Jie Jia
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| | - Xueli Wang
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, China
| | - Xiaoran Li
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, China
| | - Faxue Li
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China; Innovation Center for Textile Science and Technology, Donghua University, Shanghai, China.
| | - Dequn Wu
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China; Innovation Center for Textile Science and Technology, Donghua University, Shanghai, China.
| |
Collapse
|
33
|
Zhang L, Ng G, Kapoor‐Kaushik N, Shi X, Corrigan N, Webster R, Jung K, Boyer C. 2D Porphyrinic Metal–Organic Framework Nanosheets as Multidimensional Photocatalysts for Functional Materials. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Liwen Zhang
- Australian Centre for NanoMedicine Centre for Advanced Macromolecular Design School of Chemical Engineering The University of New South Wales Sydney New South Wales 2052 Australia
| | - Gervase Ng
- Australian Centre for NanoMedicine Centre for Advanced Macromolecular Design School of Chemical Engineering The University of New South Wales Sydney New South Wales 2052 Australia
| | - Natasha Kapoor‐Kaushik
- Electron Microscopy Unit Mark Wainwright Analytical Centre The University of New South Wales Sydney New South Wales 2052 Australia
| | - Xiaobing Shi
- Australian Centre for NanoMedicine Centre for Advanced Macromolecular Design School of Chemical Engineering The University of New South Wales Sydney New South Wales 2052 Australia
| | - Nathaniel Corrigan
- Australian Centre for NanoMedicine Centre for Advanced Macromolecular Design School of Chemical Engineering The University of New South Wales Sydney New South Wales 2052 Australia
| | - Richard Webster
- Electron Microscopy Unit Mark Wainwright Analytical Centre The University of New South Wales Sydney New South Wales 2052 Australia
| | - Kenward Jung
- Australian Centre for NanoMedicine Centre for Advanced Macromolecular Design School of Chemical Engineering The University of New South Wales Sydney New South Wales 2052 Australia
| | - Cyrille Boyer
- Australian Centre for NanoMedicine Centre for Advanced Macromolecular Design School of Chemical Engineering The University of New South Wales Sydney New South Wales 2052 Australia
| |
Collapse
|
34
|
Paul S, Pan S, Mukherjee A, De P. Nitric Oxide Releasing Delivery Platforms: Design, Detection, Biomedical Applications, and Future Possibilities. Mol Pharm 2021; 18:3181-3205. [PMID: 34433264 DOI: 10.1021/acs.molpharmaceut.1c00486] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gasotransmitters belong to the subfamily of endogenous gaseous signaling molecules, which find a wide range of biomedical applications. Among the various gasotransmitters, nitric oxide (NO) has an enormous effect on the cardiovascular system. Apart from this, NO showed a pivotal role in neurological, respiratory, and immunological systems. Moreover, the paradoxical concentration-dependent activities make this gaseous signaling molecule more interesting. The gaseous NO has negligible stability in physiological conditions (37 °C, pH 7.4), which restricts their potential therapeutic applications. To overcome this issue, various NO delivering carriers were reported so far. Unfortunately, most of these NO donors have low stability, short half-life, or low NO payload. Herein, we review the synthesis of NO delivering motifs, development of macromolecular NO donors, their advantages/disadvantages, and biological applications. Various NO detection analytical techniques are discussed briefly, and finally, a viewpoint about the design of polymeric NO donors with improved physicochemical characteristics is predicted.
Collapse
|
35
|
Liu Z, Zhong Y, Zhou X, Huang X, Zhou J, Huang D, Li Y, Wang Z, Dong B, Qiao H, Chen W. Inherently nitric oxide containing polymersomes remotely regulated by NIR for improving multi-modal therapy on drug resistant cancer. Biomaterials 2021; 277:121118. [PMID: 34481293 DOI: 10.1016/j.biomaterials.2021.121118] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/29/2021] [Accepted: 08/30/2021] [Indexed: 12/26/2022]
Abstract
The therapeutic potential of nitric oxide (NO) has been highly attractive to tumor treatment, especially for surmounting the multidrug resistance (MDR) of cancer. However, the NO-involved therapy remains extremely challenging because of the difficulty to simultaneously control the NO release rate and real-time concentration. Herein, we construct NO-containing polymersomes with high amount of NO donors inherently grown on the polymer chains to keep the stability. These polymersomes can be simultaneously loaded with photosensitizer of IR780 iodide on the membrane layer and chemotherapeutic of DOX·HCl in the lumen. NO release can be triggered by the reduction conditions, and further accelerated by remote NIR irradiation due to the increased local temperature. The instantaneous NO release with high concentration significantly inhibits the P-gp expression and sensitize the chemotherapy, thus overcoming the tumor MDR and improving the anti-tumor activity. Meanwhile, DOX·HCl release is highly promoted at the intracellular conditions because of the cleavage of acid-labile cis-aconitic amide at endo/lysosomal pH, and the improved hydrophilicity of the membrane layer after NO release. The in vivo results show that the single intravenous injection of polymersome formulation companying with NIR irradiation exerts multi-modal therapies of chemotherapy, PTT/PDT, and NO-therapy on the MCF-7/R tumor models, showing superior and combinational treatment efficacy with the complete eradication of tumors and few side effects.
Collapse
Affiliation(s)
- Zhihong Liu
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Yinan Zhong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiang Zhou
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Xin Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Jingjing Zhou
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China; Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China.
| | - Yanfei Li
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhixiang Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Bin Dong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Haishi Qiao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China.
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China; Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
36
|
Shen Z, Zheng S, Xiao S, Shen R, Liu S, Hu J. Red-Light-Mediated Photoredox Catalysis Enables Self-Reporting Nitric Oxide Release for Efficient Antibacterial Treatment. Angew Chem Int Ed Engl 2021; 60:20452-20460. [PMID: 34196472 DOI: 10.1002/anie.202107155] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/22/2021] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO) serves as a key regulator of many physiological processes and as a potent therapeutic agent. The local delivery of NO is important to achieve target therapeutic outcomes due to the toxicity of NO at high concentrations. Although light stimulus represents a non-invasive tool with spatiotemporal precision to mediate NO release, many photoresponsive NO-releasing molecules can only respond to ultraviolet (UV) or near-UV visible light with low penetration and high phototoxicity. We report that coumarin-based NO donors with maximal absorbances at 328 nm can be activated under (deep) red-light (630 or 700 nm) irradiation in the presence of palladium(II) tetraphenyltetrabenzoporphyrin, enabling stoichiometric and self-reporting NO release with a photolysis quantum yield of 8 % via photoredox catalysis. This NO-releasing platform with ciprofloxacin loading can eradicate Pseudomonas aeruginosa biofilm in vitro and treat cutaneous abscesses in vivo.
Collapse
Affiliation(s)
- Zhiqiang Shen
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Science at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Shaoqiu Zheng
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Science at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Shiyan Xiao
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Science at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Ruan Shen
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Science at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Shiyong Liu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Science at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Science at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| |
Collapse
|
37
|
Shen Z, Zheng S, Xiao S, Shen R, Liu S, Hu J. Red‐Light‐Mediated Photoredox Catalysis Enables Self‐Reporting Nitric Oxide Release for Efficient Antibacterial Treatment. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zhiqiang Shen
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Science at the Microscale Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 Anhui China
| | - Shaoqiu Zheng
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Science at the Microscale Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 Anhui China
| | - Shiyan Xiao
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Science at the Microscale Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 Anhui China
| | - Ruan Shen
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Science at the Microscale Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 Anhui China
| | - Shiyong Liu
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Science at the Microscale Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 Anhui China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Science at the Microscale Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 Anhui China
| |
Collapse
|
38
|
Zhang L, Ng G, Kapoor-Kaushik N, Shi X, Corrigan N, Webster R, Jung K, Boyer C. 2D Porphyrinic Metal-Organic Framework Nanosheets as Multidimensional Photocatalysts for Functional Materials. Angew Chem Int Ed Engl 2021; 60:22664-22671. [PMID: 34322965 DOI: 10.1002/anie.202107457] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/19/2021] [Indexed: 12/13/2022]
Abstract
Ultrathin porphyrinic 2D MOFs, ZnTCPP nanosheets (TCPP: 5,10,15,20-(tetra-4-carboxyphenyl) porphyrin) were employed as heterogeneous photocatalysts to activate PET-RAFT polymerization under various wavelengths ranging from violet to orange light. High polymerization rates, oxygen tolerance, and precise temporal control were achieved. The polymers showed narrow molecular weight distributions and good chain-end fidelity. The 2D ZnTCPP nanosheets were applied as photocatalysts in stereolithographic 3D printing in an open-air environment under blue light to yield well-defined 3D printed objects. Apart from providing an efficient catalytic system, 2D ZnTCPP nanosheets reinforced the mechanical properties of the 3D printed materials. The presence of ZnTCPP embedded in the materials conferred effective antimicrobial activity under visible light by production of singlet oxygen, affording 98 % and 93 % anti-bacterial efficiency against Gram-positive and Gram-negative bacteria, respectively.
Collapse
Affiliation(s)
- Liwen Zhang
- Australian Centre for NanoMedicine, Centre for Advanced Macromolecular Design, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Gervase Ng
- Australian Centre for NanoMedicine, Centre for Advanced Macromolecular Design, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Natasha Kapoor-Kaushik
- Electron Microscopy Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Xiaobing Shi
- Australian Centre for NanoMedicine, Centre for Advanced Macromolecular Design, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Nathaniel Corrigan
- Australian Centre for NanoMedicine, Centre for Advanced Macromolecular Design, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Richard Webster
- Electron Microscopy Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Kenward Jung
- Australian Centre for NanoMedicine, Centre for Advanced Macromolecular Design, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Cyrille Boyer
- Australian Centre for NanoMedicine, Centre for Advanced Macromolecular Design, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
39
|
Blackman LD, Qu Y, Cass P, Locock KES. Approaches for the inhibition and elimination of microbial biofilms using macromolecular agents. Chem Soc Rev 2021; 50:1587-1616. [PMID: 33403373 DOI: 10.1039/d0cs00986e] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biofilms are complex three-dimensional structures formed at interfaces by the vast majority of bacteria and fungi. These robust communities have an important detrimental impact on a wide range of industries and other facets of our daily lives, yet their removal is challenging owing to the high tolerance of biofilms towards conventional antimicrobial agents. This key issue has driven an urgent search for new innovative antibiofilm materials. Amongst these emerging approaches are highly promising materials that employ aqueous-soluble macromolecules, including peptides, proteins, synthetic polymers, and nanomaterials thereof, which exhibit a range of functionalities that can inhibit biofilm formation or detach and destroy organisms residing within established biofilms. In this Review, we outline the progress made in inhibiting and removing biofilms using macromolecular approaches, including a spotlight on cutting-edge materials that respond to environmental stimuli for "on-demand" antibiofilm activity, as well as synergistic multi-action antibiofilm materials. We also highlight materials that imitate and harness naturally derived species to achieve new and improved biomimetic and biohybrid antibiofilm materials. Finally, we share some speculative insights into possible future directions for this exciting and highly significant field of research.
Collapse
Affiliation(s)
- Lewis D Blackman
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia.
| | - Yue Qu
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia and Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Peter Cass
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia.
| | | |
Collapse
|
40
|
Tummanapalli SS, Kuppusamy R, Yeo JH, Kumar N, New EJ, Willcox MDP. The role of nitric oxide in ocular surface physiology and pathophysiology. Ocul Surf 2021; 21:37-51. [PMID: 33940170 DOI: 10.1016/j.jtos.2021.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/31/2022]
Abstract
Nitric oxide (NO) has a wide array of biological functions including the regulation of vascular tone, neurotransmission, immunomodulation, stimulation of proinflammatory cytokine expression and antimicrobial action. These functions may depend on the type of isoform that is responsible for the synthesis of NO. NO is found in various ocular tissues playing a pivotal role in physiological mechanisms, namely regulating vascular tone in the uvea, retinal blood circulation, aqueous humor dynamics, neurotransmission and phototransduction in retinal layers. Unregulated production of NO in ocular tissues may result in production of toxic superoxide free radicals that participate in ocular diseases such as endotoxin-induced uveitis, ischemic proliferative retinopathy and neurotoxicity of optic nerve head in glaucoma. However, the role of NO on the ocular surface in mediating physiology and pathophysiological processes is not fully understood. Moreover, methods used to measure levels of NO in the biological samples of the ocular surface are not well established due to its rapid oxidation. The purpose of this review is to highlight the role of NO in the physiology and pathophysiology of ocular surface and propose suitable techniques to measure NO levels in ocular surface tissues and tears. This will improve the understanding of NO's role in ocular surface biology and the development of new NO-based therapies to treat various ocular surface diseases. Further, this review summarizes the biochemistry underpinning NO's antimicrobial action.
Collapse
Affiliation(s)
| | - Rajesh Kuppusamy
- School of Optometry & Vision Science, University of New South Wales, Australia; School of Chemistry, University of New South Wales, Australia
| | - Jia Hao Yeo
- The University of Sydney, School of Chemistry, NSW, 2006, Australia
| | - Naresh Kumar
- School of Chemistry, University of New South Wales, Australia
| | - Elizabeth J New
- The University of Sydney, School of Chemistry, NSW, 2006, Australia; The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW, 2006, Australia
| | - Mark D P Willcox
- School of Optometry & Vision Science, University of New South Wales, Australia
| |
Collapse
|
41
|
Targeted polymer-based antibiotic delivery system: A promising option for treating bacterial infections via macromolecular approaches. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101389] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
42
|
Duan Y, He K, Zhang G, Hu J. Photoresponsive Micelles Enabling Codelivery of Nitric Oxide and Formaldehyde for Combinatorial Antibacterial Applications. Biomacromolecules 2021; 22:2160-2170. [PMID: 33884862 DOI: 10.1021/acs.biomac.1c00251] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
It is of particular interest to develop new antibacterial agents with low risk of drug resistance development and low toxicity toward mammalian cells to combat pathogen infections. Although gaseous signaling molecules (GSMs) such as nitric oxide (NO) and formaldehyde (FA) have broad-spectrum antibacterial performance and the low propensity of drug resistance development, many previous studies heavily focused on nanocarriers capable of delivering only one GSM. Herein, we developed a micellar nanoparticle platform that can simultaneously deliver NO and FA under visible light irradiation. An amphiphilic diblock copolymer of poly(ethylene oxide)-b-poly(4-((2-nitro-5-(((2-nitrobenzyl)oxy)methoxy)benzyl)(nitroso)amino)benzyl methacrylate) (PEO-b-PNNBM) was successfully synthesized through atom transfer radical polymerization (ATRP). The resulting diblock copolymer self-assembled into micellar nanoparticles without premature NO and FA leakage, whereas they underwent phototriggered disassembly with the corelease of NO and FA. We showed that the NO- and FA-releasing micellar nanoparticles exhibited a combinatorial antibacterial performance, efficiently killing both Gram-negative (e.g., Escherichia coli) and Gram-positive (e.g., Staphylococcus aureus) bacteria with low toxicity to mammalian cells and low hemolytic property. This work provides new insights into the development of GSM-based antibacterial agents.
Collapse
Affiliation(s)
- Yutian Duan
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Science at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Kewu He
- Imaging Center of the Third Affiliated Hospital of Anhui Medical University, 390 Huaihe Road, Hefei, 230031 Anhui, China
| | - Guoying Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Science at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Science at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
43
|
Barros CHN, Hiebner DW, Fulaz S, Vitale S, Quinn L, Casey E. Synthesis and self-assembly of curcumin-modified amphiphilic polymeric micelles with antibacterial activity. J Nanobiotechnology 2021; 19:104. [PMID: 33849570 PMCID: PMC8045376 DOI: 10.1186/s12951-021-00851-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The ubiquitous nature of bacterial biofilms combined with the enhanced resistance towards antimicrobials has led to the development of an increasing number of strategies for biofilm eradication. Such strategies must take into account the existence of extracellular polymeric substances, which obstruct the diffusion of antibiofilm agents and assists in the maintenance of a well-defended microbial community. Within this context, nanoparticles have been studied for their drug delivery efficacy and easily customised surface. Nevertheless, there usually is a requirement for nanocarriers to be used in association with an antimicrobial agent; the intrinsically antimicrobial nanoparticles are most often made of metals or metal oxides, which is not ideal from ecological and biomedical perspectives. Based on this, the use of polymeric micelles as nanocarriers is appealing as they can be easily prepared using biodegradable organic materials. RESULTS In the present work, micelles comprised of poly(lactic-co-glycolic acid) and dextran are prepared and then functionalised with curcumin. The effect of the functionalisation in the micelle's physical properties was elucidated, and the antibacterial and antibiofilm activities were assessed for the prepared polymeric nanoparticles against Pseudomonas spp. cells and biofilms. It was found that the nanoparticles have good penetration into the biofilms, which resulted in enhanced antibacterial activity of the conjugated micelles when compared to free curcumin. Furthermore, the curcumin-functionalised micelles were efficient at disrupting mature biofilms and demonstrated antibacterial activity towards biofilm-embedded cells. CONCLUSION Curcumin-functionalised poly(lactic-co-glycolic acid)-dextran micelles are novel nanostructures with an intrinsic antibacterial activity tested against two Pseudomonas spp. strains that have the potential to be further exploited to deliver a secondary bioactive molecule within its core.
Collapse
Affiliation(s)
- Caio H N Barros
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland
- National Institute for Bioprocessing Research and Training (NIBRT), Dublin, Ireland
| | - Dishon W Hiebner
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Stephanie Fulaz
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland
| | - Stefania Vitale
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Laura Quinn
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland
| | - Eoin Casey
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland.
| |
Collapse
|
44
|
Huang DN, Wang J, Jia F, Fang Y, Gao Q, Gao YF, Li HY, Ren KF, Ji J. Nitric oxide pretreatment enhances ofloxacin susceptibility of biofilm concomitant with exopolysaccharide depletion. COLLOID AND INTERFACE SCIENCE COMMUNICATIONS 2021; 41:100371. [DOI: 10.1016/j.colcom.2021.100371] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
|
45
|
Zhou Y, Zhang Y, Lin W, Kesseli SJ, Huang L, Zhao Y, Yao X, Huang K, Han G. Wavelength-Selective Light-Controlled Stepwise Photolysis from Single Gold Nanoparticles. Adv Healthc Mater 2021; 10:e2000321. [PMID: 33034955 DOI: 10.1002/adhm.202000321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/02/2020] [Indexed: 11/09/2022]
Abstract
Light-controlled sequential photolysis from a single nanoparticle is a challenge for controlled release. A wavelength-selective sequential photolysis from single gold nanoparticles is reported for the first time. In particular, it is also demonstrated that such nanoparticle can be used to sequentially release two payloads in living cells. In principle, this system can be extended to sequential release of multiple different types of payloads by rational design of diverse photocleavable linkers. It is expected that this work can provide a new tool for better orderly controlling cellular events that request high spatiotemporal manners.
Collapse
Affiliation(s)
- Yekui Zhou
- Department of Biochemistry and Molecular Pharmacology University of Massachusetts Medical School Worcester MA 01605 USA
| | - Yuanwei Zhang
- Department of Biochemistry and Molecular Pharmacology University of Massachusetts Medical School Worcester MA 01605 USA
| | - Wenhai Lin
- Department of Biochemistry and Molecular Pharmacology University of Massachusetts Medical School Worcester MA 01605 USA
| | - Samuel J. Kesseli
- Department of Biochemistry and Molecular Pharmacology University of Massachusetts Medical School Worcester MA 01605 USA
| | - Ling Huang
- Department of Biochemistry and Molecular Pharmacology University of Massachusetts Medical School Worcester MA 01605 USA
| | - Yang Zhao
- Department of Biochemistry and Molecular Pharmacology University of Massachusetts Medical School Worcester MA 01605 USA
| | - Xikuang Yao
- Department of Biochemistry and Molecular Pharmacology University of Massachusetts Medical School Worcester MA 01605 USA
| | - Kai Huang
- Department of Biochemistry and Molecular Pharmacology University of Massachusetts Medical School Worcester MA 01605 USA
| | - Gang Han
- Department of Biochemistry and Molecular Pharmacology University of Massachusetts Medical School Worcester MA 01605 USA
| |
Collapse
|
46
|
Gutierrez Cisneros C, Bloemen V, Mignon A. Synthetic, Natural, and Semisynthetic Polymer Carriers for Controlled Nitric Oxide Release in Dermal Applications: A Review. Polymers (Basel) 2021; 13:760. [PMID: 33671032 PMCID: PMC7957520 DOI: 10.3390/polym13050760] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO•) is a free radical gas, produced in the human body to regulate physiological processes, such as inflammatory and immune responses. It is required for skin health; therefore, a lack of NO• is known to cause or worsen skin conditions related to three biomedical applications- infection treatment, injury healing, and blood circulation. Therefore, research on its topical release has been increasing for the last two decades. The storage and delivery of nitric oxide in physiological conditions to compensate for its deficiency is achieved through pharmacological compounds called NO-donors. These are further incorporated into scaffolds to enhance therapeutic treatment. A wide range of polymeric scaffolds has been developed and tested for this purpose. Hence, this review aims to give a detailed overview of the natural, synthetic, and semisynthetic polymeric matrices that have been evaluated for antimicrobial, wound healing, and circulatory dermal applications. These matrices have already set a solid foundation in nitric oxide release and their future perspective is headed toward an enhanced controlled release by novel functionalized semisynthetic polymer carriers and co-delivery synergetic platforms. Finally, further clinical tests on patients with the targeted condition will hopefully enable the eventual commercialization of these systems.
Collapse
Affiliation(s)
- Carolina Gutierrez Cisneros
- Surface and Interface Engineered Materials, Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium; (C.G.C.); (V.B.)
| | - Veerle Bloemen
- Surface and Interface Engineered Materials, Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium; (C.G.C.); (V.B.)
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Arn Mignon
- Surface and Interface Engineered Materials, Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium; (C.G.C.); (V.B.)
| |
Collapse
|
47
|
Duan Y, Zhang M, Shen Z, Zhang M, Zheng B, Cheng S, Hu J. Photoresponsive Vesicles Enabling Sequential Release of Nitric Oxide (NO) and Gentamicin for Efficient Biofilm Eradication. Macromol Rapid Commun 2021; 42:e2000759. [DOI: 10.1002/marc.202000759] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/19/2021] [Indexed: 12/31/2022]
Affiliation(s)
- Yutian Duan
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Science at the Microscale Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Mingyang Zhang
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Science at the Microscale Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Zhiqiang Shen
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Science at the Microscale Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Mengdan Zhang
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Science at the Microscale Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Bin Zheng
- Hefei Normal University Hefei Anhui 230061 P. R. China
| | - Sheng Cheng
- Hefei University of Technology Hefei Anhui 230009 P. R. China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Science at the Microscale Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| |
Collapse
|
48
|
Jin G, Gao Z, Liu Y, Zhao J, Ou H, Xu F, Ding D. Polymeric Nitric Oxide Delivery Nanoplatforms for Treating Cancer, Cardiovascular Diseases, and Infection. Adv Healthc Mater 2021; 10:e2001550. [PMID: 33314793 DOI: 10.1002/adhm.202001550] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/05/2020] [Indexed: 02/06/2023]
Abstract
The shortened Abstract is as follows: Therapeutic gas nitric oxide (NO) has demonstrated the unique advances in biomedical applications due to its prominent role in regulating physiological/pathophysiological activities in terms of vasodilation, angiogenesis, chemosensitizing effect, and bactericidal effect. However, it is challenging to deliver NO, due to its short half-life (<5 s) and short diffusion distances (20-160 µm). To address these, various polymeric NO delivery nanoplatforms (PNODNPs) have been developed for cancer therapy, antimicrobial and cardiovascular therapeutics, because of the important advantages of polymeric delivery nanoplatforms in terms of controlled release of therapeutics and the extremely versatile nature. This reviews highlights the recent significant advances made in PNODNPs for NO storing and targeting delivery. The ideal and unique criteria that are required for PNODNPs for treating cancer, cardiovascular diseases and infection, respectively, are summarized. Hopefully, effective storage and targeted delivery of NO in a controlled manner using PNODNPs could pave the way for NO-sensitized synergistic therapy in clinical practice for treating the leading death-causing diseases.
Collapse
Affiliation(s)
- Guorui Jin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education School of Life Science and Technology Xi'an Jiaotong University Xi'an 710049 China
- Bioinspired Engineering and Biomechanics Center (BEBC) Xi'an Jiaotong University Xi'an 710049 China
| | - Zhiyuan Gao
- State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences Nankai University Tianjin 300071 China
| | - Yangjing Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education School of Life Science and Technology Xi'an Jiaotong University Xi'an 710049 China
- Bioinspired Engineering and Biomechanics Center (BEBC) Xi'an Jiaotong University Xi'an 710049 China
| | - Jing Zhao
- Shaanxi Key Lab Degradable Biomedical Materials School of Chemical Engineering Northwest University 229 North Taibai North Road Xi'an 710069 China
| | - Hanlin Ou
- State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences Nankai University Tianjin 300071 China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education School of Life Science and Technology Xi'an Jiaotong University Xi'an 710049 China
- Bioinspired Engineering and Biomechanics Center (BEBC) Xi'an Jiaotong University Xi'an 710049 China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences Nankai University Tianjin 300071 China
| |
Collapse
|
49
|
Oliver S, Pham TTP, Li Y, Xu FJ, Boyer C. More than skin deep: using polymers to facilitate topical delivery of nitric oxide. Biomater Sci 2021; 9:391-405. [PMID: 32856653 DOI: 10.1039/d0bm01197e] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Skin, the largest organ in the human body, provides several important functions, including providing protection from mechanical impacts, micro-organisms, radiation and chemicals; regulation of body temperature; the sensations of touch and temperature; and the synthesis of several substances including vitamin D, melanin, and keratin. Common dermatological disorders (CDDs) include inflammatory or immune-mediated skin diseases, skin infection, skin cancer, and wounds. In the treatment of skin disorders, topical administration has advantages over other routes of administration, and polymers are widely used as vehicles to facilitate the delivery of topical therapeutic agents, serving as matrices to keep therapeutic agents in contact with the skin. Nitric oxide (NO), a cellular signalling molecule, has attracted significant interest in treating a broad spectrum of diseases, including various skin disorders. However, there are a number of challenges in effectively delivering NO. It must be delivered in a controlled manner at sufficient concentrations to be efficacious and the delivery system must be stable during storage. The use of polymer-based systems to deliver NO topically can be an effective strategy to overcome these challenges. There are three main approaches for incorporating NO with polymers in topical delivery systems: (i) physical incorporation of NO donors into polymer bases; (ii) covalent attachment of NO donors to polymers; and (iii) encapsulation of NO donors in polymer-based particles. The latter two approaches provide the greatest control over NO release and have been used by numerous researchers in treating CDDs, including chronic wounds and skin cancer.
Collapse
Affiliation(s)
- Susan Oliver
- Australian Centre for NanoMedicine (ACN) and Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, Australia 2052.
| | - Thi Thu Phuong Pham
- Australian Centre for NanoMedicine (ACN) and Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, Australia 2052.
| | - Yang Li
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Cyrille Boyer
- Australian Centre for NanoMedicine (ACN) and Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, Australia 2052.
| |
Collapse
|
50
|
Yang Y, Huang Z, Li LL. Advanced nitric oxide donors: chemical structure of NO drugs, NO nanomedicines and biomedical applications. NANOSCALE 2021; 13:444-459. [PMID: 33403376 DOI: 10.1039/d0nr07484e] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nitric oxide (NO), as an endogenous diatomic molecule, plays a key regulatory role in many physiological and pathological processes. This diatomic free radical has been shown to affect different physiological and cellular functions and participates in many regulatory functions ranging from changing the cardiovascular system to regulating neuronal functions. Thus, NO gas therapy as an emerging and promising treatment method has attracted increasing attention in the treatment of various pathological diseases. As is known, the physiological and pathological regulation of NO depends mainly on its location, exposure time and released dosage. However, NO gas lacks effective accumulation and controlled long-term gas releasing capacity at specific sites, resulting in limited therapeutic efficacy and potential side effects. Thus, researchers have developed various NO donors, but eventually found that it is still difficult to control the long-term release of NO. Inspired by the self-assembly properties of nanomaterials, researchers have realized that nanomaterials can be used to support NO donors to form nanomedicine to achieve spatial and temporal controlled release of NO. In this review, according to the history of the medicinal development of NO, we first summarize the chemical design of NO donors, NO prodrugs, and NO-conjugated drugs. Then, NO nanomedicines formed by various nanomaterials and NO donors depending on nanotechnology are highlighted. Finally, the biomedical applications of NO nanomedicine with optimized properties are summarized.
Collapse
Affiliation(s)
- Yueqi Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, P. R. China. and Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P. R. China.
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Li-Li Li
- Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P. R. China.
| |
Collapse
|