1
|
Weber CM, Moiz B, Kheradmand M, Scott A, Kettula C, Wunderler B, Alpízar Vargas V, Clyne AM. Glutamine metabolism is systemically different between primary and induced pluripotent stem cell-derived brain microvascular endothelial cells. J Cereb Blood Flow Metab 2025:271678X241310729. [PMID: 39763385 PMCID: PMC11705297 DOI: 10.1177/0271678x241310729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/04/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
Human primary (hpBMEC) and induced pluripotent stem cell (iPSC)-derived brain microvascular endothelial-like cells (hiBMEC) are interchangeably used in blood-brain barrier models to study neurological diseases and drug delivery. Both hpBMEC and hiBMEC use glutamine as a source of carbon and nitrogen to produce metabolites and build proteins essential to cell function and communication. We used metabolomic, transcriptomic, and computational methods to examine how hpBMEC and hiBMEC metabolize glutamine, which may impact their utility in modeling the blood-brain barrier. We found that glutamine metabolism was systemically different between the two cell types. hpBMEC had a higher metabolic rate and produced more glutamate and GABA, while hiBMEC rerouted glutamine to produce more glutathione, fatty acids, and asparagine. Higher glutathione production in hiBMEC correlated with higher oxidative stress compared to hpBMEC. α-ketoglutarate (α-KG) supplementation increased glutamate secretion from hiBMEC to match that of hpBMEC; however, α-KG also decreased hiBMEC glycolytic rate. These fundamental metabolic differences between BMEC types may impact in vitro blood-brain barrier model function, particularly communication between BMEC and surrounding cells, and emphasize the importance of evaluating the metabolic impacts of iPSC-derived cells in disease models.
Collapse
Affiliation(s)
- Callie M Weber
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Bilal Moiz
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Marzyeh Kheradmand
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Arielle Scott
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Claire Kettula
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Brooke Wunderler
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | | | - Alisa Morss Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| |
Collapse
|
2
|
Soliman Y, Al-Khodor J, Yildirim Köken G, Mustafaoglu N. A guide for blood-brain barrier models. FEBS Lett 2024. [PMID: 39533665 DOI: 10.1002/1873-3468.15053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
Understanding the intricate mechanisms underlying brain-related diseases hinges on unraveling the pivotal role of the blood-brain barrier (BBB), an essential dynamic interface crucial for maintaining brain equilibrium. This review offers a comprehensive analysis of BBB physiology, delving into its cellular and molecular components while exploring a wide range of in vivo and in vitro BBB models. Notably, recent advancements in 3D cell culture techniques are explicitly discussed, as they have significantly improved the fidelity of BBB modeling by enabling the replication of physiologically relevant environments under flow conditions. Special attention is given to the cellular aspects of in vitro BBB models, alongside discussions on advances in stem cell technologies, providing valuable insights into generating robust cellular systems for BBB modeling. The diverse array of cell types used in BBB modeling, depending on their sources, is meticulously examined in this comprehensive review, scrutinizing their respective derivation protocols and implications. By synthesizing diverse approaches, this review sheds light on the improvements of BBB models to capture physiological conditions, aiding in understanding BBB interactions in health and disease conditions to foster clinical developments.
Collapse
Affiliation(s)
- Yomna Soliman
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey
- Faculty of Pharmacy, Mansoura University, Egypt
| | - Jana Al-Khodor
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey
| | | | - Nur Mustafaoglu
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey
- Sabancı University Nanotechnology Research and Application Center, Istanbul, Turkey
| |
Collapse
|
3
|
Linville RM, Maressa J, Guo Z, Chung TD, Farrell A, Jha R, Searson PC. A tissue-engineered model of the blood-tumor barrier during metastatic breast cancer. Fluids Barriers CNS 2023; 20:80. [PMID: 37924145 PMCID: PMC10623725 DOI: 10.1186/s12987-023-00482-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/22/2023] [Indexed: 11/06/2023] Open
Abstract
Metastatic brain cancer has poor prognosis due to challenges in both detection and treatment. One contributor to poor prognosis is the blood-brain barrier (BBB), which severely limits the transport of therapeutic agents to intracranial tumors. During the development of brain metastases from primary breast cancer, the BBB is modified and is termed the 'blood-tumor barrier' (BTB). A better understanding of the differences between the BBB and BTB across cancer types and stages may assist in identifying new therapeutic targets. Here, we utilize a tissue-engineered microvessel model with induced pluripotent stem cell (iPSC)-derived brain microvascular endothelial-like cells (iBMECs) and surrounded by human breast metastatic cancer spheroids with brain tropism. We directly compare BBB and BTB in vitro microvessels to unravel both physical and chemical interactions occurring during perivascular cancer growth. We determine the dynamics of vascular co-option by cancer cells, modes of vascular degeneration, and quantify the endothelial barrier to antibody transport. Additionally, using bulk RNA sequencing, ELISA of microvessel perfusates, and related functional assays, we probe early brain endothelial changes in the presence of cancer cells. We find that immune cell adhesion and endothelial turnover are elevated within the metastatic BTB, and that macrophages exert a unique influence on BTB identity. Our model provides a novel three-dimensional system to study mechanisms of cancer-vascular-immune interactions and drug delivery occurring within the BTB.
Collapse
Affiliation(s)
- Raleigh M Linville
- Institute for Nanobiotechnology, Johns Hopkins University, 100 Croft Hall, 3400 North Charles Street, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Joanna Maressa
- Institute for Nanobiotechnology, Johns Hopkins University, 100 Croft Hall, 3400 North Charles Street, Baltimore, MD, 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Zhaobin Guo
- Institute for Nanobiotechnology, Johns Hopkins University, 100 Croft Hall, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Tracy D Chung
- Institute for Nanobiotechnology, Johns Hopkins University, 100 Croft Hall, 3400 North Charles Street, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Alanna Farrell
- Institute for Nanobiotechnology, Johns Hopkins University, 100 Croft Hall, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Ria Jha
- Institute for Nanobiotechnology, Johns Hopkins University, 100 Croft Hall, 3400 North Charles Street, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter C Searson
- Institute for Nanobiotechnology, Johns Hopkins University, 100 Croft Hall, 3400 North Charles Street, Baltimore, MD, 21218, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
4
|
Zhao N, Kulkarni S, Zhang S, Linville RM, Chung TD, Guo Z, Jamieson JJ, Norman D, Liang L, Pessell AF, Searson P. Modeling angiogenesis in the human brain in a tissue-engineered post-capillary venule. Angiogenesis 2023; 26:203-216. [PMID: 36795297 PMCID: PMC10789151 DOI: 10.1007/s10456-023-09868-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/20/2023] [Indexed: 02/17/2023]
Abstract
Angiogenesis plays an essential role in embryonic development, organ remodeling, wound healing, and is also associated with many human diseases. The process of angiogenesis in the brain during development is well characterized in animal models, but little is known about the process in the mature brain. Here, we use a tissue-engineered post-capillary venule (PCV) model incorporating stem cell derived induced brain microvascular endothelial-like cells (iBMECs) and pericyte-like cells (iPCs) to visualize the dynamics of angiogenesis. We compare angiogenesis under two conditions: in response to perfusion of growth factors and in the presence of an external concentration gradient. We show that both iBMECs and iPCs can serve as tip cells leading angiogenic sprouts. More importantly, the growth rate for iPC-led sprouts is about twofold higher than for iBMEC-led sprouts. Under a concentration gradient, angiogenic sprouts show a small directional bias toward the high growth factor concentration. Overall, pericytes exhibited a broad range of behavior, including maintaining quiescence, co-migrating with endothelial cells in sprouts, or leading sprout growth as tip cells.
Collapse
Affiliation(s)
- Nan Zhao
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Sarah Kulkarni
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Sophia Zhang
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Raleigh M Linville
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Tracy D Chung
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Zhaobin Guo
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - John J Jamieson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Danielle Norman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Lily Liang
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Alexander F Pessell
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Peter Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
5
|
Zhao N, Guo Z, Kulkarni S, Norman D, Zhang S, Chung TD, Nerenberg RF, Linville R, Searson P. Engineering the human blood-brain barrier at the capillary scale using a double-templating technique. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2110289. [PMID: 36312050 PMCID: PMC9610437 DOI: 10.1002/adfm.202110289] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Indexed: 05/15/2023]
Abstract
In vitro blood-brain barrier (BBB) models have played an important role in studying processes such as immune cell trafficking and drug delivery, as well as contributing to the understanding of mechanisms of disease progression. Many biological and pathological processes in the cerebrovasculature occur in capillaries and hence the lack of robust hierarchical models at the capillary scale is a major roadblock in BBB research. Here we report on a double-templating technique for engineering hierarchical BBB models with physiological barrier function at the capillary scale. We first demonstrate the formation of hierarchical vascular networks using human umbilical vein endothelial cells. We then characterize barrier function in a BBB model using brain microvascular endothelial-like cells (iBMECs) differentiated from induced pluripotent stem cells (iPSCs). Finally, we characterize immune cell adhesion and transmigration in response to perfusion with the inflammatory cytokine tumor necrosis factor-alpha, and show that we can recapitulate capillary-scale effects, such as leukocyte plugging, observed in mouse models. Our double-templated hierarchical model enables the study of a wide range of biological and pathological processes related to the human BBB.
Collapse
Affiliation(s)
- Nan Zhao
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Zhaobin Guo
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Sarah Kulkarni
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Danielle Norman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Sophia Zhang
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Tracy D. Chung
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Renée F. Nerenberg
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Raleigh Linville
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Peter Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
6
|
Linville RM, Nerenberg RF, Grifno G, Arevalo D, Guo Z, Searson PC. Brain microvascular endothelial cell dysfunction in an isogenic juvenile iPSC model of Huntington's disease. Fluids Barriers CNS 2022; 19:54. [PMID: 35773691 PMCID: PMC9245306 DOI: 10.1186/s12987-022-00347-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 05/13/2022] [Indexed: 11/10/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disease caused by expansion of cytosine-adenine-guanine (CAG) repeats in the huntingtin gene, which leads to neuronal loss and decline in cognitive and motor function. Increasing evidence suggests that blood-brain barrier (BBB) dysfunction may contribute to progression of the disease. Studies in animal models, in vitro models, and post-mortem tissue find that disease progression is associated with increased microvascular density, altered cerebral blood flow, and loss of paracellular and transcellular barrier function. Here, we report on changes in BBB phenotype due to expansion of CAG repeats using an isogenic pair of induced pluripotent stem cells (iPSCs) differentiated into brain microvascular endothelial-like cells (iBMECs). We show that CAG expansion associated with juvenile HD alters the trajectory of iBMEC differentiation, producing cells with ~ two-fold lower percentage of adherent endothelial cells. CAG expansion is associated with diminished transendothelial electrical resistance and reduced tight junction protein expression, but no significant changes in paracellular permeability. While mutant huntingtin protein (mHTT) aggregates were not observed in HD iBMECs, widespread transcriptional dysregulation was observed in iBMECs compared to iPSCs. In addition, CAG expansion in iBMECs results in distinct responses to pathological and therapeutic perturbations including angiogenic factors, oxidative stress, and osmotic stress. In a tissue-engineered BBB model, iBMECs show subtle changes in phenotype, including differences in cell turnover and immune cell adhesion. Our results further support that CAG expansion in BMECs contributes to BBB dysfunction during HD.
Collapse
Affiliation(s)
- Raleigh M Linville
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Renée F Nerenberg
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Gabrielle Grifno
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Diego Arevalo
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Zhaobin Guo
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Peter C Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
7
|
Sun J, Ou W, Han D, Paganini-Hill A, Fisher MJ, Sumbria RK. Comparative studies between the murine immortalized brain endothelial cell line (bEnd.3) and induced pluripotent stem cell-derived human brain endothelial cells for paracellular transport. PLoS One 2022; 17:e0268860. [PMID: 35613139 PMCID: PMC9132315 DOI: 10.1371/journal.pone.0268860] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/09/2022] [Indexed: 01/11/2023] Open
Abstract
Brain microvascular endothelial cells, forming the anatomical site of the blood-brain barrier (BBB), are widely used as in vitro complements to in vivo BBB studies. Among the immortalized cells used as in vitro BBB models, the murine-derived bEnd.3 cells offer culturing consistency and low cost and are well characterized for functional and transport assays, but result in low transendothelial electrical resistance (TEER). Human-induced pluripotent stem cells differentiated into brain microvascular endothelial cells (ihBMECs) have superior barrier properties, but the process of differentiation is time-consuming and can result in mixed endothelial-epithelial gene expression. Here we performed a side-by-side comparison of the ihBMECs and bEnd.3 cells for key paracellular diffusional transport characteristics. The TEER across the ihBMECs was 45- to 68-fold higher than the bEnd.3 monolayer. The ihBMECs had significantly lower tracer permeability than the bEnd.3 cells. Both, however, could discriminate between the paracellular permeabilities of two tracers: sodium fluorescein (MW: 376 Da) and fluorescein isothiocyanate (FITC)-dextran (MW: 70 kDa). FITC-dextran permeability was a strong inverse-correlate of TEER in the bEnd.3 cells, whereas sodium fluorescein permeability was a strong inverse-correlate of TEER in the ihBMECs. Both bEnd.3 cells and ihBMECs showed the typical cobblestone morphology with robust uptake of acetylated LDL and strong immuno-positivity for vWF. Both models showed strong claudin-5 expression, albeit with differences in expression location. We further confirmed the vascular endothelial- (CD31 and tube-like formation) and erythrophagocytic-phenotypes and the response to inflammatory stimuli of ihBMECs. Overall, both bEnd.3 cells and ihBMECs express key brain endothelial phenotypic markers, and despite differential TEER measurements, these in vitro models can discriminate between the passage of different molecular weight tracers. Our results highlight the need to corroborate TEER measurements with different molecular weight tracers and that the bEnd.3 cells may be suitable for large molecule transport studies despite their low TEER.
Collapse
Affiliation(s)
- Jiahong Sun
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, United States of America
| | - Weijun Ou
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, United States of America
| | - Derick Han
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA, United States of America
| | - Annlia Paganini-Hill
- Department of Neurology, University of California, Irvine, Irvine, CA, United States of America
| | - Mark J. Fisher
- Department of Neurology, University of California, Irvine, Irvine, CA, United States of America
- Department of Pathology & Laboratory Medicine, University of California, Irvine, Irvine, CA, United States of America
| | - Rachita K. Sumbria
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, United States of America
- Department of Neurology, University of California, Irvine, Irvine, CA, United States of America
- * E-mail:
| |
Collapse
|
8
|
Wiersma LE, Avramut MC, Lievers E, Rabelink TJ, van den Berg CW. Large-scale engineering of hiPSC-derived nephron sheets and cryopreservation of their progenitors. Stem Cell Res Ther 2022; 13:208. [PMID: 35578313 PMCID: PMC9109372 DOI: 10.1186/s13287-022-02881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/30/2022] [Indexed: 11/17/2022] Open
Abstract
Background The generation of human induced pluripotent stem cells (hiPSCs) has opened a world of opportunities for stem cell-based therapies in regenerative medicine. Currently, several human kidney organoid protocols are available that generate organoids containing kidney structures. However, these kidney organoids are relatively small ranging up to 0.13 cm2 and therefore contain a small number of nephrons compared to an adult kidney, thus defying the exploration of future use for therapy. Method We have developed a scalable, easily accessible, and reproducible protocol to increase the size of the organoid up to a nephron sheet of 2.5 cm2 up to a maximum of 12.6 cm2 containing a magnitude of nephrons. Results Confocal microscopy showed that the subunits of the nephrons remain evenly distributed throughout the entire sheet and that these tissue sheets can attain ~ 30,000–40,000 glomerular structures. Upon transplantation in immunodeficient mice, such nephron sheets became vascularized and matured. They also show reuptake of injected low-molecular mass dextran molecules in the tubular structures, indicative of glomerular filtration. Furthermore, we developed a protocol for the cryopreservation of intermediate mesoderm cells during the differentiation and demonstrate that these cells can be successfully thawed and recovered to create such tissue sheets. Conclusion The scalability of the procedures, and the ability to cryopreserve the cells during differentiation are important steps forward in the translation of these differentiation protocols to future clinical applications such as transplantable auxiliary kidney tissue. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02881-5.
Collapse
Affiliation(s)
- Loes E Wiersma
- Department of Internal Medicine - Nephrology, Leiden University Medical Center, Postal Zone C7-Q, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.,Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - M Cristina Avramut
- Department of Cell and Chemical Biology - Electron Microscopy, Leiden University Medical Center, Postal zone S-1-P, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Ellen Lievers
- Department of Internal Medicine - Nephrology, Leiden University Medical Center, Postal Zone C7-Q, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.,Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Ton J Rabelink
- Department of Internal Medicine - Nephrology, Leiden University Medical Center, Postal Zone C7-Q, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.,Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Cathelijne W van den Berg
- Department of Internal Medicine - Nephrology, Leiden University Medical Center, Postal Zone C7-Q, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands. .,Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
9
|
Chung TD, Linville RM, Guo Z, Ye R, Jha R, Grifno GN, Searson PC. Effects of acute and chronic oxidative stress on the blood-brain barrier in 2D and 3D in vitro models. Fluids Barriers CNS 2022; 19:33. [PMID: 35551622 PMCID: PMC9097350 DOI: 10.1186/s12987-022-00327-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/04/2022] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is a shared pathology of neurodegenerative disease and brain injuries, and is derived from perturbations to normal cell processes by aging or environmental factors such as UV exposure and air pollution. As oxidative cues are often present in systemic circulation, the blood-brain barrier (BBB) plays a key role in mediating the effect of these cues on brain dysfunction. Therefore, oxidative damage and disruption of the BBB is an emergent focus of neurodegenerative disease etiology and progression. We assessed barrier dysfunction in response to chronic and acute oxidative stress in 2D and 3D in vitro models of the BBB with human iPSC-derived brain microvascular endothelial-like cells (iBMECs). We first established doses of hydrogen peroxide to induce chronic damage (modeling aging and neurodegenerative disease) and acute damage (modeling the response to traumatic brain injury) by assessing barrier function via transendothelial electrical resistance in 2D iBMEC monolayers and permeability and monolayer integrity in 3D tissue-engineered iBMEC microvessels. Following application of these chronic and acute doses in our in vitro models, we found local, discrete structural changes were the most prevalent responses (rather than global barrier loss). Additionally, we validated unique functional changes in response to oxidative stress, including dysfunctional cell turnover dynamics and immune cell adhesion that were consistent with changes in gene expression.
Collapse
Affiliation(s)
- Tracy D Chung
- Institute for Nanobiotechnology, Johns Hopkins University, 100 Croft Hall, 3400 North Charles Street, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Raleigh M Linville
- Institute for Nanobiotechnology, Johns Hopkins University, 100 Croft Hall, 3400 North Charles Street, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Zhaobin Guo
- Institute for Nanobiotechnology, Johns Hopkins University, 100 Croft Hall, 3400 North Charles Street, Baltimore, MD, USA
| | - Robert Ye
- Institute for Nanobiotechnology, Johns Hopkins University, 100 Croft Hall, 3400 North Charles Street, Baltimore, MD, USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
| | - Ria Jha
- Institute for Nanobiotechnology, Johns Hopkins University, 100 Croft Hall, 3400 North Charles Street, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Gabrielle N Grifno
- Institute for Nanobiotechnology, Johns Hopkins University, 100 Croft Hall, 3400 North Charles Street, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter C Searson
- Institute for Nanobiotechnology, Johns Hopkins University, 100 Croft Hall, 3400 North Charles Street, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
10
|
Piantino M, Louis F, Shigemoto-Mogami Y, Kitamura K, Sato K, Yamaguchi T, Kawabata K, Yamamoto S, Iwasaki S, Hirabayashi H, Matsusaki M. Brain microvascular endothelial cells derived from human induced pluripotent stem cells as in vitro model for assessing blood-brain barrier transferrin receptor-mediated transcytosis. Mater Today Bio 2022; 14:100232. [PMID: 35308041 PMCID: PMC8927846 DOI: 10.1016/j.mtbio.2022.100232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/12/2022] Open
Abstract
The blood-brain barrier (BBB), a selective barrier formed by brain microvascular endothelial cells (BMEC), represents a major challenge for the efficient accumulation of pharmaceutical drugs into the brain. The receptor-mediated transcytosis (RMT) has recently gained increasing interest for pharmaceutical industry as it shows a great potential to shuttle large-sized therapeutic cargos across the BBB. Confirming the presence of the RMT pathway by BMEC is therefore important for the screening of peptides or antibody libraries that bind RMT receptors. Herein, a comparative study was performed between a human cell line of BMEC (HBEC) and human induced pluripotent stem cells-derived BMEC-like cells (hiPS-BMEC). The significantly higher gene and protein expressions of transporters and tight junction proteins, excepting CD31 and VE-cadherin were exhibited by hiPS-BMEC than by HBEC, suggesting more biomimetic BBB features of hiPS-BMEC. The presence and functionality of transferrin receptor (TfR), known to use RMT pathway, were confirmed using hiPS-BMEC by competitive binding assays and confocal microscopy observations. Finally, cysteine-modified T7 and cysteine modified-Tfr-T12 peptides, previously reported to be ligands of TfR, were compared regarding their permeability using hiPS-BMEC. The hiPS-BMEC could be useful for the identification of therapeutics that can be transported across the BBB using RMT pathway.
Collapse
Affiliation(s)
- Marie Piantino
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Fiona Louis
- Joint Research Laboratory (TOPPAN INC.) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Yukari Shigemoto-Mogami
- Division of Pharmacology, Laboratory of Neuropharmacology, National Institute of Health Sciences (NIHS), Kawasaki, Kanagawa, Japan
| | - Kimiko Kitamura
- Division of Pharmacology, Laboratory of Neuropharmacology, National Institute of Health Sciences (NIHS), Kawasaki, Kanagawa, Japan
| | - Kaoru Sato
- Division of Pharmacology, Laboratory of Neuropharmacology, National Institute of Health Sciences (NIHS), Kawasaki, Kanagawa, Japan
| | - Tomoko Yamaguchi
- Laboratory of Stem Cell Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Kenji Kawabata
- Laboratory of Stem Cell Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Syunsuke Yamamoto
- Drug Metabolism & Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Shinji Iwasaki
- Drug Metabolism & Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Hideki Hirabayashi
- Drug Metabolism & Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- Joint Research Laboratory (TOPPAN INC.) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
11
|
Li R, Walsh P, Truong V, Petersen A, Dutton JR, Hubel A. Differentiation of Human iPS Cells Into Sensory Neurons Exhibits Developmental Stage-Specific Cryopreservation Challenges. Front Cell Dev Biol 2021; 9:796960. [PMID: 34970550 PMCID: PMC8712858 DOI: 10.3389/fcell.2021.796960] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022] Open
Abstract
Differentiation of human induced pluripotent stem cells (hiPSCs) generates cell phenotypes valuable for cell therapy and personalized medicine. Successful translation of these hiPSC-derived therapeutic products will rely upon effective cryopreservation at multiple stages of the manufacturing cycle. From the perspective of cryobiology, we attempted to understand how the challenge of cryopreservation evolves between cell phenotypes along an hiPSC-to-sensory neuron differentiation trajectory. Cells were cultivated at three different stages to represent intermediate, differentiated, and matured cell products. All cell stages remained ≥90% viable in a dimethyl sulfoxide (DMSO)-free formulation but suffered ≥50% loss in DMSO before freezing. Raman spectroscopy revealed higher sensitivity to undercooling in hiPSC-derived neuronal cells with lower membrane fluidity and higher sensitivity to suboptimal cooling rates in stem cell developmental stages with larger cell bodies. Highly viable and functional sensory neurons were obtained following DMSO-free cryopreservation. Our study also demonstrated that dissociating adherent cultures plays an important role in the ability of cells to survive and function after cryopreservation.
Collapse
Affiliation(s)
- Rui Li
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Patrick Walsh
- Anatomic Incorporated, Minneapolis, MN, United States
| | | | - Ashley Petersen
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, United States
| | - James R. Dutton
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Allison Hubel
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
12
|
Galpayage Dona KNU, Hale JF, Salako T, Anandanatarajan A, Tran KA, DeOre BJ, Galie PA, Ramirez SH, Andrews AM. The Use of Tissue Engineering to Fabricate Perfusable 3D Brain Microvessels in vitro. Front Physiol 2021; 12:715431. [PMID: 34531761 PMCID: PMC8438211 DOI: 10.3389/fphys.2021.715431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/10/2021] [Indexed: 11/26/2022] Open
Abstract
Tissue engineering of the blood-brain barrier (BBB) in vitro has been rapidly expanding to address the challenges of mimicking the native structure and function of the BBB. Most of these models utilize 2D conventional microfluidic techniques. However, 3D microvascular models offer the potential to more closely recapitulate the cytoarchitecture and multicellular arrangement of in vivo microvasculature, and also can recreate branching and network topologies of the vascular bed. In this perspective, we discuss current 3D brain microvessel modeling techniques including templating, printing, and self-assembling capillary networks. Furthermore, we address the use of biological matrices and fluid dynamics. Finally, key challenges are identified along with future directions that will improve development of next generation of brain microvasculature models.
Collapse
Affiliation(s)
- Kalpani N Udeni Galpayage Dona
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jonathan Franklin Hale
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Tobi Salako
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Akanksha Anandanatarajan
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Kiet A Tran
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, United States
| | - Brandon J DeOre
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, United States
| | - Peter Adam Galie
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, United States
| | - Servio Heybert Ramirez
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,The Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Shriners Hospitals Pediatric Research Center, Philadelphia, PA, United States
| | - Allison Michelle Andrews
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,The Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
13
|
Testing the Stability of Drug Resistance on Cryopreserved, Gene-Engineered Human Induced Pluripotent Stem Cells. Pharmaceuticals (Basel) 2021; 14:ph14090919. [PMID: 34577619 PMCID: PMC8466661 DOI: 10.3390/ph14090919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/29/2021] [Accepted: 09/09/2021] [Indexed: 11/17/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) have emerged as a powerful tool for in vitro modelling of diseases with broad application in drug development or toxicology testing. These assays usually require large quantities of hiPSC, which can entail long-term storage via cryopreservation of the same cell charges. However, it is essential that cryopreservation does not oppose durable changes on the cells. In this project, we characterize one parameter of functionality of one that is well established in the field, in a different research context, an applied hiPSC line (iPS11), namely their resistance to a medium size library of chemo interventions (>160 drugs). We demonstrate that cells, before and after cryopreservation, do not change their relative overall drug response phenotypes, as defined by identification of the top 20 interventions causing dose-dependent reduction of cell growth. Importantly, also frozen cells that are exogenously enforced for stable overexpression of oncogenes myelocytomatosis (cMYC) or tumor protein 53 mutation (TP53R175H), respectively, are not changed in their relative top 20 drugs response compared to their non-frozen counterparts. Taken together, our results support iPSCs as a reliable in vitro platform for in vitro pharmacology, further raising hopes that this technology supports biomarker-associated drug development. Given the general debate on ethical and economic problems associated with the reproducibly crisis in biomedicine, our results may be of interest to a wider audience beyond stem cell research.
Collapse
|
14
|
Lu TM, Barcia Durán JG, Houghton S, Rafii S, Redmond D, Lis R. Human Induced Pluripotent Stem Cell-Derived Brain Endothelial Cells: Current Controversies. Front Physiol 2021; 12:642812. [PMID: 33868008 PMCID: PMC8044318 DOI: 10.3389/fphys.2021.642812] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Brain microvascular endothelial cells (BMECs) possess unique properties that are crucial for many functions of the blood-brain-barrier (BBB) including maintenance of brain homeostasis and regulation of interactions between the brain and immune system. The generation of a pure population of putative brain microvascular endothelial cells from human pluripotent stem cell sources (iBMECs) has been described to meet the need for reliable and reproducible brain endothelial cells in vitro. Human pluripotent stem cells (hPSCs), embryonic or induced, can be differentiated into large quantities of specialized cells in order to study development and model disease. These hPSC-derived iBMECs display endothelial-like properties, such as tube formation and low-density lipoprotein uptake, high transendothelial electrical resistance (TEER), and barrier-like efflux transporter activities. Over time, the de novo generation of an organotypic endothelial cell from hPSCs has aroused controversies. This perspective article highlights the developments made in the field of hPSC derived brain endothelial cells as well as where experimental data are lacking, and what concerns have emerged since their initial description.
Collapse
Affiliation(s)
- Tyler M Lu
- Division of Regenerative Medicine, Department of Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, United States.,Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, United States
| | - José Gabriel Barcia Durán
- Division of Regenerative Medicine, Department of Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, United States
| | - Sean Houghton
- Division of Regenerative Medicine, Department of Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, United States
| | - Shahin Rafii
- Division of Regenerative Medicine, Department of Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, United States
| | - David Redmond
- Division of Regenerative Medicine, Department of Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, United States
| | - Raphaël Lis
- Division of Regenerative Medicine, Department of Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, United States.,Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
15
|
Lu TM, Houghton S, Magdeldin T, Durán JGB, Minotti AP, Snead A, Sproul A, Nguyen DHT, Xiang J, Fine HA, Rosenwaks Z, Studer L, Rafii S, Agalliu D, Redmond D, Lis R. Pluripotent stem cell-derived epithelium misidentified as brain microvascular endothelium requires ETS factors to acquire vascular fate. Proc Natl Acad Sci U S A 2021; 118:e2016950118. [PMID: 33542154 PMCID: PMC7923590 DOI: 10.1073/pnas.2016950118] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cells derived from pluripotent sources in vitro must resemble those found in vivo as closely as possible at both transcriptional and functional levels in order to be a useful tool for studying diseases and developing therapeutics. Recently, differentiation of human pluripotent stem cells (hPSCs) into brain microvascular endothelial cells (ECs) with blood-brain barrier (BBB)-like properties has been reported. These cells have since been used as a robust in vitro BBB model for drug delivery and mechanistic understanding of neurological diseases. However, the precise cellular identity of these induced brain microvascular endothelial cells (iBMECs) has not been well described. Employing a comprehensive transcriptomic metaanalysis of previously published hPSC-derived cells validated by physiological assays, we demonstrate that iBMECs lack functional attributes of ECs since they are deficient in vascular lineage genes while expressing clusters of genes related to the neuroectodermal epithelial lineage (Epi-iBMEC). Overexpression of key endothelial ETS transcription factors (ETV2, ERG, and FLI1) reprograms Epi-iBMECs into authentic endothelial cells that are congruent with bona fide endothelium at both transcriptomic as well as some functional levels. This approach could eventually be used to develop a robust human BBB model in vitro that resembles the human brain EC in vivo for functional studies and drug discovery.
Collapse
Affiliation(s)
- Tyler M Lu
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10065
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10065
| | - Sean Houghton
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10065
| | - Tarig Magdeldin
- Department of Neurology and the Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY 10065
| | - José Gabriel Barcia Durán
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10065
| | - Andrew P Minotti
- Developmental Biology, the Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- The Biochemistry, Structural Biology, Cell Biology, Developmental Biology and Molecular Biology Allied Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065
| | - Amanda Snead
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
| | - Andrew Sproul
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
| | - Duc-Huy T Nguyen
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10065
| | - Jenny Xiang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY 10065
| | - Howard A Fine
- Department of Neurology and the Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY 10065
| | - Zev Rosenwaks
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10065
| | - Lorenz Studer
- The Biochemistry, Structural Biology, Cell Biology, Developmental Biology and Molecular Biology Allied Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065
| | - Shahin Rafii
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10065
| | - Dritan Agalliu
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032
| | - David Redmond
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10065;
| | - Raphaël Lis
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10065;
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10065
| |
Collapse
|