1
|
Ahmed HS. The Multifaceted Role of L-Type Amino Acid Transporter 1 at the Blood-Brain Barrier: Structural Implications and Therapeutic Potential. Mol Neurobiol 2025; 62:3813-3832. [PMID: 39325101 DOI: 10.1007/s12035-024-04506-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024]
Abstract
L-type amino acid transporter 1 (LAT1) is integral to the transport of large neutral amino acids across the blood-brain barrier (BBB), playing a crucial role in brain homeostasis and the delivery of therapeutic agents. This review explores the multifaceted role of LAT1 in neurological disorders, including its structural and functional aspects at the BBB. Studies using advanced BBB models, such as induced pluripotent stem cell (iPSC)-derived systems and quantitative proteomic analyses, have demonstrated LAT1's significant impact on drug permeability and transport efficiency. In Alzheimer's disease, LAT1-mediated delivery of anti-inflammatory and neuroprotective agents shows promise in overcoming BBB limitations. In Parkinson's disease, LAT1's role in transporting L-DOPA and other therapeutic agents highlights its potential in enhancing treatment efficacy. In phenylketonuria, studies have revealed polymorphisms and genetic variations of LAT1, which could be correlated to disease severity. Prodrugs of valproic acid, pregabalin, and gabapentin help use LAT1-mediated transport to increase the therapeutic activity and bioavailability of the prodrug in the brain. LAT1 has also been studied in neurodevelopment disorders like autism spectrum disorders and Rett syndrome, along with neuropsychiatric implications in depression. Its implications in neuro-oncology, especially in transporting therapeutic agents into cancer cells, show immense future potential. Phenotypes of LAT1 have also shown variations in the general population affecting their ability to respond to painkillers and anti-inflammatory drugs. Furthermore, LAT1-targeted approaches, such as functionalized nanoparticles and prodrugs, show promise in overcoming chemoresistance and enhancing drug delivery to the brain. The ongoing exploration of LAT1's structural characteristics and therapeutic applications reiterates its critical role in advancing treatments for neurological disorders.
Collapse
Affiliation(s)
- H Shafeeq Ahmed
- Bangalore Medical College and Research Institute, Bangalore, 560002, Karnataka, India.
| |
Collapse
|
2
|
Pedder JH, Sonabend AM, Cearns MD, Michael BD, Zakaria R, Heimberger AB, Jenkinson MD, Dickens D. Crossing the blood-brain barrier: emerging therapeutic strategies for neurological disease. Lancet Neurol 2025; 24:246-260. [PMID: 39862873 DOI: 10.1016/s1474-4422(24)00476-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/20/2024] [Accepted: 11/12/2024] [Indexed: 01/27/2025]
Abstract
The blood-brain barrier is a physiological barrier that can prevent both small and complex drugs from reaching the brain to exert a pharmacological effect. For treatment of neurological diseases, drug concentrations at the target site are a fundamental parameter for therapeutic effect; thus, the blood-brain barrier is a major obstacle to overcome. Novel strategies have been developed to circumvent the blood-brain barrier, including CSF delivery, intracranial delivery, ultrasound-based methods, membrane transporters, receptor-mediated transcytosis, and nanotherapeutics. These approaches each have their advantages and disadvantages. CSF delivery and intracranial delivery are direct but invasive techniques that have not yet shown efficacy in clinical trials, although development of novel delivery devices might improve these approaches. Ultrasound-based disruption has shown some efficacy in clinical trials, but it can require invasive procedures. Approaches using membrane transporters and receptor-mediated transcytosis are less invasive than are other techniques, but they can have off-target effects. Nanotherapeutics have shown promise, but these strategies are in early stages of development. Advancements in drug delivery across the blood-brain barrier will require appropriately designed and powered clinical studies, with a focus on the timing of treatment, demographic and genetic considerations, head-to-head comparison with other treatment strategies (rather than a placebo), and relevant primary and secondary outcome measures.
Collapse
Affiliation(s)
- Josephine H Pedder
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Adam M Sonabend
- Department of Neurological Surgery, Malnati Brain Tumor Institute of the Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Michael D Cearns
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Benedict D Michael
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK; Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Rasheed Zakaria
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Amy B Heimberger
- Department of Neurological Surgery, Malnati Brain Tumor Institute of the Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Michael D Jenkinson
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - David Dickens
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
3
|
Alves LDF, Moore JB, Kell DB. The Biology and Biochemistry of Kynurenic Acid, a Potential Nutraceutical with Multiple Biological Effects. Int J Mol Sci 2024; 25:9082. [PMID: 39201768 PMCID: PMC11354673 DOI: 10.3390/ijms25169082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Kynurenic acid (KYNA) is an antioxidant degradation product of tryptophan that has been shown to have a variety of cytoprotective, neuroprotective and neuronal signalling properties. However, mammalian transporters and receptors display micromolar binding constants; these are consistent with its typically micromolar tissue concentrations but far above its serum/plasma concentration (normally tens of nanomolar), suggesting large gaps in our knowledge of its transport and mechanisms of action, in that the main influx transporters characterized to date are equilibrative, not concentrative. In addition, it is a substrate of a known anion efflux pump (ABCC4), whose in vivo activity is largely unknown. Exogeneous addition of L-tryptophan or L-kynurenine leads to the production of KYNA but also to that of many other co-metabolites (including some such as 3-hydroxy-L-kynurenine and quinolinic acid that may be toxic). With the exception of chestnut honey, KYNA exists at relatively low levels in natural foodstuffs. However, its bioavailability is reasonable, and as the terminal element of an irreversible reaction of most tryptophan degradation pathways, it might be added exogenously without disturbing upstream metabolism significantly. Many examples, which we review, show that it has valuable bioactivity. Given the above, we review its potential utility as a nutraceutical, finding it significantly worthy of further study and development.
Collapse
Affiliation(s)
- Luana de Fátima Alves
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | - J. Bernadette Moore
- School of Food Science & Nutrition, University of Leeds, Leeds LS2 9JT, UK;
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| |
Collapse
|
4
|
Patel W, Shankar RG, Smith MA, Snodgrass HR, Pirmohamed M, Jorgensen AL, Alfirevic A, Dickens D. Role of Transporters and Enzymes in Metabolism and Distribution of 4-Chlorokynurenine (AV-101). Mol Pharm 2024; 21:550-563. [PMID: 38261609 PMCID: PMC10848289 DOI: 10.1021/acs.molpharmaceut.3c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 01/25/2024]
Abstract
4-Chlorokynurenine (4-Cl-KYN, AV-101) is a prodrug of a NMDA receptor antagonist and is in clinical development for potential CNS indications. We sought to further understand the distribution and metabolism of 4-Cl-KYN, as this information might provide a strategy to enhance the clinical development of this drug. We used excretion studies in rats, in vitro transporter assays, and pharmacogenetic analysis of clinical trial data to determine how 4-Cl-KYN and metabolites are distributed. Our data indicated that a novel acetylated metabolite (N-acetyl-4-Cl-KYN) did not affect the uptake of 4-Cl-KYN across the blood-brain barrier via LAT1. 4-Cl-KYN and its metabolites were found to be renally excreted in rodents. In addition, we found that N-acetyl-4-Cl-KYN inhibited renal and hepatic transporters involved in excretion. Thus, this metabolite has the potential to limit the excretion of a range of compounds. Our pharmacogenetic analysis found that a SNP in N-acetyltransferase 8 (NAT8, rs13538) was linked to levels of N-acetyl-4-Cl-KYN relative to 4-Cl-KYN found in the plasma and that a SNP in SLC7A5 (rs28582913) was associated with the plasma levels of the active metabolite, 7-Cl-KYNA. Thus, we have a pharmacogenetics-based association for plasma drug level that could aid in the drug development of 4-Cl-KYN and have investigated the interaction of a novel metabolite with drug transporters.
Collapse
Affiliation(s)
- Waseema Patel
- Department
of Pharmacology and Therapeutics, University
of Liverpool, Liverpool L69 3GL, United
Kingdom
| | - Ravi G. Shankar
- Institute
of Population Health, University of Liverpool, Liverpool L69 3GL, United Kingdom
| | - Mark A. Smith
- Vistagen
Therapeutics, Inc., 343 Allerton Ave, South San Francisco, California 94080, United States
- Medical
College of Georgia, 1120
15th St, Augusta, Georgia 30912, United States
| | - H. Ralph Snodgrass
- Formerly
at Vistagen Therapeutics, Inc., 343 Allerton Ave, South San Francisco, California 94080, United States
| | - Munir Pirmohamed
- Department
of Pharmacology and Therapeutics, University
of Liverpool, Liverpool L69 3GL, United
Kingdom
| | - Andrea L. Jorgensen
- Institute
of Population Health, University of Liverpool, Liverpool L69 3GL, United Kingdom
| | - Ana Alfirevic
- Department
of Pharmacology and Therapeutics, University
of Liverpool, Liverpool L69 3GL, United
Kingdom
| | - David Dickens
- Department
of Pharmacology and Therapeutics, University
of Liverpool, Liverpool L69 3GL, United
Kingdom
| |
Collapse
|
5
|
Zhou Y, Xiong L, Chen✉ J, Wang✉ Q. Integrative Analyses of scRNA-seq, Bulk mRNA-seq, and DNA Methylation Profiling in Depressed Suicide Brain Tissues. Int J Neuropsychopharmacol 2023; 26:840-855. [PMID: 37774423 PMCID: PMC10726413 DOI: 10.1093/ijnp/pyad057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/27/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Suicidal behaviors have become a serious public health concern globally due to the economic and human cost of suicidal behavior to individuals, families, communities, and society. However, the underlying etiology and biological mechanism of suicidal behavior remains poorly understood. METHODS We collected different single omic data, including single-cell RNA sequencing (scRNA-seq), bulk mRNA-seq, DNA methylation microarrays from the cortex of Major Depressive Disorder (MDD) in suicide subjects' studies, as well as fluoxetine-treated rats brains. We matched subject IDs that overlapped between the transcriptome dataset and the methylation dataset. The differential expression genes and differentially methylated regions were calculated with a 2-group comparison analysis. Cross-omics analysis was performed to calculate the correlation between the methylated and transcript levels of differentially methylated CpG sites and mapped transcripts. Additionally, we performed a deconvolution analysis for bulk mRNA-seq and DNA methylation profiling with scRNA-seq as the reference profiles. RESULTS Difference in cell type proportions among 7 cell types. Meanwhile, our analysis of single-cell sequence from the antidepressant-treated rats found that drug-specific differential expression genes were enriched into biological pathways, including ion channels and glutamatergic receptors. CONCLUSIONS This study identified some important dysregulated genes influenced by DNA methylation in 2 brain regions of depression and suicide patients. Interestingly, we found that oligodendrocyte precursor cells (OPCs) have the most contributors for cell-type proportions related to differential expression genes and methylated sites in suicidal behavior.
Collapse
Affiliation(s)
- Yalan Zhou
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lan Xiong
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Jianhua Chen✉
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingzhong Wang✉
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Ren R, Wang X, Leas DA, Scheurer C, Hoevel S, Cal M, Chen G, Zhong L, Katneni K, Pham T, Patil R, Sil D, Walters MJ, Schulze TT, Neville AJ, Dong Y, Wittlin S, Kaiser M, Davis PH, Charman SA, Vennerstrom JL. Antimalarial Dibenzannulated Medium-Ring Keto Lactams. ACS Infect Dis 2023; 9:1964-1980. [PMID: 37695781 PMCID: PMC10860121 DOI: 10.1021/acsinfecdis.3c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
We discovered dibenzannulated medium-ring keto lactams (11,12-dihydro-5H-dibenzo[b,g]azonine-6,13-diones) as a new antimalarial chemotype. Most of these had chromatographic LogD7.4 values ranging from <0 to 3 and good kinetic solubilities (12.5 to >100 μg/mL at pH 6.5). The more polar compounds in the series (LogD7.4 values of <2) had the best metabolic stability (CLint values of <50 μL/min/mg protein in human liver microsomes). Most of the compounds had relatively low cytotoxicity, with IC50 values >30 μM, and there was no correlation between antiplasmodial activity and cytotoxicity. The four most potent compounds had Plasmodium falciparum IC50 values of 4.2 to 9.4 nM and in vitro selectivity indices of 670 to >12,000. They were more than 4 orders-of-magnitude less potent against three other protozoal pathogens (Trypanosoma brucei rhodesiense, Trypanosoma cruzi, and Leishmania donovani) but did have relatively high potency against Toxoplasma gondii, with IC50 values ranging from 80 to 200 nM. These keto lactams are converted into their poorly soluble 4(1H)-quinolone transannular condensation products in vitro in culture medium and in vivo in mouse blood. The similar antiplasmodial potencies of three keto lactam-quinolone pairs suggest that the quinolones likely contribute to the antimalarial activity of the lactams.
Collapse
Affiliation(s)
- Rongguo Ren
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Xiaofang Wang
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Derek A Leas
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Christian Scheurer
- Department of Medical Parasitology and Infection Biology, Swiss Tropical Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
- University of Basel, CH-4003 Basel, Switzerland
| | - Sarah Hoevel
- Department of Medical Parasitology and Infection Biology, Swiss Tropical Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
- University of Basel, CH-4003 Basel, Switzerland
| | - Monica Cal
- Department of Medical Parasitology and Infection Biology, Swiss Tropical Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
- University of Basel, CH-4003 Basel, Switzerland
| | - Gong Chen
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Longjin Zhong
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Kasiram Katneni
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Thao Pham
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Rahul Patil
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Diptesh Sil
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Matthias J Walters
- Department of Biology, University of Nebraska at Omaha, 6001 Dodge St., Omaha, Nebraska 68182, United States
| | - Thomas T Schulze
- Department of Biology, University of Nebraska at Omaha, 6001 Dodge St., Omaha, Nebraska 68182, United States
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| | - Andrew J Neville
- Department of Biology, University of Nebraska at Omaha, 6001 Dodge St., Omaha, Nebraska 68182, United States
| | - Yuxiang Dong
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Sergio Wittlin
- Department of Medical Parasitology and Infection Biology, Swiss Tropical Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
- University of Basel, CH-4003 Basel, Switzerland
| | - Marcel Kaiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
- University of Basel, CH-4003 Basel, Switzerland
| | - Paul H Davis
- Department of Biology, University of Nebraska at Omaha, 6001 Dodge St., Omaha, Nebraska 68182, United States
| | - Susan A Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Jonathan L Vennerstrom
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| |
Collapse
|
7
|
Bitar AN, Sulaiman SAS. The evidence from clinical trials on Gout medicines effect on COVID-19: A protocol for systematic review and meta-analysis. Nurs Open 2023; 10:2684-2688. [PMID: 36443281 PMCID: PMC9878240 DOI: 10.1002/nop2.1501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/13/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022] Open
Abstract
AIM To evaluate the available evidence from clinical trials on the efficacy of gout medicines against COVID-19. DESIGN Systematic review and Meta-analysis. METHODS We are systematically searching five databases [PubMed, Embase, CT.gov, ICTRP, CINAHL (EBSCO)]. We are following the PRISMA statement and the EPOC guidelines. The meta-analysis will be conducted using Revman-5.4.1 from Cochrane collaboration, UK. This review's protocol was also registered in PROSPERO, University of York, UK (CRD42022299718). RESULTS In this meta-analysis, we plan to give a conclusive overview of the available evidence on the efficacy of the medications used to manage gout in reducing COVID-19 mortality, ICU admission, ventilation rate and hospitalization duration. If the results were positive, these drugs would greatly add to the scarce treatment options against COVID-19. Furthermore, these drugs might provide an excellent alternative to inconvenient and expensive drugs. Additionally, most of these drugs have a well-established safety profile for use during nursing, making them a much safer option for nursing mothers with COVID-19.
Collapse
Affiliation(s)
- Ahmad Naoras Bitar
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Aleppo, Aleppo, Syria.,Department of Clinical Pharmacy, Michel Sayegh College of Pharmacy, Aqaba University of Technology, Aqaba, Jordan
| | - Syed Azhar Syed Sulaiman
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
8
|
Lv S, Yao K, Zhang Y, Zhu S. NMDA receptors as therapeutic targets for depression treatment: Evidence from clinical to basic research. Neuropharmacology 2023; 225:109378. [PMID: 36539011 DOI: 10.1016/j.neuropharm.2022.109378] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Ketamine, functioning as a channel blocker of the excitatory glutamate-gated N-methyl-d-aspartate (NMDA) receptors, displays compelling fast-acting and sustained antidepressant effects for treatment-resistant depression. Over the past decades, clinical and preclinical studies have implied that the pathology of depression is associated with dysfunction of glutamatergic transmission. In particular, the discovery of antidepressant agents modulating NMDA receptor function has prompted breakthroughs for depression treatment compared with conventional antidepressants targeting the monoaminergic system. In this review, we first summarized the signalling pathway of the ketamine-mediated antidepressant effects, based on the glutamate hypothesis of depression. Second, we reviewed the hypotheses of the synaptic mechanism and network of ketamine antidepressant effects within different brain areas and distinct subcellular localizations, including NMDA receptor antagonism on GABAergic interneurons, extrasynaptic and synaptic NMDA receptor-mediated antagonism, and ketamine blocking bursting activities in the lateral habenula. Third, we reviewed the different roles of NMDA receptor subunits in ketamine-mediated cognitive and psychiatric behaviours in genetically-manipulated rodent models. Finally, we summarized the structural basis of NMDA receptor channel blockers and discussed NMDA receptor modulators that have been reported to exert potential antidepressant effects in animal models or in clinical trials. Integrating the cutting-edge technologies of cryo-EM and artificial intelligence-based drug design (AIDD), we expect that the next generation of first-in-class rapid antidepressants targeting NMDA receptors would be an emerging direction for depression therapeutics. This article is part of the Special Issue on 'Ketamine and its Metabolites'.
Collapse
Affiliation(s)
- Shiyun Lv
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, China
| | - Kejie Yao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, China
| | - Youyi Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shujia Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
9
|
Chaki S, Watanabe M. Antidepressants in the post-ketamine Era: Pharmacological approaches targeting the glutamatergic system. Neuropharmacology 2023; 223:109348. [PMID: 36423706 DOI: 10.1016/j.neuropharm.2022.109348] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
The efficacy of currently available medications for depression is unsatisfactory, and that has spurred the development of novel antidepressants based on a hypothesis other than the monoamine hypothesis. Recent studies have revealed the importance of the glutamatergic system as a drug target for depression, and the validity of this hypothesis has been underpinned by the discovery of the antidepressant effects of ketamine, leading to the market launch of Spravato® nasal spray which delivers (S)-ketamine (esketamine). However, both ketamine and esketamine have unwanted adverse effects that hinder their routine use in daily practice. Extensive studies have elucidated the mechanisms underlying the antidepressant effects of ketamine, and that has encouraged numerous drug discovery activities to search for agents that retain a ketamine-like antidepressant profile but with lesser adverse effect liabilities. The discovery activities have included attempts to identify 1) the active substance(s) in the circulation after ketamine administration and 2) agents that act on the proposed mechanisms of action of ketamine. Clinical trials of agents discovered in the course of these activities are underway, and in 2022, AUVELITY™ (AXS-05; dextromethorphan with bupropion) was approved by the United States Food and Drug Administration. Drug development of post-ketamine agents should provide novel antidepressants that are safer, but as potent and rapidly acting as ketamine.
Collapse
Affiliation(s)
- Shigeyuki Chaki
- Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama, Saitama 331-9530, Japan.
| | - Mai Watanabe
- Taisho Pharmaceutical R&D Inc., 350 Mt. Kemble Avenue, Morristown, NJ 07960, USA.
| |
Collapse
|
10
|
Bourque M, Grégoire L, Patel W, Dickens D, Snodgrass R, Di Paolo T. AV-101, a Pro-Drug Antagonist at the NMDA Receptor Glycine Site, Reduces L-Dopa Induced Dyskinesias in MPTP Monkeys. Cells 2022; 11:cells11223530. [PMID: 36428960 PMCID: PMC9688762 DOI: 10.3390/cells11223530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/10/2022] Open
Abstract
N-methyl-D-aspartate (NMDA) receptors have been implicated in L-Dopa-induced dyskinesias (LID) in Parkinson's disease patients, but the use of antagonists that directly inhibit this receptor is associated with severe side effects. L-4-chlorokynurenine (4-Cl-KYN or AV-101) is a pro-drug of 7-chlorokynurenic acid (7-Cl-KYNA), a potent and specific antagonist of the glycine (GlyB) co-agonist site of NMDA receptors. The 7-Cl-KYNA has limited ability to cross the blood-brain barrier, whereas AV-101 readily accesses the brain. We investigated if AV-101 reduces LID in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned monkeys while maintaining the antiparkinsonian activity of L-Dopa. A first pilot study using three dyskinetic MPTP monkeys showed that acute AV-101 treatment (250 and 450 mg/kg) reduced LID and maintained the antiparkinsonian activity of L-Dopa. The main study using six additional dyskinetic MPTP monkeys showed that repeated AV-101 treatment (250 mg/kg, b.i.d. for 4 consecutive days) maintained their L-Dopa antiparkinsonian response. We measured significantly less LID when AV-101 was combined with L-Dopa treatment. AV-101 alone or with L-Dopa had no non-motor adverse effects in MPTP monkeys. Our study showed antidyskinetic activity of AV-101 in MPTP monkeys was comparable to amantadine tested previously in our laboratory in this model. We observed no adverse effects with AV-101, which is an improvement over amantadine, with its known side effects.
Collapse
Affiliation(s)
- Mélanie Bourque
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC G1V4G2, Canada
| | - Laurent Grégoire
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC G1V4G2, Canada
| | - Waseema Patel
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L69 3GL, UK
| | - David Dickens
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L69 3GL, UK
| | - Ralph Snodgrass
- Vistagen Therapeutics, Inc., South San Francisco, CA 94080, USA
| | - Thérèse Di Paolo
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC G1V4G2, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC G1V0A6, Canada
- Correspondence:
| |
Collapse
|
11
|
Cappoli N, Jenkinson MD, Russo CD, Dickens D. LAT1, a novel pharmacological target for the treatment of glioblastoma. Biochem Pharmacol 2022; 201:115103. [PMID: 35618000 DOI: 10.1016/j.bcp.2022.115103] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 11/02/2022]
Abstract
The L-Type Amino Acid transporter, LAT1 (SLC7A5), has a crucial role in mediating amino acid uptake into the cells, thus modulating cell growth and proliferation as well as other intracellular functions. Different studies have reported a central role of LAT1 in glioblastoma development and progression, suggesting that the modulation of its activity could be a novel therapeutic strategy. LAT1 also has an important role in the peripheral immune system, by regulating the activation status of several immune cells through modulation of the mechanistic target of rapamycin kinase. In glioblastoma (GBM), the blood-brain barrier is disrupted, which allows the recruitment of peripheral immune cells to the tumour site. These cells, together with resident microglia, contribute to cancer growth and progression. Currently, little is known about the function of LAT1 in the reprogramming of the immune component of the tumour microenvironment in the context of GBM. In this article, we review the available data on the role of LAT1 in the regulation of GBM biology, including its potential role in the tumour microenvironment, particularly in infiltrating-peripheral immune cells and resident microglial cells. In addition, we review the available data on the main pharmacological inhibitors of LAT1, aiming to evaluate their possible role as novel therapeutics for GBM.
Collapse
Affiliation(s)
- Natalia Cappoli
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica del Sacro Cuore-Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Michael D Jenkinson
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, United Kingdom; Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Cinzia Dello Russo
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica del Sacro Cuore-Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, United Kingdom.
| | - David Dickens
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
12
|
Abstract
The efficacy of standard antidepressants is limited for many patients with mood disorders such as major depressive disorder (MDD) and bipolar depression, underscoring the urgent need to develop novel therapeutics. Both clinical and preclinical studies have implicated glutamatergic system dysfunction in the pathophysiology of mood disorders. In particular, rapid reductions in depressive symptoms have been observed in response to subanesthetic doses of the glutamatergic modulator racemic (R,S)-ketamine in individuals with mood disorders. These results have prompted investigation into other glutamatergic modulators for depression, both as monotherapy and adjunctively. Several glutamate receptor-modulating agents have been tested in proof-of-concept studies for mood disorders. This manuscript gives a brief overview of the glutamate system and its relevance to rapid antidepressant response and discusses the existing clinical evidence for glutamate receptor-modulating agents, including (1) broad glutamatergic modulators ((R,S)-ketamine, esketamine, (R)-ketamine, (2R,6R)-hydroxynorketamine [HNK], dextromethorphan, Nuedexta [a combination of dextromethorphan and quinidine], deudextromethorphan [AVP-786], axsome [AXS-05], dextromethadone [REL-1017], nitrous oxide, AZD6765, CLE100, AGN-241751); (2) glycine site modulators (D-cycloserine [DCS], NRX-101, rapastinel [GLYX-13], apimostinel [NRX-1074], sarcosine, 4-chlorokynurenine [4-Cl-KYN/AV-101]); (3) subunit (NR2B)-specific N-methyl-D-aspartate (NMDA) receptor antagonists (eliprodil [EVT-101], traxoprodil [CP-101,606], rislenemdaz [MK-0657/CERC-301]); (4) metabotropic glutamate receptor (mGluR) modulators (basimglurant, AZD2066, RG1578, TS-161); and (5) mammalian target of rapamycin complex 1 (mTORC1) activators (NV-5138). Many of these agents are still in the preliminary stages of development. Furthermore, to date, most have demonstrated relatively modest effects compared with (R,S)-ketamine and esketamine, though some have shown more favorable characteristics. Of these novel agents, the most promising, and the ones for which the most evidence exists, appear to be those targeting ionotropic glutamate receptors.
Collapse
|