1
|
Patel RP, Taylor LS, Polli JE. Impact of drug incorporation into micelle on reduced griseofulvin and meloxicam permeation across a hollow fiber membrane. J Pharm Sci 2025; 114:402-415. [PMID: 39426562 DOI: 10.1016/j.xphs.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
A hollow fiber membrane (HFM) was previously characterized as a potential permeation component of a dissolution/permeation system. Two objectives were to assess the impact of micellization on drug permeation across HFM and identify a preferred permeation model from three models: permeation from only free drug, permeation from both free drug and micelle-bound drug, and permeation with enhancement from micelle shuttling. HFM studies were conducted under unsaturated drug conditions, using griseofulvin and the more hydrophilic drug meloxicam, with and without surfactant [sodium lauryl sulfate, polysorbate 80, and polyoxyethylene (10) lauryl ether]. Griseofulvin was micelle incorporated to a greater extent than meloxicam, such that griseofulvin flux decreased to a greater extent than for meloxicam. The griseofulvin permeation model from only free drug was rejected, since griseofulvin flux required free drug to be about 5-20 fold higher in HFM flux studies than supported by solubility studies, depending on surfactant. Permeation from both free griseofulvin and micelle-bound griseofulvin successfully accommodated observed flux, where micelle permeability was about 5-fold lower than free drug permeability for HFM with 10 KDa MWCO. Permeation with enhancement from micelle shuttling was not the preferred explanation, although the model accommodated flux data and provided aqueous boundary layer thicknesses similar to other setups.
Collapse
Affiliation(s)
- Roshni P Patel
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Lynne S Taylor
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - James E Polli
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA.
| |
Collapse
|
2
|
Ueda K, Moseson DE, Taylor LS. Amorphous solubility advantage: Theoretical considerations, experimental methods, and contemporary relevance. J Pharm Sci 2025; 114:18-39. [PMID: 39222748 DOI: 10.1016/j.xphs.2024.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Twenty-five years ago, Hancock and Parks asked a provocative question: "what is the true solubility advantage for amorphous pharmaceuticals?" Difficulties in determining the amorphous solubility have since been overcome due to significant advances in theoretical understanding and experimental methods. The amorphous solubility is now understood to be the concentration after the drug undergoes liquid-liquid or liquid-glass phase separation, forming a water-saturated drug-rich phase in metastable equilibrium with an aqueous phase containing molecularly dissolved drug. While crystalline solubility is an essential parameter impacting the absorption of crystalline drug formulations, amorphous solubility is a vital factor for considering absorption from supersaturating formulations. However, the amorphous solubility of drugs is complex, especially in the presence of formulation additives and gastrointestinal components, and concentration-based measurements may not indicate the maximum drug thermodynamic activity. This review discusses the concept of the amorphous solubility advantage, including a historical perspective, theoretical considerations, experimental methods for amorphous solubility measurement, and the contribution of supersaturation and amorphous solubility to drug absorption. Leveraging amorphous solubility and understanding the associated physicochemical principles can lead to more effective development strategies for poorly water-soluble drugs, ultimately benefiting therapeutic outcomes.
Collapse
Affiliation(s)
- Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Dana E Moseson
- Worldwide Research and Development, Pfizer, Inc., Groton, CT 06340, United States
| | - Lynne S Taylor
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
3
|
Yang DH, Najafian S, Chaudhuri B, Li N. The Particle Drifting Effect: A Combined Function of Colloidal and Drug Properties. Mol Pharm 2024; 21:5510-5528. [PMID: 39332024 DOI: 10.1021/acs.molpharmaceut.4c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
The particle drifting effect, where nanosized colloidal drug particles overcome the diffusional resistance of the aqueous boundary layer adjacent to the intestinal wall and increase drug absorption rates, is drawing increasing attention in pharmaceutical research. However, mechanistic understanding and accurate prediction of the particle drifting effect remain lacking. In this study, we systematically evaluated the extent of the particle drifting effect affected by drug and colloidal properties, including the size, number, and type of the moving species using biphasic diffusion experiments combined with computational fluid dynamics simulations and mass transport analyses. The results showed that the particle drifting effect is a sequential reaction of particle dissolution/dissociation in the diffusional boundary layer, followed by absorption of the free drug. Therefore, factors affecting the rate-limiting step, which can be either process or both under different circumstances, alter the particle drifting effect. Experimental results also agree with the theory that the particle dissolution rate is dependent on particle size, concentration, and drug solubility. In addition, rapid bile micelle dissociation and bile salt absorption facilitated drug absorption by the particle drifting effect. Our findings explain the highly dynamic nature of the particle drifting effect and will contribute to rational formulation development and better bioavailability prediction for formulations containing colloidal particles.
Collapse
Affiliation(s)
- Da Hye Yang
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269, United States
| | - Saeed Najafian
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269, United States
- Department of Chemical & Biomolecular Engineering, University of Connecticut, 191 Auditorium Road, Unit 3222, Storrs, Connecticut 06269, United States
| | - Bodhisattwa Chaudhuri
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269, United States
- Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Unit 3136, Storrs, Connecticut 06269, United States
- Department of Chemical & Biomolecular Engineering, University of Connecticut, 191 Auditorium Road, Unit 3222, Storrs, Connecticut 06269, United States
| | - Na Li
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269, United States
- Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Unit 3136, Storrs, Connecticut 06269, United States
- Department of Chemical & Biomolecular Engineering, University of Connecticut, 191 Auditorium Road, Unit 3222, Storrs, Connecticut 06269, United States
| |
Collapse
|
4
|
Chen W, Yan A, Sun T, Wang X, Sun W, Pan B. Self-nanomicellizing solid dispersion: A promising platform for oral drug delivery. Colloids Surf B Biointerfaces 2024; 241:114057. [PMID: 38924852 DOI: 10.1016/j.colsurfb.2024.114057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/18/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Amorphous solid dispersion (ASD) has been widely used to enhance the oral bioavailability of water-insoluble drugs for oral delivery because of its advantages of enhancing solubility and dissolution rate. However, the problems related to drug recrystallization after drug dissolution in media or body fluid have constrained its application. Recently, a self-nanomicellizing solid dispersion (SNMSD) has been developed by incorporating self-micellizing polymers as carriers to settle the problems, markedly improving the ability of supersaturation maintenance and enhancing the oral bioavailability of drug. Spontaneous formation and stability of the self-nanomicelle (SNM) have been proved to be the key to supersaturation maintenance of SNMSD system. This offers a novel research direction for maintaining supersaturation and enhancing the bioavailability of ASDs. To delve into the advantages of SNMSDs, we provide a concise review introducing the formation mechanism, characterization methods and stability of SNMs, emphasizing the advantages of SNMSDs for oral drug delivery facilitated by SNM formation, and discussing relevant research prospects.
Collapse
Affiliation(s)
- Weitao Chen
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - An Yan
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Tiancong Sun
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Xu Wang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Weiwei Sun
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China.
| | - Baoliang Pan
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China.
| |
Collapse
|
5
|
Sinko PD, Salehi N, Halseth T, Meyer PJ, Amidon GL, Ziff RM, Amidon GE. Particle Size, Dose, and Confinement Affect Passive Diffusion Flux through the Membrane Concentration Boundary Layer. Mol Pharm 2024; 21:201-215. [PMID: 38115627 DOI: 10.1021/acs.molpharmaceut.3c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The authors present a steady-state-, particle-size-, and dose-dependent dissolution-permeation model that describes particle dissolution within the concentration boundary layer (CBL) adjacent to a semipermeable surface. It is critical to understand how particle size and dose affect the behavior of dissolving particles in the presence of a CBL adjacent to a semipermeable surface both in vivo and in vitro. Control of particle size is ubiquitous in the pharmaceutical industry; however, traditional pharmaceutical assumptions of particle dissolution typically ignore particle dissolution within the length scale of the CBL. The CBL does not physically prevent particles from traveling to the semipermeable surface (mucus, epithelial barrier, synthetic membrane, etc.), and particle dissolution can occur within the CBL thickness (δC) if the particle is sufficiently small (∼dparticle ≤ δC). The total flux (the time rate transport of molecules across the membrane surface per unit area) was chosen as a surrogate parameter for measuring the additional mass generated by particles dissolving within the donor CBL. Mass transfer experiments aimed to measure the total flux of drug using an ultrathin large-area membrane diffusion cell described by Sinko et al. with a silicone-based membrane ( Mol. Pharmaceutics 2020, 17, (7) 2319-2328, DOI: 10.1021/acs.molpharmaceut.0c00040). Suspensions of ibuprofen, a model weak-acid drug, with three different particle-size distributions with average particle diameters of 6.6, 37.4, and 240 μm at multiple doses corresponding to a range of suspension concentrations with dimensionless dose numbers of 2.94, 14.7, 147, and 588 were used to test the model. Experimentally measured total flux across the semipermeable membrane/CBL region agreed with the predictions from the proposed model, and at a range of relatively low suspension concentrations, dependent on the average particle size, there was a measurable effect on the flux due to the difference in δC that formed at the membrane surface. Additionally, the dose-dependent total flux across the membrane was up to 10% higher than the flux predicted by the standard Higuchi-Hiestand dissolution model where the effects of confinement were ignored as described by Wang et al. ( Mol. Pharmaceutics 2012, 9 (5), 1052-1066, DOI: 10.1021/mp2002818).
Collapse
Affiliation(s)
- Patrick D Sinko
- Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109, United States
| | - Niloufar Salehi
- Chemical Engineering, College of Engineering, University of Michigan, 3074 H. H. Dow, 2300 Hayward Street, Ann Arbor, Michigan 48109, United States
| | - Troy Halseth
- Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109, United States
| | - Pamela J Meyer
- Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109, United States
| | - Gordon L Amidon
- Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109, United States
| | - Robert M Ziff
- Chemical Engineering, College of Engineering, University of Michigan, 3074 H. H. Dow, 2300 Hayward Street, Ann Arbor, Michigan 48109, United States
| | - Gregory E Amidon
- Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
6
|
Wang Z, Lou H, Dening TJ, Hageman MJ. Biorelevant Dissolution Method Considerations for the Appropriate Evaluation of Amorphous Solid Dispersions: are Two Stages Necessary? J Pharm Sci 2023; 112:1089-1107. [PMID: 36529266 DOI: 10.1016/j.xphs.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Biorelevant dissolution testing has been widely used to better understand a drug or formulation's behavior in the human gastrointestinal (GI) tract. The successful evaluation of biorelevant dissolution behavior requires recognizing the importance of utilizing suitable biorelevant media in conjunction with an appropriate dissolution method, especially for supersaturating drug delivery systems, such as amorphous solid dispersions (ASDs). However, most conventional biorelevant dissolution testing methods are not able to accurately reflect the dissolution, supersaturation, and precipitation tendencies of a drug or formulation, which could misinform ASD formulation screening and optimization. In this study, we developed a single compartment 2-stage pH-shift dissolution testing method to simulate the changes in pH, media composition, and transit time in the GI tract, and results were compared against the conventional single compartment 1-stage dissolution method. Nine model drugs were selected based on their ionization properties (i.e. acid, base or neutral) and precipitation tendency (i.e. moderate or slow crystallizer). The dissolution results confirmed that 2-stage pH-shift dissolution is the preferred biorelevant dissolution method to assess non-ionized weak base (nifedipine) and neutral (griseofulvin) compounds exhibiting a moderate precipitation rate from solution when formulated as ASDs. Finally, we designed a flowchart guidance for the appropriate biorelevant dissolution performance characterization of different categories of ASD formulations.
Collapse
Affiliation(s)
- Zhaoxian Wang
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, Kansas 66047, USA
| | - Hao Lou
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, Kansas 66047, USA; Biopharmaceutical Innovation & Optimization Center, McCollum Laboratories, The University of Kansas. Lawrence, Kansas 66047, USA
| | - Tahnee J Dening
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, Kansas 66047, USA
| | - Michael J Hageman
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, Kansas 66047, USA; Biopharmaceutical Innovation & Optimization Center, McCollum Laboratories, The University of Kansas. Lawrence, Kansas 66047, USA.
| |
Collapse
|
7
|
Andrews GP, Qian K, Jacobs E, Jones DS, Tian Y. High drug loading nanosized amorphous solid dispersion (NASD) with enhanced in vitro solubility and permeability: Benchmarking conventional ASD. Int J Pharm 2023; 632:122551. [PMID: 36581107 DOI: 10.1016/j.ijpharm.2022.122551] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/06/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
Through liquid-liquid phase separation (LLPS), it is possible to generate drug-rich nanoparticles during the dissolution of conventional amorphous solid dispersions (ASDs). These self-generated nanoparticles may improve the oral absorption of poorly water-soluble drugs by enhancing the drug's apparent solubility and effective membrane permeability. However, due to the high concentration threshold required for LLPS, conventional ASDs that can consistently generate drug-rich nanoparticles during dissolution are rare. More importantly, the quality of these meta-stable drug-rich nanoparticles is hard to control during dissolution, leading to inconsistency in formulation performances. This work has described a continuous twin-screw extrusion process capable of producing nanosized ASD (NASD) formulations that can offer better solubility and permeability enhancements over conventional ASD formulations. Two polymeric carriers, polyvinylpyrrolidone-co-vinyl acetate (PVPVA) and hydroxypropyl methylcellulose acetate succinate (HPMCAS), with a model hydrophobic drug celecoxib (BCS II), were formulated into both ASD and NASD formulations. Compared to the conventional ASD formulation, the prefabricated NASD (sizes ranging between 40 and 200 nm) embedded within a polyol matrix can be rapidly dispersed into a nanoparticle suspension in the presence of aqueous media. The resulting NASDs achieved drug loadings up to 80 % w/w and a maximum of 98 % encapsulation efficiency. Because of the TSE platform's high drug-loading capacity and high scalability, the developed method may be useful for continuously producing personalized nanomedicines.
Collapse
Affiliation(s)
- Gavin P Andrews
- School of Pharmacy, Queen's University Belfast, BT9 7BL, United Kingdom
| | - Kaijie Qian
- School of Pharmacy, Queen's University Belfast, BT9 7BL, United Kingdom
| | - Esther Jacobs
- School of Pharmacy, Queen's University Belfast, BT9 7BL, United Kingdom
| | - David S Jones
- School of Pharmacy, Queen's University Belfast, BT9 7BL, United Kingdom
| | - Yiwei Tian
- School of Pharmacy, Queen's University Belfast, BT9 7BL, United Kingdom.
| |
Collapse
|
8
|
Abstract
![]()
Formulations containing nanosized drug particles such
as nanocrystals
and nanosized amorphous drug aggregates recently came into light as
promising strategies to improve the bioavailability of poorly soluble
drugs. However, the increased solubility due to the reduction in particle
size cannot adequately explain the enhanced bioavailability. In this
study, the mechanisms and extent of enhanced passive permeation by
drug particles were investigated using atazanavir, lopinavir, and
clotrimazole as model drugs. Franz diffusion cells with lipid-infused
membranes were utilized to evaluate transmembrane flux. The impact
of stirring rate, receiver buffer condition, and particle size was
investigated, and mass transport analyses were conducted to calculate
transmembrane flux. Flux enhancement by particles was found to be
dependent on particle size as well as the partitioning behavior of
the drug between the receiver solution and the membrane, which is
determined by both the drug and buffer used. A flux plateau was observed
at high particle concentrations above amorphous solubility, confirming
that mass transfer of amorphous drug particles from the aqueous solution
to the membrane occurs only through the molecularly dissolved drug.
Mass transport models were used to calculate flux enhancement by particles
for various drugs at different conditions. Good agreements were obtained
between experimental and predicted values. These results should contribute
to improved bioavailability prediction of nanosized drug particles
and better design of formulations containing colloidal drug particles.
Collapse
Affiliation(s)
- Akshay Narula
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road Unit 3092, Storrs, Connecticut 06269, United States
| | - Rayan Sabra
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road Unit 3092, Storrs, Connecticut 06269, United States
| | - Na Li
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road Unit 3092, Storrs, Connecticut 06269, United States.,Institute of Materials Science, University of Connecticut, 97 North Eagleville Road Unit 3136, Storrs, Connecticut 06269, United States
| |
Collapse
|
9
|
Sabra R, Narula A, Taylor LS, Li N. Comparisons of in Vitro Models to Evaluate the Membrane Permeability of Amorphous Drug Nanoparticles. Mol Pharm 2022; 19:3412-3428. [PMID: 35972995 DOI: 10.1021/acs.molpharmaceut.2c00565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The spontaneous formation of amorphous drug nanoparticles following the release of a drug from a supersaturating formulation is gaining increasing attention due to their potential contribution to increased oral bioavailability. The formation of nanosized drug particles also has considerable implications for the interpretation of in vitro and in vivo data. However, the membrane transport properties of these drug particles remain less well understood. Herein, the membrane permeation of nanosized amorphous drug particles of a model drug atazanavir was evaluated using different artificial membrane-based, cell-based, and animal tissue-based models. Results showed that flux enhancement by particles was different for the various systems used. Generally, good agreement was obtained among experiments performed using the same apparatus with different model membranes, with the exception of the Madin-Darby canine kidney cell monolayer and the Long-Evans rat intestine tissue, which showed lower flux enhancements. Franz cell-based models showed slightly higher flux enhancements by particles compared to Transwell and intestinal tissue sac models. Mass transport analysis suggested that the extent of flux enhancement by particles is dependent on the geometry of the apparatus as well as the properties of the membrane and buffer used, whereas the flux plateau concentration is dependent on the unstirred water later (UWL) asymmetry. These results highlight the complexity in characterizing the permeability advantage of these nonmembrane permeable drug particles and suggest that caution should be used in selecting the appropriate in vitro model to evaluate the overall permeability of colloidal drug particles.
Collapse
Affiliation(s)
- Rayan Sabra
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269, United States
| | - Akshay Narula
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Na Li
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269, United States.,Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Unit 3136, Storrs, Connecticut 06269, United States
| |
Collapse
|
10
|
Zhao P, Hu G, Chen H, Li M, Wang Y, Sun N, Wang L, Xu Y, Xia J, Tian B, Liu Y, He Z, Fu Q. Revealing the roles of polymers in supersaturation stabilization from the perspective of crystallization behaviors: A case of nimodipine. Int J Pharm 2022; 616:121538. [PMID: 35124119 DOI: 10.1016/j.ijpharm.2022.121538] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/20/2022] [Accepted: 01/29/2022] [Indexed: 10/19/2022]
Abstract
Formulating drugs into amorphous solid dispersions (ASDs) represents an attractive means to enhance the aqueous solubility of drugs. Furthermore, water-soluble polymers have proven highly advantageous for stabilizing supersaturated solutions of ASDs. However, the performance and mechanism of various polymers in stabilizing supersaturated drug solutions have not been well-studied. The aim of this study was to investigate the effects of different commercial polymers on the dissolution behaviors and supersaturation stabilization of the ASDs and to further explore the mechanism of polymer mediated supersaturation maintenance by studying the crystallization behaviors of the ASDs. In this study, nimodipine (NMD) was used as a model drug because of its poor water-solubility and fast crystallization rate in aqueous solution, and three polymers polyvinylpyrrolidone (PVP), vinylpyrrolidone-vinyl acetate copolymer (PVP VA), and polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft co-polymer (Soluplus) was selected as the drug carriers to form the ASDs with NMD. Solid-state characterizations of the ASDs confirmed the amorphous state of the ASD systems. ASDPVP VA demonstrated superior supersaturation maintenance in dissolution experiments compared to the other two ASD systems. Among the polymers tested, PVP VA most efficiently maintained dissolution of NMD and prevented its crystallization from the supersaturated solution. The ability of PVP VA to most-effectively maintain supersaturation of the drug was manifested by inhibition of crystal nucleation rather than inhibition of crystal growth following nucleation. These results suggest that nucleation inhibition was instrumental in enabling the polymer-mediated supersaturation maintenance, at least with NMD.
Collapse
Affiliation(s)
- Peixu Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Guowei Hu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Haonan Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Mo Li
- Liaoning Institute for Drug Control, No. 7 Chongshan West Road, Shenyang 110016, China
| | - Yiting Wang
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Nan Sun
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Lulu Wang
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Yuan Xu
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Jialong Xia
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Baocheng Tian
- School of Pharmacy, Binzhou Medical University, No. 346, Guanhai Road, Yantai 264003, China
| | - Yanhua Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
11
|
Lu X, Li M, Arce FA, Ling J, Setiawan N, Wang Y, Shi X, Campbell HR, Nethercott MJ, Xu W, Munson EJ, Marsac PJ, Su Y. Mechanistic Investigation of Drug Supersaturation in the Presence of Polysorbates as Solubilizing Additives by Solution Nuclear Magnetic Resonance Spectroscopy. Mol Pharm 2021; 18:4310-4321. [PMID: 34761934 DOI: 10.1021/acs.molpharmaceut.1c00477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The introduction of solubilizing additives has historically been an attractive approach to address the ever-growing proportion of poorly water-soluble drug (PWSD) compounds within the modern drug discovery pipeline. Lipid-formulations, and more specifically micelle formulations, have garnered particular interest because of their simplicity, size, scalability, and avoidance of solid-state limitations. Although micelle formulations have been widely utilized, the molecular mechanism of drug solubilization in surfactant micelles is still poorly understood. In this study, a series of modern nuclear magnetic resonance (NMR) methods are utilized to gain a molecular-level understanding of intermolecular interactions and kinetics in a model system. This approach enabled the understanding of how a PWSD, 17β-Estradiol (E2), solubilizes within a nonionic micelle system composed of polysorbate 80 (PS80). Based on one-dimensional (1D) 1H chemical shift differences of E2 in PS80 solutions, as well as intermolecular correlations established from 1D selective nuclear Overhauser effect (NOE) and two-dimensional NOE spectroscopy experiments, E2 was found to accumulate within the palisade layer of PS80 micelles. A potential hydrogen-bonding interaction between a hydroxyl group of E2 and a carbonyl group of PS80 alkane chains may allow for stabilizing E2-PS80 mixed micelles. Diffusion and relaxation NMR analysis and particle size measurements using dynamic light scattering indicate a slight increase in the micellar size with increasing degrees of supersaturation, resulting in slower mobility of the drug molecule. Based on these structural findings, a theoretical orientation model of E2 molecules with PS80 molecules was developed and validated by computational docking simulations.
Collapse
Affiliation(s)
- Xingyu Lu
- Analytical Research and Development, Merck & Co., Rahway, New Jersey 07065, United States.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Mingyue Li
- Analytical Research and Development, Merck & Co., Rahway, New Jersey 07065, United States
| | - Freddy A Arce
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Jing Ling
- Pharmaceutical Sciences, Merck & Co., South San Francisco, California 94080, United States
| | - Nico Setiawan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Yaqiang Wang
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095 United States
| | - Xiaohuo Shi
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Heather R Campbell
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | | | - Wei Xu
- Analytical Research and Development, Merck & Co., Rahway, New Jersey 07065, United States
| | - Eric J Munson
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Patrick J Marsac
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Rahway, New Jersey 07065, United States.,Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States.,Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
12
|
Ramachandran G, Sudheesh MS. Role of Permeability on the Biopredictive Dissolution of Amorphous Solid Dispersions. AAPS PharmSciTech 2021; 22:243. [PMID: 34595565 DOI: 10.1208/s12249-021-02125-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/23/2021] [Indexed: 02/08/2023] Open
Abstract
An ideal dissolution test for amorphous solid dispersions (ASDs) should reflect physicochemical, physiological, and hydrodynamic conditions which accurately represent in vivo dissolution. However, this is confounded by the evolution of different molecular and colloidal species during dissolution, generating a supersaturated state of the drug. The supersaturated state of a drug is thermodynamically unstable which drives the process of precipitation resulting in a loss of solubility advantage. Maintaining a supersaturated state of the drug with the help of precipitation inhibiting excipients is a key component in the design of ASDs. Therefore, a biopredictive dissolution test is critical for proper risk assessment during the development of an optimal ASD formulation. One of the overlooked components of biopredictive dissolution is the role of drug permeability. The kinetic changes in the phase behavior of a drug during dissolution of ASDs are influenced by drug permeability across a membrane. Conventionally, drug dissolution and permeation are analyzed separately although they occur simultaneously in vivo. The kinetic phase changes occurring during dissolution of ASDs can influence the thermodynamic activity and membrane flux of a drug. The present review evaluates the feasibility, predictability, and practicability of permeability/dissolution for the optimal development and risk assessment of ASD formulations.
Collapse
|
13
|
Qian K, Stella L, Jones DS, Andrews GP, Du H, Tian Y. Drug-Rich Phases Induced by Amorphous Solid Dispersion: Arbitrary or Intentional Goal in Oral Drug Delivery? Pharmaceutics 2021; 13:889. [PMID: 34203969 PMCID: PMC8232734 DOI: 10.3390/pharmaceutics13060889] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/19/2022] Open
Abstract
Among many methods to mitigate the solubility limitations of drug compounds, amorphous solid dispersion (ASD) is considered to be one of the most promising strategies to enhance the dissolution and bioavailability of poorly water-soluble drugs. The enhancement of ASD in the oral absorption of drugs has been mainly attributed to the high apparent drug solubility during the dissolution. In the last decade, with the implementations of new knowledge and advanced analytical techniques, a drug-rich transient metastable phase was frequently highlighted within the supersaturation stage of the ASD dissolution. The extended drug absorption and bioavailability enhancement may be attributed to the metastability of such drug-rich phases. In this paper, we have reviewed (i) the possible theory behind the formation and stabilization of such metastable drug-rich phases, with a focus on non-classical nucleation; (ii) the additional benefits of the ASD-induced drug-rich phases for bioavailability enhancements. It is envisaged that a greater understanding of the non-classical nucleation theory and its application on the ASD design might accelerate the drug product development process in the future.
Collapse
Affiliation(s)
- Kaijie Qian
- Pharmaceutical Engineering Group, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (K.Q.); (D.S.J.); (G.P.A.)
| | - Lorenzo Stella
- Atomistic Simulation Centre, School of Mathematics and Physics, Queen’s University Belfast, 7–9 College Park E, Belfast BT7 1PS, UK;
- David Keir Building, School of Chemistry and Chemical Engineering, Queen’s University Belfast, Stranmillis Road, Belfast BT9 5AG, UK
| | - David S. Jones
- Pharmaceutical Engineering Group, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (K.Q.); (D.S.J.); (G.P.A.)
| | - Gavin P. Andrews
- Pharmaceutical Engineering Group, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (K.Q.); (D.S.J.); (G.P.A.)
- School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Huachuan Du
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
- Simpson Querrey Institute, Northwestern University, 303 East Superior Street, 11th floor, Chicago, IL 60611, USA
| | - Yiwei Tian
- Pharmaceutical Engineering Group, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (K.Q.); (D.S.J.); (G.P.A.)
| |
Collapse
|
14
|
Sugita K, Takata N, Yonemochi E. Dose-Dependent Solubility-Permeability Interplay for Poorly Soluble Drugs under Non-Sink Conditions. Pharmaceutics 2021; 13:323. [PMID: 33801447 PMCID: PMC7998705 DOI: 10.3390/pharmaceutics13030323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 11/17/2022] Open
Abstract
We investigated the solubility-permeability interplay using a solubilizer additive under non-sink conditions. Sodium lauryl sulfate (SLS) was used as a solubilizer additive. The solubility and permeability of two poorly soluble drugs at various doses, with or without SLS, were evaluated by flux measurements. The total permeated amount of griseofulvin, which has high permeability, increased by the addition of SLS. On the other hand, triamcinolone, which has low permeability, showed an almost constant rate of permeation regardless of the SLS addition. The total permeated amount of griseofulvin increased by about 20-30% when the dose amount exceeded its solubility, whereas its concentration in the donor chamber remained almost constant. However, the total permeated amount of triamcinolone was almost constant regardless of dose amount. These results suggest that the permeability of the unstirred water layer (UWL) may be affected by SLS and solid drugs for high-permeable drugs. The effect of solid drugs could be explained by a reduction in the apparent UWL thickness. For the appropriate evaluation of absorption, it would be essential to consider these effects.
Collapse
Affiliation(s)
- Kazuya Sugita
- Department of Physical Chemistry, Hoshi University, 2-4-41, Ebara, Shinagawa, Tokyo 142-8501, Japan;
- Quality Development Department, Chugai Pharma Manufacturing Co., Ltd., 5-5-1, Ukima, Kita, Tokyo 115-8543, Japan;
| | - Noriyuki Takata
- Quality Development Department, Chugai Pharma Manufacturing Co., Ltd., 5-5-1, Ukima, Kita, Tokyo 115-8543, Japan;
| | - Etsuo Yonemochi
- Department of Physical Chemistry, Hoshi University, 2-4-41, Ebara, Shinagawa, Tokyo 142-8501, Japan;
| |
Collapse
|
15
|
Skrdla PJ. Estimating the maximal solubility advantage of drug salts. Int J Pharm 2021; 595:120228. [PMID: 33484924 DOI: 10.1016/j.ijpharm.2021.120228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 11/27/2022]
Abstract
Salt formation can enable the development of poorly water-soluble drugs containing at least one ionizable moiety. Not only can salts offer a solubility enhancement that can sometimes far exceed that of other commonly used solubilization strategies applied across the pharmaceutical industry, they can simultaneously bestow additional benefits such as providing low-cost formulation options. The goal of this work is to put forth a simple methodology to enable one to accurately predict the maximal solubility advantage of acidic and basic drugs whose unionized conjugate (neutral parent molecule) is poorly soluble. While published equations leveraging the Henderson-Hasselbalch/H-H relationship reasonably estimate the thermodynamic solubility limit (in systems where there is no supersaturation), under physiologically relevant conditions the maximal/kinetic solubility can play an important role in determining oral bioavailability, as in the case of amorphous drugs. Under these circumstances, a higher solubility can be maintained for short durations through drug supersaturation provided that the precipitation is slow, thereby causing deviations from H-H predictions. It is possible also that, in some instances, supersaturation could coincide with behavior previously attributed to drug aggregation in solution. The proposed methodology utilizes speciation across the pH range to allow one to determine the maximal amount of ionized and unionized drug in solution at each pH. The calculation is easily extended to cases where the counterion serves as a competing weak acid, weak base, or as a common ion. Additionally, a more thorough assessment of the Gibbs free energy change associated with the solubilization of salts is also presented, as this energy describes the key driving force for the recrystallization of the neutral parent by triggering its nucleation. Lastly, to demonstrate applicability to real-world compounds containing multiple ionizable moieties, the complex pH-solubility profile of a drug maleate salt taken from the literature is simulated.
Collapse
Affiliation(s)
- Peter J Skrdla
- GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, PA 19426, USA.
| |
Collapse
|