1
|
Zhang L, Su L, Wu L, Zhou W, Xie J, Fan Y, Zhou X, Zhou C, Cui Y, Sun J. Versatile hydrogels prepared by microfluidics technology for bone tissue engineering applications. J Mater Chem B 2025; 13:2611-2639. [PMID: 39876639 DOI: 10.1039/d4tb02314e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Bone defects are a prevalent issue resulting from various factors, such as trauma, degenerative diseases, congenital disabilities, and the surgical removal of tumors. Current methods for bone regeneration have limitations. In this context, the fusion of tissue engineering and microfluidics has emerged as a promising strategy in the field of bone regeneration. This study describes the classification of microfluidic devices based on the nature of flow and channel type, as well as the materials and techniques required. An overview of microfluidic methods used to prepare hydrogels and the advantages of using these hydrogels in bone tissue engineering (BTE) combining several basic elements of BTE to highlight its advantages is provided. Furthermore, this work emphasizes the benefits of using hydrogels prepared via microfluidics over conventional hydrogels in BTE because of their controlled release of cargo, they can be used for in situ injection, simplify the steps of single-cell encapsulation and have the advantages of high-throughput and precise preparation. Additionally, organ-on-a-chip models fabricated via microfluidics offer a platform for studying cell and tissue behaviors in an authentic and dynamic environment. Moreover, microfluidic devices can be utilized for noninvasive diagnosis and therapy. Finally, this paper summarizes the preclinical and clinical applications of hydrogels prepared via microfluidics for bone regeneration by focusing on their current developmental status, limitations associated with their application, and future challenges, which underscore their potential impacts on advancing regenerative medicine practices.
Collapse
Affiliation(s)
- Luyue Zhang
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Liqian Su
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Lina Wu
- College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Weikai Zhou
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jing Xie
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Yi Fan
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Xuedong Zhou
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Changchun Zhou
- College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yujia Cui
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jianxun Sun
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Fernández-González A, de Lorenzo González C, Rodríguez-Varillas S, Badía-Laíño R. Bioactive silk fibroin hydrogels: Unraveling the potential for biomedical engineering. Int J Biol Macromol 2024; 278:134834. [PMID: 39154674 DOI: 10.1016/j.ijbiomac.2024.134834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Silk fibroin (SF) has received special attention from the scientific community due to its noteworthy properties. Its unique chemical structure results in an uncommon combination of macroscopically useful properties, yielding a strong, fine and flexible material which, in addition, presents good biodegradability and better biocompatibility. Therefore, silk fibroin in various formats, appears as an ideal candidate for supporting biomedical applications. In this review, we will focus on the hydrogels obtained from silk fibroin or in combination with it, paying special attention to the synthesis procedures, characterization methodologies and biomedical applications. Tissue engineering and drug-delivery systems are, undoubtedly, the two main areas where silk fibroin hydrogels find their place.
Collapse
Affiliation(s)
- Alfonso Fernández-González
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Av. Julian Claveria 8, 33006 Oviedo, Spain
| | - Clara de Lorenzo González
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Av. Julian Claveria 8, 33006 Oviedo, Spain
| | - Sandra Rodríguez-Varillas
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Av. Julian Claveria 8, 33006 Oviedo, Spain
| | - Rosana Badía-Laíño
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Av. Julian Claveria 8, 33006 Oviedo, Spain.
| |
Collapse
|
3
|
Martorana A, Lenzuni M, Contardi M, Palumbo FS, Cataldo S, Pettignano A, Catania V, Schillaci D, Summa M, Athanassiou A, Fiorica C, Bertorelli R, Pitarresi G. Schiff Base-Based Hydrogel Embedded with In Situ Generated Silver Nanoparticles Capped by a Hyaluronic Acid-Diethylenetriamine Derivative for Wound Healing Application. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38603548 DOI: 10.1021/acsami.4c00657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
In this study, hydrogels were produced using a Schiff base reaction between two hyaluronic acid derivatives: one containing aldehyde groups (HA-Ald) and the other holding a diethylenetriamine with terminal amino groups (HA-DETA). The DETA portion promotes the in situ growth, complexation, and stabilization of silver nanoparticles (AgNPs), eliminating the need for external reducing agents. The reaction between HA-DETA and HA-Ald leads to the formation of imine bonds, which results in dynamically pH-responsive cross-linking. While the DETA capping ability helped in embedding the AgNPs, the on/off pH environmental responsivity of the hydrogel allows for a controlled and on-demand release of the drug, mainly when bacterial infections cause pH variation of the wound bed. The injectable hydrogels resulted in being highly compatible in contact with blood red cells, fibroblasts, and keratinocytes and capable of having a proliferative effect on an in vitro wound scratch model. The pH-responsive hydrogels showed proper antibacterial activity againstPseudomonas aeruginosaandStaphylococcus aureus, common bacterial strains presented in wound infections. Finally, in vivo wound model studies demonstrated an overall speeding up in the wound healing rate and advanced wound conditions in the experimental group treated with the hydrogels compared to control samples.
Collapse
Affiliation(s)
- Annalisa Martorana
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Martina Lenzuni
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Marco Contardi
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Department of Earth and Environmental Sciences (DISAT), University of Milan-Bicocca, Piazza della Scienza, 20126 Milan, Italy
| | - Fabio S Palumbo
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Salvatore Cataldo
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle scienze, Ed. 17, 90128 Palermo, Italy
| | - Alberto Pettignano
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle scienze, Ed. 17, 90128 Palermo, Italy
| | - Valentina Catania
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy
| | - Domenico Schillaci
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Maria Summa
- Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | | | - Calogero Fiorica
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Rosalia Bertorelli
- Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Giovanna Pitarresi
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| |
Collapse
|
4
|
Wang H, Shi C, Zhang C, Xiong Y, Liu F, Zhong L, Zhang J. Bovine Serum Albumin/Polyvinyl Alcohol Double‐Network Hydrogel Containing ϵ‐Polylysine for Antibacterial Performance. ChemistrySelect 2024; 9. [DOI: 10.1002/slct.202303389] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/20/2024] [Indexed: 01/06/2025]
Abstract
AbstractWith the discovery and abuse of antibiotics, bacterial resistance has become a key problem in the field of antibacterial materials. Therefore, antibacterial materials that can effectively inhibit bacterial infection are considered to be important biological materials. In this study, a double‐network hydrogel system was designed using bovine serum albumin (BSA) and polyvinyl alcohol (PVA) as the main body. The first network was formed by reducing the disulfide bond on BSA to sulfhydryl group by tris (2‐carboxyethyl) phosphine (TCEP). The second network of PVA was used as the hydrogel to prepare a double‐network hydrogel with good mechanical strength. The introduction of ϵ‐polylysine gives the hydrogel antibacterial activity, which enables it to destroy the cell structure and kill bacteria through electrostatic interaction, and can effectively solve the problem of drug resistance in the field of antibacterial medicine.
Collapse
Affiliation(s)
- Hui Wang
- School of Food Engineering Ludong University Yantai 264025 China
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Changxin Shi
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Chenyun Zhang
- Ceramic Institute Wuxi Vocational Institute of Arts & Technology Wu Xi Shi, Yixing 214206 China
| | - Yingshuo Xiong
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Fangjie Liu
- School of Food Engineering Ludong University Yantai 264025 China
- Institute of Bionanotechnology Ludong University Yantai 264025 China
| | - Linlin Zhong
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Jin Zhang
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 China
| |
Collapse
|
5
|
Koshani R, Nia MH, Ataie Z, Wang Y, Kakkar A, van de Ven TGM. Multifunctional self-healing hydrogels via nanoengineering of colloidal and polymeric cellulose. Int J Biol Macromol 2024; 259:129181. [PMID: 38184036 DOI: 10.1016/j.ijbiomac.2023.129181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/13/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024]
Abstract
The unique features of self-healing hydrogels hold great potential for biomedical applications including injectable hydrogels for cancer treatment, procedures for tumor removal or resection. However, the fabrication of durable and multifunctional self-healing hydrogels composed of biocompatible, green building blocks via versatile synthetic methodology continues to pose a significant challenge. Here, we engineered dialdehyde cellulose (DAC, as a macromolecular bio-crosslinker), and electrosterically stabilized nanocrystalline cellulose (ENCC, as a ligand-targeted drug carrier) to facilitate a strategy for the construction of self-healing hydrogels. Benefiting from its high carboxyl group density, ENCC was functionalized with folic acid (FA) using a non-toxic DMTMM coupling agent and loaded with doxorubicin (DOX, a model drug) through electrostatic interactions. A natural self-healing hydrogel was prepared from carboxymethyl chitosan (CCTS) and DAC mixed with DOX-loaded FA-ENCC using dynamic Schiff-base and hydrogen linkages. A combination of active supramolecular and vital covalent junctions led to a soft (storage modulus ∼500 Pa) and durable material, with rapid (< 5 min) reconstruction of molecular structure from fractured and injected to intact forms. The DAC-CCTS hydrogel showed an appreciable loading capacity of ∼5 mg g-1. Biocompatibility of the hydrogels was evaluated using cell viability and metabolic activity assays, showing lower metabolic activity due to sustained release of its cargo. These materials offer a versatile, sustainable, and green platform for the efficient construction of hydrogels, based on macro- and nano-engineered cellulose, the most abundant and easily accessible biopolymer.
Collapse
Affiliation(s)
- Roya Koshani
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada; Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, QC H9X 3V9, Canada; Pulp and Paper Research Centre, McGill University, 3420 University Street, Montreal, QC H3A 2A7, Canada; Quebec Centre for Advanced Materials (QCAM), 3420 University Street, Montreal, QC H3A 2A7, Canada; Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada.
| | - Marzieh Heidari Nia
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada; Pulp and Paper Research Centre, McGill University, 3420 University Street, Montreal, QC H3A 2A7, Canada; Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada.
| | - Zaman Ataie
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Yixiang Wang
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, QC H9X 3V9, Canada; Quebec Centre for Advanced Materials (QCAM), 3420 University Street, Montreal, QC H3A 2A7, Canada.
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada; Quebec Centre for Advanced Materials (QCAM), 3420 University Street, Montreal, QC H3A 2A7, Canada.
| | - Theo G M van de Ven
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada; Pulp and Paper Research Centre, McGill University, 3420 University Street, Montreal, QC H3A 2A7, Canada; Quebec Centre for Advanced Materials (QCAM), 3420 University Street, Montreal, QC H3A 2A7, Canada.
| |
Collapse
|
6
|
Shahzad N, Alzahrani AR, Aziz Ibrahim IA, Shahid I, Alanazi IM, Falemban AH, Imam MT, Mohsin N, Azlina MFN, Arulselvan P. Therapeutic strategy of biological macromolecules based natural bioactive compounds of diabetes mellitus and future perspectives: A systematic review. Heliyon 2024; 10:e24207. [PMID: 38298622 PMCID: PMC10828662 DOI: 10.1016/j.heliyon.2024.e24207] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/02/2024] Open
Abstract
High blood glucose levels are a hallmark of the metabolic syndrome known as diabetes mellitus. More than 600 million people will have diabetes by 2045 as the global prevalence of the disease continues to rise. Contemporary antidiabetic drugs reduce hyperglycemia and its consequences. However, these drugs come with undesirable side effects, so it's encouraging that research into plant extracts and bioactive substances with antidiabetic characteristics is on the rise. Natural remedies are preferable to conventional anti-diabetic drugs since they are safer for the body, more affordable and have fewer potential adverse effects. Biological macromolecules such as liposomes, niosomes, polymeric nanoparticles, solid lipid nanoparticles, nanoemulsions and metallic nanoparticles are explored in this review. Current drug restrictions have been addressed, and the effectiveness of plant-based antidiabetic therapies has enhanced the merits of these methods. Plant extracts' loading capacity and the carriers' stability are the primary obstacles in developing plant-based nanocarriers. Hydrophilic, hydrophobic, and amphiphilic drugs are covered, and a brief overview of the amphipathic features of liposomes, phospholipids, and lipid nanocarriers is provided. Metallic nanoparticles' benefits and attendant risks are highlighted to emphasize their efficiency in treating hyperglycemia. Researchers interested in the potential of nanoparticles loaded with plant extracts as antidiabetic therapeutics may find the current helpful review.
Collapse
Affiliation(s)
- Naiyer Shahzad
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdullah R. Alzahrani
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Shahid
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ibrahim M. Alanazi
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Alaa Hisham Falemban
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammad Tarique Imam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Nehal Mohsin
- Department of Clinical Pharmacy, Faculty of Pharmacy, Najran University, Najran, Saudi Arabia
| | | | - Palanisamy Arulselvan
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, 602 105, India
| |
Collapse
|
7
|
Muchlis AMG, Yang C, Tsai YT, Ummartyotin S, Lin CC. Multiresponsive Self-Healing Lanthanide Fluorescent Hydrogel for Smart Textiles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46085-46097. [PMID: 37732796 DOI: 10.1021/acsami.3c10662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Lanthanide organometallic complexes exhibit strong luminescence characteristics, owing to their antenna effects. The f-d energy level transition causes this phenomenon, which occurs when ligands and the external electrons of lanthanide metals coordinate. Based on this phenomenon, we used two lanthanide metals, europium (Eu) and terbium (Tb), in the present study as the metal center for iminodiacetic acid ligands. Further, we developed the resulting fluorescent organometallic complex as a smart material. The ligand-metal bond in the material functioned as a metal chelating agent and a cross-linking agent in a dynamically coordinated form, thereby prompting the material to self-heal. Temperature-sensitive poly-N-isopropylacrylamide was incorporated into the material as the polymer backbone. Afterward, we combined it with water-soluble poly(vinyl alcohol) and an additional ligand from poly(acrylic acid) to fabricate a high-performance hydrogel composite material. The shrinkage and expansion of the polymer form a grid between the materials. Because of the different coordination stabilities of Eu3+ and Tb3+, the corresponding material exhibits environmental responses toward excitation wavelength, temperature, and pH, thus generating different colors. When used in fabrics, the cross-linking mechanism of the material effectively looped the material between fabric fibers; furthermore, the temperature sensitivity of the polymer adjusted the size of pores between fabric fibers. At relatively higher temperatures (>32 °C), the polymer structure shrank, fiber pores expanded, and air permeability improved. Thus, this material appears to be promising for use in smart textiles.
Collapse
Affiliation(s)
| | - Ching Yang
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 106334, Taiwan
- Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei 106334, Taiwan
| | - Yi-Ting Tsai
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 106334, Taiwan
| | - Sarute Ummartyotin
- Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Pathum Thani 12120, Thailand
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chun Che Lin
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 106334, Taiwan
- Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei 106334, Taiwan
| |
Collapse
|
8
|
Orabi M, Lo JF. Emerging Advances in Microfluidic Hydrogel Droplets for Tissue Engineering and STEM Cell Mechanobiology. Gels 2023; 9:790. [PMID: 37888363 PMCID: PMC10606214 DOI: 10.3390/gels9100790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Hydrogel droplets are biodegradable and biocompatible materials with promising applications in tissue engineering, cell encapsulation, and clinical treatments. They represent a well-controlled microstructure to bridge the spatial divide between two-dimensional cell cultures and three-dimensional tissues, toward the recreation of entire organs. The applications of hydrogel droplets in regenerative medicine require a thorough understanding of microfluidic techniques, the biocompatibility of hydrogel materials, and droplet production and manipulation mechanisms. Although hydrogel droplets were well studied, several emerging advances promise to extend current applications to tissue engineering and beyond. Hydrogel droplets can be designed with high surface-to-volume ratios and a variety of matrix microstructures. Microfluidics provides precise control of the flow patterns required for droplet generation, leading to tight distributions of particle size, shape, matrix, and mechanical properties in the resultant microparticles. This review focuses on recent advances in microfluidic hydrogel droplet generation. First, the theoretical principles of microfluidics, materials used in fabrication, and new 3D fabrication techniques were discussed. Then, the hydrogels used in droplet generation and their cell and tissue engineering applications were reviewed. Finally, droplet generation mechanisms were addressed, such as droplet production, droplet manipulation, and surfactants used to prevent coalescence. Lastly, we propose that microfluidic hydrogel droplets can enable novel shear-related tissue engineering and regeneration studies.
Collapse
Affiliation(s)
| | - Joe F. Lo
- Department of Mechanical Engineering, University of Michigan, 4901 Evergreen Road, Dearborn, MI 48128, USA;
| |
Collapse
|
9
|
Sun Z, Zhu D, Zhao H, Liu J, He P, Luan X, Hu H, Zhang X, Wei G, Xi Y. Recent advance in bioactive hydrogels for repairing spinal cord injury: material design, biofunctional regulation, and applications. J Nanobiotechnology 2023; 21:238. [PMID: 37488557 PMCID: PMC10364437 DOI: 10.1186/s12951-023-01996-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
Functional hydrogels show potential application in repairing spinal cord injury (SCI) due to their unique chemical, physical, and biological properties and functions. In this comprehensive review, we present recent advance in the material design, functional regulation, and SCI repair applications of bioactive hydrogels. Different from previously released reviews on hydrogels and three-dimensional scaffolds for the SCI repair, this work focuses on the strategies for material design and biologically functional regulation of hydrogels, specifically aiming to show how these significant efforts can promoting the repairing performance of SCI. We demonstrate various methods and techniques for the fabrication of bioactive hydrogels with the biological components such as DNA, proteins, peptides, biomass polysaccharides, and biopolymers to obtain unique biological properties of hydrogels, including the cell biocompatibility, self-healing, anti-bacterial activity, injectability, bio-adhesion, bio-degradation, and other multi-functions for repairing SCI. The functional regulation of bioactive hydrogels with drugs/growth factors, polymers, nanoparticles, one-dimensional materials, and two-dimensional materials for highly effective treating SCI are introduced and discussed in detail. This work shows new viewpoints and ideas on the design and synthesis of bioactive hydrogels with the state-of-the-art knowledges of materials science and nanotechnology, and will bridge the connection of materials science and biomedicine, and further inspire clinical potential of bioactive hydrogels in biomedical fields.
Collapse
Affiliation(s)
- Zhengang Sun
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266071, People's Republic of China
- Department of Spinal Surgery, Huangdao Central Hospital, Affiliated Hospital of Qingdao University, Qingdao, 266071, China
- The Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, People's Republic of China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Hong Zhao
- Department of Spinal Surgery, Huangdao Central Hospital, Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Jia Liu
- Department of Spinal Surgery, Huangdao Central Hospital, Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Peng He
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xin Luan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Huiqiang Hu
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xuanfen Zhang
- The Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, People's Republic of China.
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China.
| | - Yongming Xi
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
10
|
Alharthy KM, Fadhil Alsaffar M, Althurwi HN, Albaqami FF, Reidh Abass R, Majid Alawi A, Salah Jalal S, Tabassum S, Zhang H, Peng W. Boron nitride nanocage as drug delivery systems for chloroquine, as an effective drug for treatment of coronavirus disease: A DFT study. INORG CHEM COMMUN 2023; 150:110482. [PMID: 36777967 PMCID: PMC9899703 DOI: 10.1016/j.inoche.2023.110482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/21/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
Research has shown that chloroquine (CQ) can effectively help control COVID-19 infection. B24N24 nanocage is a drug delivery system. Thus, through density functional theory, the present study analyzed pristine nanocage-CQ interaction and CQ interaction with Si- and Al -doped nanocage. The findings revealed that nanocage doping, particularly with Si and Al, yields more satisfactory drug delivery for CQ due to their greater electronic and energetic characteristics with CQ.
Collapse
Affiliation(s)
- Khalid M Alharthy
- Pharmacology and Toxicology Department, College of Pharmacy, Prince Sattam bin Abdulaziz University, AlKharj 11942, Saudi Arabia
| | - Marwa Fadhil Alsaffar
- Medical Laboratories Techniques Department, AL-Mustaqbal University College, 51001 Hillah, Babil, Iraq
| | - Hassan N Althurwi
- Pharmacology and Toxicology Department, College of Pharmacy, Prince Sattam bin Abdulaziz University, AlKharj 11942, Saudi Arabia
| | - Faisal F Albaqami
- Pharmacology and Toxicology Department, College of Pharmacy, Prince Sattam bin Abdulaziz University, AlKharj 11942, Saudi Arabia
| | - Russul Reidh Abass
- Al-Farahidi University, Medical Lab. Techniques department, College of Medical Techology, Iraq
| | - Aisha Majid Alawi
- Medical Laboratory Techniques Department, Al-Nisour University College, Baghdad, Iraq
| | - Sarah Salah Jalal
- College of nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Shazia Tabassum
- Department of English, College of Science and Arts, Rejal Alma'a Campus, King Khalid University, Abha, Saudi Arabia
| | - Hao Zhang
- Department of Chemistry, Molecular Logic Gate Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Wang Peng
- Department of Chemistry, Molecular Logic Gate Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|
11
|
Pan Y, Wang Y, Wang Y, Xu S, Jiang F, Han Y, Hu M, Liu Z. Platelet-derived microvesicles (PMVs) in cancer progression and clinical applications. Clin Transl Oncol 2023; 25:873-881. [PMID: 36417084 DOI: 10.1007/s12094-022-03014-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/12/2022] [Indexed: 11/24/2022]
Abstract
Platelet-derived microvesicles (PMVs), the microvesicles with the highest concentration in the bloodstream, play a key role in the regulation of hemostasis, inflammation, and angiogenesis. PMVs have recently been identified as key factors in the link between platelets and cancer. PMVs bind to both cancer cells and nontransformed cells in the microenvironment of the tumor, and then transfer platelet-derived contents to the target cell. These contents have the potential to either stimulate or modulate the target cell's response. PMVs are encased in a lipid bilayer that contains surface proteins and lipids as well as components found inside the PMV. Each of these components participates in known and potential PMV roles in cancer. The complicated roles played by PMVs in the onset, development, and progression of cancer and cancer-related comorbidities are summarized in this study.
Collapse
Affiliation(s)
- Yan Pan
- Department of Blood Transfusion, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 100 Minjiang Road, Quzhou, 324000, Zhejiang, China
| | - Yingjian Wang
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Yanzhong Wang
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Shoufang Xu
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Feiyu Jiang
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Yetao Han
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Mengsi Hu
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Zhiwei Liu
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China.
| |
Collapse
|
12
|
Lai WF. Design and application of self-healable polymeric films and coatings for smart food packaging. NPJ Sci Food 2023; 7:11. [PMID: 36991042 DOI: 10.1038/s41538-023-00185-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/01/2023] [Indexed: 03/31/2023] Open
Abstract
Smart packaging materials enable active control of parameters that potentially influence the quality of a packaged food product. One type of these that have attracted extensive interest is self-healable films and coatings, which show the elegant, autonomous crack repairing ability upon the presence of appropriate stimuli. They exhibit increased durability and effectively lengthen the usage lifespan of the package. Over the years, extensive efforts have been paid to the design and development of polymeric materials that show self-healing properties; however, till now most of the discussions focus on the design of self-healable hydrogels. Efforts devoted to delineating related advances in the context of polymeric films and coatings are scant, not to mention works reviewing the use of self-healable polymeric materials for smart food packaging. This article fills this gap by offering a review of not only the major strategies for fabrication of self-healable polymeric films and coatings but also the mechanisms of the self-healing process. It is hoped that this article cannot only provide a snapshot of the recent development of self-healable food packaging materials, but insights into the optimization and design of new polymeric films and coatings with self-healing properties can also be gained for future research.
Collapse
Affiliation(s)
- Wing-Fu Lai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.
| |
Collapse
|
13
|
Latest Advances in Highly Efficient Dye-Based Photoinitiating Systems for Radical Polymerization. Polymers (Basel) 2023; 15:polym15051148. [PMID: 36904388 PMCID: PMC10007623 DOI: 10.3390/polym15051148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Light-activated polymerization is one of the most important and powerful strategies for fabrication of various types of advanced polymer materials. Because of many advantages, such as economy, efficiency, energy saving and being environmentally friendly, etc., photopolymerization is commonly used in different fields of science and technology. Generally, the initiation of polymerization reactions requires not only light energy but also the presence of a suitable photoinitiator (PI) in the photocurable composition. In recent years, dye-based photoinitiating systems have revolutionized and conquered the global market of innovative PIs. Since then, numerous photoinitiators for radical polymerization containing different organic dyes as light absorbers have been proposed. However, despite the large number of initiators designed, this topic is still relevant today. The interest towards dye-based photoinitiating systems continues to gain in importance, which is related to the need for new initiators capable of effectively initiating chain reactions under mild conditions. In this paper we present the most important information about photoinitiated radical polymerization. We describe the main directions for the application of this technique in various areas. Attention is mainly focused on the review of high-performance radical photoinitiators containing different sensitizers. Moreover, we present our latest achievements in the field of modern dye-based photoinitiating systems for the radical polymerization of acrylates.
Collapse
|
14
|
Lai WF, Reddy OS, Zhang D, Wu H, Wong WT. Cross-linked chitosan/lysozyme hydrogels with inherent antibacterial activity and tuneable drug release properties for cutaneous drug administration. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2167466. [PMID: 36846525 PMCID: PMC9946310 DOI: 10.1080/14686996.2023.2167466] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/13/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Gels with high drug release sustainability and intrinsic antibacterial properties are of high practical potential for cutaneous drug administration, particularly for wound care and skin disease treatment. This study reports the generation and characterization of gels formed by 1,5-pentanedial-mediated crosslinking between chitosan and lysozyme for cutaneous drug delivery. Structures of the gels are characterized by using scanning electron microscopy, X-ray diffractometry and Fourier-transform infrared spectroscopy. An increase in the mass percentage of lysozyme leads to an increase in the swelling ratio and erosion susceptibility of the resulting gels. The drug delivery performance of the gels can be changed simply by manipulating the chitosan/lysozyme mass-to-mass ratio, with an increase in the mass percentage of lysozyme leading to a decline in the encapsulation efficiency and drug release sustainability of the gels. Not only do all gels tested in this study show negligible toxicity in NIH/3T3 fibroblasts, they also demonstrate intrinsic antibacterial effects against both Gram-negative and Gram-positive bacteria, with the magnitude of the effect being positively related to the mass percentage of lysozyme. All these warrant the gels to be further developed as intrinsically antibacterial carriers for cutaneous drug administration.
Collapse
Affiliation(s)
- Wing-Fu Lai
- Department of Urology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Zhejiang, China
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong KongSpecial Administrative Region, China
| | - Obireddy Sreekanth Reddy
- Department of Urology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Zhejiang, China
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong KongSpecial Administrative Region, China
- Department of Chemistry, Sri Krishnadevaraya University, Anantapur, India
| | - Dahong Zhang
- Department of Urology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Zhejiang, China
| | - Haicui Wu
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong KongSpecial Administrative Region, China
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong KongSpecial Administrative Region, China
| |
Collapse
|
15
|
Lin J, Zong C, Chen B, Wang T, Xu J, Du J, Lin Y, Gu Y, Zhu J. Improvement in the healing of bone fractures using a cyclodextrin/Ni-MOF nanofibers network: the development of a novel substrate to increase the surface area with desirable functional properties. RSC Adv 2023; 13:5600-5608. [PMID: 36798749 PMCID: PMC9926337 DOI: 10.1039/d2ra05464g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/16/2023] [Indexed: 02/16/2023] Open
Abstract
In this study, a β-cyclodextrins (β-CDs)/Ni-based MOF (β-CDs/Ni-based MOF) fibrous network with focus on biocompatible and biodegradable properties was used as a new material for orthopedic applications. The final products were synthesized by an efficient, rapid, and controllable electrospinning route under optimal conditions, including a flow rate of 0.3 mL g-1, applied voltage of 18 kV, and spinning distance of 20 cm. Efficient characterization by various analyzes showed that the β-CDs/Ni-based MOF fibrous nanostructures had a thermal stability at about 320 °C and homogeneous particles with a narrow size distribution. The BET analysis results showed a specific surface area of 2140 m2 g-1 for these compounds, which facilized potential conditions needed for the application of these compounds as a new substrate to improve the healing of bone fractures. The results showed the better porosity of the β-CDs/Ni-based MOF scaffolds as an essential property, leading to higher proliferation and nutrition and oxygen delivery, resulting in more tissue regeneration. This study proposes a novel strategy for a fibrous network substrate with distinct properties for orthopedic purposes.
Collapse
Affiliation(s)
- Junfei Lin
- Department of Orthopedics, Affiliated Hospital of Nantong University Nantong Jiangsu China
| | - Chenyu Zong
- Department of Orthopedics, Affiliated Hospital of Nantong University Nantong Jiangsu China
| | - Baisen Chen
- Department of Orthopedics, Nantong First People's Hospital Nantong Jiangsu China
| | - Teng Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University Chongqing China
| | - Jiacheng Xu
- Department of Orthopedics, Affiliated Hospital of Nantong University Nantong Jiangsu China
| | - Jiashang Du
- Department of Orthopedics, Affiliated Hospital of Nantong University Nantong Jiangsu China
| | - Yinghao Lin
- Department of Orthopedics, Affiliated Hospital of Nantong University Nantong Jiangsu China
| | - Yuming Gu
- Department of Orthopedics, Affiliated Hospital of Nantong University Nantong Jiangsu China
| | - Jianwei Zhu
- Department of Orthopedics, Affiliated Hospital of Nantong University Nantong Jiangsu China
| |
Collapse
|
16
|
Sun Z, Yang L, Xu C, Cai C, Li L. Zwitterionic nanocapsules with pH- and thermal- responsiveness for drug-controlled release. NANOTECHNOLOGY 2023; 34:155101. [PMID: 36630705 DOI: 10.1088/1361-6528/acb215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
The construction of an environmentally responsive drug-release system is of great significance for the treatment of special diseases. In particular, the construction of nanomaterials with pH- and thermal-responsiveness, which can effectively encapsulate drugs and control drug release, is becoming hot research. In this study, zwitterionic nanocapsules with stable core-shell structures were synthesized by inverse reversible addition-fragmentation transfer miniemulsion interfacial polymerization. To further study the structure and performance of the nanocapsules, the prepared nanocapsules were characterized by transmission electron microscopy, dynamic light dispersion, and zeta potential analysis. It was found that the nanocapsules had dual pH- and thermal- responsiveness, and the average particle size ranged from 178 to 142 nm when the temperature changed from 25 °C to 40 °C. In addition, bovine serum albumin (BSA) was encapsulated into nanocapsules, and sustained release experiments were conducted at 10 °C and 40 °C. The results showed that nanocapsules as carriers of BSA could achieve the purpose of sustained release of drugs, and showed different sustained release curves at different temperatures. Finally,in vitrocytotoxicity tests were performed to demonstrate the feasibility of their biomedical application. It is believed that the dual pH- and thermal- responsive nanocapsules are promising for drug-controlled release.
Collapse
Affiliation(s)
- Zhijuan Sun
- The Zhejiang Province Key Laboratory of Biofuel, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province 310014, People's Republic of China
| | - Lei Yang
- The Zhejiang Province Key Laboratory of Biofuel, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province 310014, People's Republic of China
| | - Chenchen Xu
- The Zhejiang Province Key Laboratory of Biofuel, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province 310014, People's Republic of China
| | - Chenxin Cai
- The Zhejiang Province Key Laboratory of Biofuel, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province 310014, People's Republic of China
| | - Li Li
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital(Affiliated People's Hospital, Hangzhou Medical College), Key Laboratory of Gastroenterology of Zhejiang Province, Hangzhou, Zhejiang Province 310014, People's Republic of China
| |
Collapse
|
17
|
Barani M, Hajinezhad MR, Shahraki S, Mirinejad S, Razlansari M, Sargazi S, Rahdar A, Díez-Pascual AM. Preparation, characterization, and toxicity assessment of carfilzomib-loaded nickel-based metal-organic framework: Evidence from in-vivo and in-vitro experiments. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
18
|
The effect of Co-encapsulated GNPs-CNTs nanofillers on mechanical properties, degradation and antibacterial behavior of Mg-based composite. J Mech Behav Biomed Mater 2023; 138:105601. [PMID: 36493612 DOI: 10.1016/j.jmbbm.2022.105601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
Magnesium (Mg)-based composites, as one group of the biodegradable materials, enjoy high biodegradability, biocompatibility, and non-toxicity making them a great option for implant applications. In this paper, by the semi powder metallurgy (SPM) technique, the graphene nano-platelets (GNPs) and carbon nanotubes (CNTs) nanosystems, as reinforcements, are dispersed homogenously in the Mg-Zn (MZ) alloy matrix. Subsequently, the composite is successfully produced employing the spark plasma sintering (SPS) process. Compared to the unreinforced MZ sample, GNPs + CNTs mixture reinforced composite exhibits higher compressive strength (∼75%). Notably, adding only 1 wt % of GNPs + CNTs to the MZ matrix reduces the rate of the degradation in the Mg-based composite by almost 2- fold. Examining the antibacterial activity demonstrate that the incorporation of GNPs + CNTs into the Mg-based matrix is likely to prevent the infiltration and development of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) significantly. While the MTT with 0.5 and 1 wt % GNPs + CNTs does not demonstrate cytotoxicity to the MG63 cells, the excessive GNPs + CNTs results in a certain degree of poisonousness. In general, the findings of the present research attest to the viable application of MZ/GNPs + CNTs composites for implants as well as bone infection treatment.
Collapse
|
19
|
Bazi Alahri M, Jibril Ibrahim A, Barani M, Arkaban H, Shadman SM, Salarpour S, Zarrintaj P, Jaberi J, Turki Jalil A. Management of Brain Cancer and Neurodegenerative Disorders with Polymer-Based Nanoparticles as a Biocompatible Platform. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020841. [PMID: 36677899 PMCID: PMC9864049 DOI: 10.3390/molecules28020841] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/27/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023]
Abstract
The blood-brain barrier (BBB) serves as a protective barrier for the central nervous system (CNS) against drugs that enter the bloodstream. The BBB is a key clinical barrier in the treatment of CNS illnesses because it restricts drug entry into the brain. To bypass this barrier and release relevant drugs into the brain matrix, nanotechnology-based delivery systems have been developed. Given the unstable nature of NPs, an appropriate amount of a biocompatible polymer coating on NPs is thought to have a key role in reducing cellular cytotoxicity while also boosting stability. Human serum albumin (HSA), poly (lactic-co-glycolic acid) (PLGA), Polylactide (PLA), poly (alkyl cyanoacrylate) (PACA), gelatin, and chitosan are only a few of the significant polymers mentioned. In this review article, we categorized polymer-coated nanoparticles from basic to complex drug delivery systems and discussed their application as novel drug carriers to the brain.
Collapse
Affiliation(s)
- Mehdi Bazi Alahri
- Department of Clinical Psychology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1971653313, Iran
| | - Alhawarin Jibril Ibrahim
- Department of Chemistry, Faculty of Science, Al-Hussein Bin Talal University, Ma’an 71111, Jordan
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran
- Correspondence:
| | - Hassan Arkaban
- Department of Chemistry, University of Isfahan, Isfahan 8174673441, Iran
| | | | - Soodeh Salarpour
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, USA
| | - Javad Jaberi
- Department of Chemistry, University of Isfahan, Isfahan 8174673441, Iran
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla 51001, Iraq
| |
Collapse
|
20
|
Sanaei Oskouei S, Araman AO, Erginer YO. Preparation, optimization, and In vitro drug release study of microemulsions of posaconazole. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Zhong Y, Zheng XT, Zhao S, Su X, Loh XJ. Stimuli-Activable Metal-Bearing Nanomaterials and Precise On-Demand Antibacterial Strategies. ACS NANO 2022; 16:19840-19872. [PMID: 36441973 DOI: 10.1021/acsnano.2c08262] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Bacterial infections remain the leading cause of death worldwide today. The emergence of antibiotic resistance has urged the development of alternative antibacterial technologies to complement or replace traditional antibiotic treatments. In this regard, metal nanomaterials have attracted great attention for their controllable antibacterial functions that are less prone to resistance. This review discusses a particular family of stimuli-activable metal-bearing nanomaterials (denoted as SAMNs) and the associated on-demand antibacterial strategies. The various SAMN-enabled antibacterial strategies stem from basic light and magnet activation, with the addition of bacterial microenvironment responsiveness and/or bacteria-targeting selectivity and therefore offer higher spatiotemporal controllability. The discussion focuses on nanomaterial design principles, antibacterial mechanisms, and antibacterial performance, as well as emerging applications that desire on-demand and selective activation (i.e., medical antibacterial treatments, surface anti-biofilm, water disinfection, and wearable antibacterial materials). The review concludes with the authors' perspectives on the challenges and future directions for developing industrial translatable next-generation antibacterial strategies.
Collapse
Affiliation(s)
- Yingying Zhong
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 138634 Singapore
| | - Xin Ting Zheng
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 138634 Singapore
| | - Suqing Zhao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Xiaodi Su
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 138634 Singapore
- Department of Chemistry, National University of Singapore, Block S8, Level 3, 3 Science Drive 3, 117543 Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 138634 Singapore
| |
Collapse
|
22
|
Hamidian K, Barani M, Adeli-Sardou M, Sarani M, Daliran S, Oveisi AR. Evaluation of cytotoxicity, loading, and release activity of paclitaxel loaded-porphyrin based metal-organic framework (PCN-600). Heliyon 2022; 9:e12634. [PMID: 36647357 PMCID: PMC9840106 DOI: 10.1016/j.heliyon.2022.e12634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/22/2022] [Accepted: 12/19/2022] [Indexed: 12/27/2022] Open
Abstract
Considering the inducement side impacts and precipitation of continual doses in conventional therapeutic treatments, there is an urgent need in the field of drug delivery for novel designs of biocompatible carriers with wide loading dimensions and particularly the ability to control their drug release. In this work, we succeeded in synthesizing an iron-based organic metal framework based on iron-porphyrin (PCN-600) through a solvothermal method to function as a drug delivery system (DDS). According to SEM results, PCN-600 crystals a hexagonal-rod shaped morphology with the length of 300 nm and width of 100-300 nm. As an anticancer drug, Paclitaxel (PTX) was successfully loaded into the porphyrin-based metal-organic framework (PCN-600) via in-situ encapsulation; the loading efficiency was measured to be about 87.3%. In addition, PTX-encapsulated PCN-600 displayed a controlled and sustained release for up to 24 h of release assessment at the physiological microenvironment of pH = 7.4.
Collapse
Affiliation(s)
- Khadijeh Hamidian
- Department of Pharmaceutics, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, 76169-13555, Kerman, Iran
| | - Mahboubeh Adeli-Sardou
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Mina Sarani
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol, Iran
- Corresponding author.,
| | - Saba Daliran
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol 9861335856, Iran
| | - Ali Raza Oveisi
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol 9861335856, Iran
- Corresponding author.
| |
Collapse
|
23
|
Effects of coiling embolism on blood hemodynamic of the MCA aneurysm: a numerical study. Sci Rep 2022; 12:22029. [PMID: 36539436 PMCID: PMC9768123 DOI: 10.1038/s41598-022-26208-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
One of common endovascular technique for treatment of MCA aneurysm is using coiling gel for limiting of blood stream. In this work, computational fluid dynamic is used for the simulation of the blood hemodynamic inside MCA in existence of coiling gel. This work has tried to visualize the impacts of blood characteristics i.e. hematocrit as a protein related factor on efficiency of coiling fiber inside the aneurysm. Tufts of polyester fibers may be attached to the coil to support thrombosis and platelet aggregation. Blood rheology analysis is done by solving RANS equations and it is assumed that blood stream is non-Newtonian with fluid-solid interaction. OSI and WSS are compared on sac surface area for different stages of blood cycle. Achieved results confirm that the coiling gel substantially decreases the blood circulation inside the aneurysm sac. It is also found that the influence of blood hematocrit decreases when the MCA aneurysm is filled by the coiling gel.
Collapse
|
24
|
Li Y, Alameri AA, Farhan ZA, AI_Sadi HL, Alosaimi ME, Ghaleb AbdalSalam A, Jumaah Jasim D, Hadrawi SK, Mohammed Al-Taee M, Lafta AH, Othman HA, Mousa Alzahrani S, Moniem AA, Alqadi T. Theoretical modeling study on preparation of nanosized drugs using supercritical-based processing: Determination of solubility of Chlorothiazide in Supercritical Carbon dioxide. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Cladosporium protease/doxorubicin decorated Fe3O4@SiO2 nanocomposite: An efficient nanoparticle for drug delivery and combating breast cancer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Suarasan S, Campu A, Vulpoi A, Banciu M, Astilean S. Assessing the Efficiency of Triangular Gold Nanoparticles as NIR Photothermal Agents In Vitro and Melanoma Tumor Model. Int J Mol Sci 2022; 23:ijms232213724. [PMID: 36430201 PMCID: PMC9695152 DOI: 10.3390/ijms232213724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Photothermal therapy (PTT) is gaining a lot of interest as a cancer treatment option with minimal side effects due to the efficient photothermal agents employed. They are based on nanomaterials that, upon laser irradiation, absorb photon energy and convert it into heat to induce hyperthermia, which destroys the cancer cells. Here, the unique light-to-heat conversion features of three different gold nanotriangular nanoparticles (AuNTs) are evaluated with respect to their absorption properties to select the most efficient nanoheater with the highest potential to operate as an efficient photothermal agent. AuNTs with LSPR response in- and out- of resonance with the 785 nm near-infrared (NIR) excitation wavelength are investigated. Upon 15 min laser exposure, the AuNTs that exhibit a plasmonic response in resonance with the 785 nm laser line show the highest photothermal conversion efficacy of 80%, which correlates with a temperature increase of 22 °C. These photothermal properties are well-preserved in agarose-based skin biological phantoms that mimic the melanoma tumoral tissue and surrounding healthy tissue. Finally, in vitro studies on B16.F10 melanoma cells prove by fluorescence staining and MTT assay that the highest phototoxic effect after NIR laser exposure is induced by AuNTs with LSPR response in resonance with the employed laser line, thus demonstrating their potential implementation as efficient photothermal agents in PTT.
Collapse
Affiliation(s)
- Sorina Suarasan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian Str., 400271 Cluj-Napoca, Romania
- Correspondence:
| | - Andreea Campu
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian Str., 400271 Cluj-Napoca, Romania
| | - Adriana Vulpoi
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian Str., 400271 Cluj-Napoca, Romania
| | - Manuela Banciu
- Center of Systems Biology, Biodiversity and Bioresources, Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, 5-7 Clinicilor Str., 400006 Cluj-Napoca, Romania
| | - Simion Astilean
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian Str., 400271 Cluj-Napoca, Romania
- Department of Biomolecular Physics, Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Str., 400084 Cluj-Napoca, Romania
| |
Collapse
|
27
|
Sensing properties of acetone gas on the two-dimensional orthorhombic diboron dinitride sheet: A DFT Investigation. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Qazi NG, Khan AU, Abbasi SW, Shah FA, Rasheed F, Ali F, Hassan SSU, Bungau S. Pharmacological Basis of Rumex hastatus D. Don in Gastrointestinal Diseases with Focusing Effects on H+/K+-ATPase, Calcium Channels Inhibition and PDE Mediated Signaling: Toxicological Evaluation on Vital Organs. Molecules 2022; 27:molecules27185919. [PMID: 36144661 PMCID: PMC9502566 DOI: 10.3390/molecules27185919] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
This present study aimed to delineate Rumex hastatus D. Don crude extract (Rh.Cr), n-Hexane, ethyl acetate, aqueous fractions (Rh.n-Hex, Rh.ETAC, Rh.Aq) and rutin for antidiarrheal, antisecretory effects, anti-spasmodic, gastrointestinal transient time, anti H. pylori, antiulcer effects, and toxicology. The preliminary phytochemical analysis of Rumex hastatus showed different phytoconstituents and shows different peaks in GC-MC chromatogram. Rumex hastatus crude extract (Rh.Cr), fractions, and rutin attributed dose-dependent (50–300 mg/kg) protection (0–100%) against castor oil-induced diarrhea and dose-dependently inhibited intestinal fluid secretions in mice. They decreased the distance traversed by charcoal in the gastrointestinal transit model in rats. In rabbit jejunum preparations, Rh.Cr and Rh.ETAC caused a concentration-dependent relaxation of both spontaneous and K+ (80 mM)-induced contractions at a similar concentration range, whereas Rh.n-Hex, rutin, and verapamil were relatively potent against K+-induced contractions and shifted the Ca2+ concentration–response curves (CRCs) to the right, Rh.Cr (0.3–1 mg/mL) and Rh.ETAC (0.1–0.3 mg/mL) shifted the isoprenaline-induced inhibitory CRCs to the left. Rh.n-Hex, Rh.ETAC and rutin showed anti-H. pylori effect, also shows an inhibitory effect against H+/K+-ATPase. Rumex hastatus showed gastroprotective and antioxidant effects. Histopathological evaluation showed improvement in cellular architecture and a decrease in the expression of inflammatory markers such as, cyclooxygenase (COX-2), tumor necrosis factor (TN,F-α) and phosphorylated nuclear factor kappa B (p-NFƙB), validated through immunohistochemistry and ELISA techniques. In RT-PCR it decreases H+/K+-ATPase mRNA levels. Rumex hastatus was found to be safe to consume up to a dose of 2000 mg/kg in a comprehensive toxicity profile. Docking studies revealed that rutin against H+/K+-ATPase pump and voltage-gated L-type calcium channel showed E-values of −8.7 and −9.4 Kcal/mol, respectively. MD simulations Molecular Mechanics Poisson Boltzmann surface area and molecular mechanics Generalized Born surface area (MMPBSA/GBSA) findings are consistent with the in-vitro, in-vivo and docking results.
Collapse
Affiliation(s)
- Neelum Gul Qazi
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 46000, Pakistan
| | - Arif-ullah Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 46000, Pakistan
- Correspondence: (A.-u.K.); (S.S.u.H.); (S.B.)
| | - Sumra Wajid Abbasi
- Nums Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Punjab 46000, Pakistan
| | - Fawad Ali Shah
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 46000, Pakistan
| | - Faisal Rasheed
- BreathMAT Lab., Nuclear Medicine, Oncology and Radiotherapy Institute, Islamabad 45320, Pakistan
| | - Fawad Ali
- Department of Pharmacy, Kohat University of Science and Technology, Kohat 26000, Pakistan
| | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: (A.-u.K.); (S.S.u.H.); (S.B.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Correspondence: (A.-u.K.); (S.S.u.H.); (S.B.)
| |
Collapse
|
29
|
Hussain S, Khakwani N, Faiz Y, Zulfiqar S, Shafiq Z, Faiz F, Elhakem A, Sami R, Aljuraide NI, Farid T, Aljabri MD, Rahman MM. Green Production and Interaction of Carboxylated CNTs/Biogenic ZnO Composite for Antibacterial Activity. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9090437. [PMID: 36134984 PMCID: PMC9495687 DOI: 10.3390/bioengineering9090437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/27/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022]
Abstract
Using biomolecule-rich plant extracts, the conversion of metal ions to metal oxide nanoparticles via abiogenic approach is highly intriguing, environmentally friendly, and quick. The inherent inclination of plant extracts function as capping agents in the insitu synthesis. In this study, biogenic zinc oxide nanoparticles (ZnO−NPs) were synthesized using an aqueous leaf extract from Moringaoleifera. The ZnO−NPs were then mixed with carboxylated carbon nanotubes (CNTs) to create a carboxylated CNTs/biogenic ZnO composite using asol–gel method. The CNTs/ZnO composite displayed 18 mm, 16 mm, and 17 mm zones of inhibition (ZOI) against Bacillus cereus, Pseudomonas aeruginosa, and Escherichia coli, respectively. In contrast with ZnO−NPs, the produced carboxylated CNTs/ZnO composite demonstrated a 13 percent elevation in ZOI as antibacterial activity against Bacillus cereus ATCC 19659, Escherichia coli ATCC 25922, and Pseudomonas aeruginosa ATCC 27853. The characterization of ZnO−NPs and the carboxylated CNTs/ZnO composite were performed via FTIR, UV/Vis spectroscopy, SEM, and XRD. The XRD pattern depicted a nano−sized crystalline structure (Wurtzite) of ZnO−NPs and a carboxylated CNTs/ZnO composite. The current work comprehends a valuable green technique for killing pathogenic bacteria, and gives fresh insights into the manufacture of metal oxide composites for future research.
Collapse
Affiliation(s)
- Saghir Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Abu Dhabi Road, Rahim Yar Khan 64200, Pakistan
| | - Noorulain Khakwani
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Abu Dhabi Road, Rahim Yar Khan 64200, Pakistan
| | - Yasir Faiz
- Chemistry Division, Directorate of Science, Pakistan Institute of Nuclear Science & Technology (PINSTECH), Islamabad 45650, Pakistan
- Correspondence: (Y.F.); (F.F.); (M.D.A.)
| | - Sonia Zulfiqar
- Department of Chemistry, Faculty of Science, University of Ostrava, 30. Dubna 22, 701 03 Ostrava, Czech Republic
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Faisal Faiz
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing 210023, China
- Correspondence: (Y.F.); (F.F.); (M.D.A.)
| | - Abeer Elhakem
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Rokayya Sami
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - N. I. Aljuraide
- Department of Physics, Turabah University College, Turabah Branch, Taif University, P.O. Box 29717, Taif 21944, Saudi Arabia
| | - Tanveer Farid
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mahmood D. Aljabri
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Correspondence: (Y.F.); (F.F.); (M.D.A.)
| | - Mohammed M. Rahman
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
30
|
Huang S, Hong X, Zhao M, Liu N, Liu H, Zhao J, Shao L, Xue W, Zhang H, Zhu P, Guo R. Nanocomposite hydrogels for biomedical applications. Bioeng Transl Med 2022; 7:e10315. [PMID: 36176618 PMCID: PMC9471997 DOI: 10.1002/btm2.10315] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Nanomaterials' unique structures at the nanometer level determine their incredible functions, and based on this, they can be widely used in the field of nanomedicine. However, nanomaterials do possess disadvantages that cannot be ignored, such as burst release, rapid elimination, and poor bioadhesion. Hydrogels are scaffolds with three-dimensional structures, and they exhibit good biocompatibility and drug release capacity. Hydrogels are also associated with disadvantages for biomedical applications such as poor anti-tumor capability, weak bioimaging capability, limited responsiveness, and so on. Incorporating nanomaterials into the 3D hydrogel network through physical or chemical covalent action may be an effective method to avoid their disadvantages. In nanocomposite hydrogel systems, multifunctional nanomaterials often work as the function core, giving the hydrogels a variety of properties (such as photo-thermal conversion, magnetothermal conversion, conductivity, targeting tumor, etc.). While, hydrogels can effectively improve the retention effect of nanomaterials and make the nanoparticles have good plasticity to adapt to various biomedical applications (such as various biosensors). Nanocomposite hydrogel systems have broad application prospects in biomedicine. In this review, we comprehensively summarize and discuss the most recent advances of nanomaterials composite hydrogels in biomedicine, including drug and cell delivery, cancer treatment, tissue regeneration, biosensing, and bioimaging, and we also briefly discussed the current situation of their commoditization in biomedicine.
Collapse
Affiliation(s)
- Shanghui Huang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical EngineeringJinan UniversityGuangzhouChina
| | - Xiangqian Hong
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro‐Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ)College of Physics and Optoelectronic Engineering, Shenzhen UniversityShenzhenChina
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Shenzhen Eye Hospital affiliated to Jinan University, School of Optometry, Shenzhen UniversityShenzhenChina
| | - Mingyi Zhao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina
| | - Nanbo Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina
| | - Huiling Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical EngineeringJinan UniversityGuangzhouChina
| | - Jun Zhao
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Shenzhen Eye Hospital affiliated to Jinan University, School of Optometry, Shenzhen UniversityShenzhenChina
- Department of OphthalmologyShenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenChina
| | - Longquan Shao
- Stomatological Hospital, Southern Medical UniversityGuangzhouChina
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical EngineeringJinan UniversityGuangzhouChina
| | - Han Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro‐Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ)College of Physics and Optoelectronic Engineering, Shenzhen UniversityShenzhenChina
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical EngineeringJinan UniversityGuangzhouChina
| |
Collapse
|
31
|
Khan FA, Ali G, Rahman K, Khan Y, Ayaz M, Mosa OF, Nawaz A, Hassan SSU, Bungau S. Efficacy of 2-Hydroxyflavanone in Rodent Models of Pain and Inflammation: Involvement of Opioidergic and GABAergic Anti-Nociceptive Mechanisms. Molecules 2022; 27:5431. [PMID: 36080199 PMCID: PMC9457732 DOI: 10.3390/molecules27175431] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/14/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
The current work examined the pharmacological potential of a selected flavanone derivative 2-hydroxyflavanone as a promising remedy for the treatment and management of pain. The selected flavanone derivative (2-HF) was evaluated for its analgesic and anti-inflammatory potentials following standard pharmacological protocols including hot plate, acetic acid-induced writhing and tail immersion tests. Naloxone and pentylenetetrazol were used to evaluate the potential implication of GABAergic and opioidergic mechanisms. The anti-inflammatory potential of 2-HF was confirmed using carrageenan-, serotonin- and histamine-induced paw edema models as well as a xylene-induced ear edema model. Furthermore, the anti-neuropathic potential of 2-HF was tested using a cisplatin-induced neuropathic pain model. Our sample, at the tested concentrations of 15, 30 and 45 mg kg-1, showed considerable analgesic, anti-inflammatory effects, as well as efficacy against neuropathic pain. Naloxone and pentylenetetrazol at 1 and 15 mg kg-1 antagonized the anti-nociceptive activities of 2-hydroxyflavanone indicating the involvement of opioidergic and GABAergic mechanisms. In the static allodynia model, combination of gabapentin 75 mg kg-1 with 2-HF at 15, 30, 45 mg kg-1 doses exhibited considerable efficacy. In cold allodynia, 2-hydroxyflavanone, at doses of 15, 30 and 45 mg kg-1 and in combination with gabapentin (75 mg kg-1), demonstrated prominent anti-allodynic effects. The paw withdrawal latency was considerably increased in gabapentin + cisplatin treated groups. Moreover, cisplatin + 2-hydroxyflavanone 15, 30, 45 mg kg-1 showed increases in paw withdrawal latency. Likewise, considerable efficacy was observed for 2-hydroxyflavanone in thermal hyperalgesia and dynamic allodynia models. Our findings suggest that 2-hydroxyflavanone is a potential remedy for pain syndrome, possibly mediated through opioidergic and GABAergic mechanisms.
Collapse
Affiliation(s)
- Faiz Ali Khan
- Department of Pharmacy, University of Peshawar, Peshawar 25000, Pakistan
| | - Gowhar Ali
- Department of Pharmacy, University of Peshawar, Peshawar 25000, Pakistan
| | - Khista Rahman
- Department of Pharmacy, University of Peshawar, Peshawar 25000, Pakistan
| | - Yahya Khan
- Department of Pharmacy, University of Peshawar, Peshawar 25000, Pakistan
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara 18000, Pakistan
| | - Osama F. Mosa
- Public Health Department, Health Sciences College at Lieth, Umm Al Qura University, Makkah 24231, Saudi Arabia
- Biochemistry Department, Bukhara State Medical Institute Named after Abu Ali Ibn Sino, Bukhara 281403, Uzbekistan
| | - Asif Nawaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara 18000, Pakistan
| | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| |
Collapse
|
32
|
Pardeshi S, Damiri F, Zehravi M, Joshi R, Kapare H, Prajapati MK, Munot N, Berrada M, Giram PS, Rojekar S, Ali F, Rahman MH, Barai HR. Functional Thermoresponsive Hydrogel Molecule to Material Design for Biomedical Applications. Polymers (Basel) 2022; 14:polym14153126. [PMID: 35956641 PMCID: PMC9371082 DOI: 10.3390/polym14153126] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/18/2022] [Accepted: 07/22/2022] [Indexed: 02/04/2023] Open
Abstract
Temperature-induced, rapid changes in the viscosity and reproducible 3-D structure formation makes thermos-sensitive hydrogels an ideal delivery system to act as a cell scaffold or a drug reservoir. Moreover, the hydrogels’ minimum invasiveness, high biocompatibility, and facile elimination from the body have gathered a lot of attention from researchers. This review article attempts to present a complete picture of the exhaustive arena, including the synthesis, mechanism, and biomedical applications of thermosensitive hydrogels. A special section on intellectual property and marketed products tries to shed some light on the commercial potential of thermosensitive hydrogels.
Collapse
Affiliation(s)
- Sagar Pardeshi
- Department of Pharmaceutical Technology, University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon 425001, Maharashtra, India;
| | - Fouad Damiri
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M’sick, University Hassan II of Casablanca, Casablanca 20000, Morocco; (F.D.); (M.B.)
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University Alkharj, Al-Kharj 11942, Saudi Arabia;
| | - Rohit Joshi
- Precision Nanosystems Inc., Vancouver, BC V6P 6T7, Canada;
| | - Harshad Kapare
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune 41118, Maharashtra, India;
| | - Mahendra Kumar Prajapati
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM’s NMIMS, Shirpur 425405, Maharashtra, India;
| | - Neha Munot
- Department of Pharmaceutics, School of Pharmacy, Vishwakarma University, Pune 411048, Maharashtra, India;
| | - Mohammed Berrada
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M’sick, University Hassan II of Casablanca, Casablanca 20000, Morocco; (F.D.); (M.B.)
| | - Prabhanjan S. Giram
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune 41118, Maharashtra, India;
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
- Correspondence: (P.S.G.); (S.R.); (H.R.B.)
| | - Satish Rojekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, Maharashtra, India
- Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: (P.S.G.); (S.R.); (H.R.B.)
| | - Faraat Ali
- Laboratory Services, Department of Licensing and Enforcement, Botswana Medicines Regulatory Authority (BoMRA), Gaborone 999106, Botswana;
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
| | - Hasi Rani Barai
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence: (P.S.G.); (S.R.); (H.R.B.)
| |
Collapse
|
33
|
A Review on the Delivery of Plant-Based Antidiabetic Agents Using Nanocarriers: Current Status and Their Role in Combatting Hyperglycaemia. Polymers (Basel) 2022; 14:polym14152991. [PMID: 35893954 PMCID: PMC9330056 DOI: 10.3390/polym14152991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
Diabetes mellitus is a prevalent metabolic syndrome that is associated with high blood glucose levels. The number of diabetic patients is increasing every year and the total number of cases is expected to reach more than 600 million worldwide by 2045. Modern antidiabetic drugs alleviate hyperglycaemia and complications that are caused by high blood glucose levels. However, due to the side effects of these drugs, plant extracts and bioactive compounds with antidiabetic properties have been gaining attention as alternative treatments for diabetes. Natural products are biocompatible, cheaper and expected to cause fewer side effects than the current antidiabetic drugs. In this review, various nanocarrier systems are discussed, such as liposomes, niosomes, polymeric nanoparticles, nanoemulsions, solid lipid nanoparticles and metallic nanoparticles. These systems have been applied to overcome the limitations of the current drugs and simultaneously improve the efficacy of plant-based antidiabetic drugs. The main challenges in the formulation of plant-based nanocarriers are the loading capacity of the plant extracts and the stability of the carriers. A brief review of lipid nanocarriers and the amphipathic properties of phospholipids and liposomes that encapsulate hydrophilic, hydrophobic and amphiphilic drugs is also described. A special emphasis is placed on metallic nanoparticles, with their advantages and associated complications being reported to highlight their effectiveness for treating hyperglycaemia. The present review could be an interesting paper for researchers who are working in the field of using plant extract-loaded nanoparticles as antidiabetic therapies.
Collapse
|
34
|
Wang Q, Ge M, Sun H, Xu Q, Li H, Lv G. Systematic Review and Meta-Analysis Program Based on Effectiveness of a Multidisciplinary Model of Care for Patients with Chronic Kidney Disease. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:4315361. [PMID: 35935312 PMCID: PMC9325573 DOI: 10.1155/2022/4315361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 01/21/2023]
Abstract
The effectiveness of the multidisciplinary nursing model in the nursing of chronic kidney disease (CKD) by using meta-analysis is explored. Relevant literatures that are in line with the multidisciplinary nursing model for CKD intervention are searched and screened from domestic and foreign literature databases such as Wanfang Medical Center, CNKNET, VIP, and PubMed, and Meta-analysis is conducted with RevMan 5.2 software. A total of 6 literatures are included, and the publication bias of the included literatures is low. Meta-analysis shows that the multidisciplinary group had a better Hb compliance rate, Hb level, Scr, eGFR, SBP, and DBP than the traditional group. The experimental results show that multidisciplinary nursing intervention can improve the nursing effect of patients with CKD and help to improve Hb, Scr, blood pressure, and glomerular filtration function of patients.
Collapse
Affiliation(s)
- Qinger Wang
- Nanjing Glomerulonephritis Registry, National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing 210000, China
| | - Mengyuan Ge
- Nanjing Glomerulonephritis Registry, National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing 210000, China
| | - Huimin Sun
- Nanjing Glomerulonephritis Registry, National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing 210000, China
| | - Qingwen Xu
- Nanjing Glomerulonephritis Registry, National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing 210000, China
| | - Hui Li
- Nanjing Glomerulonephritis Registry, National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing 210000, China
| | - Guilan Lv
- Nanjing Glomerulonephritis Registry, National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing 210000, China
| |
Collapse
|
35
|
Early Diagnosis and Prediction of Death Risk in Patients with Sepsis by Combined Detection of Serum PCT, BNP, Lactic Acid, and Apache II Score. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:8522842. [PMID: 35935301 PMCID: PMC9325350 DOI: 10.1155/2022/8522842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 11/22/2022]
Abstract
In order to investigate the expression levels of procalcitonin (PCT), B-type brain natriuretic peptide (BNP), and lactic acid (Lac) in serum of patients with sepsis, a retrospective analysis is conducted. 80 sepsis patients admitted to the ICU of our hospital from January 2019 to June 2020 are selected, and the application value of these factors combined with Apache II score in early diagnosis and prediction of death risk is analyzed. All patients are classified into survival group (n = 57) and death group (n = 23), and examined by blood routine. Lac, PCT, and BNP, and the serum PCT, BNP, and Lac levels were compared between the nonsepsis group and the control group. Furthermore, Acute Physiology and Chronic Health Status scoring System II (Apache II) is applied to evaluate the score difference between the sepsis group and the control group. The ROC curve demonstrates that PCT, BNP, and Lac combined with Apache II score can obtain high value for early diagnosis of sepsis. Compared with nonsepsis patients, the scores of serum Lac, PCT, and BNP and Apache II are significantly higher in sepsis patients. It is clearly evident that the combined detection of those indicators is valuable for early diagnosis and prediction of death, and will be suitable for widespread clinical application.
Collapse
|
36
|
Biogenic Gold Nanoparticles: Current Applications and Future Prospects. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02304-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
37
|
Liu M, Chen Y, Zhu Q, Tao J, Tang C, Ruan H, Wu Y, Loh XJ. Antioxidant Thermogelling Formulation for Burn Wound Healing. Chem Asian J 2022; 17:e202200396. [DOI: 10.1002/asia.202200396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/13/2022] [Indexed: 12/11/2022]
Affiliation(s)
- Minting Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology School of Pharmaceutical Sciences Xiamen University 361102 Xiamen P. R. China
| | - Ying Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology School of Pharmaceutical Sciences Xiamen University 361102 Xiamen P. R. China
| | - Qiang Zhu
- Institute of Materials Research and Engineering (IMRE) Agency for Science Technology and Research (A*STAR) 2 Fusionopolis Way Singapore 138634 Singapore
| | - Junjun Tao
- Zhejiang Fenix Health Science and Technology Co., Ltd. 176849 Zhejiang P. R. China
| | - Changming Tang
- Zhejiang Fenix Health Science and Technology Co., Ltd. 176849 Zhejiang P. R. China
| | - Huajun Ruan
- Zhejiang Fenix Health Science and Technology Co., Ltd. 176849 Zhejiang P. R. China
| | - Yunlong Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology School of Pharmaceutical Sciences Xiamen University 361102 Xiamen P. R. China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE) Agency for Science Technology and Research (A*STAR) 2 Fusionopolis Way Singapore 138634 Singapore
| |
Collapse
|
38
|
A C19Ti Cage Vehicle for the Drug Delivery of Purinethol Anticancer: Computational Assessments. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Hameed Mahmood Z, Riadi Y, Hammoodi HA, Alkaim AF, Fakri Mustafa Y. Magnetic Nanoparticles Supported Copper Nanocomposite: A Highly Active Nanocatalyst for Synthesis of Benzothiazoles and Polyhydroquinolines. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2077390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Zaid Hameed Mahmood
- Department of Chemistry, College of Science, Diyala University, Baqubah, Iraq
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | - Ayad F. Alkaim
- College of Science for Women, University of Babylon, Babylon, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
40
|
Omadacycline Efficacy against Streptococcus Agalactiae Isolated in China: Correlation between Resistance and Virulence Gene and Biofilm Formation. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:7636983. [PMID: 35510054 PMCID: PMC9061024 DOI: 10.1155/2022/7636983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/03/2022] [Indexed: 11/27/2022]
Abstract
This study aimed to evaluate the activity, resistance, clonality of MIC distribution, and the correlation between virulence and resistance genes and biofilm formation of omadacycline (OMC) in clinics for Streptococcus agalactiae isolates from China. 162 isolates were collected retrospectively in China. The S. agalactiae were collected from the body's cervical secretions, wound secretions, ear swabs, secretions, semen, venous blood, cerebrospinal fluid, pee, etc. The MIC of OMC against S. agalactiae was determined by broth microdilution. The inhibition zone diameters of OMC and other common antibiotics were measured using filter paper. D-test was performed to determine the phenotype of cross resistance between erythromycin and clindamycin. In Multilocus sequence typing (MLST), some commonly-detected resistance genes and virulence gene of these S. agalactiae isolates were investigated using polymerase chain reaction (PCR). Biofilms were detected by crystal violet staining. Our data demonstrated the correalation of the biofilm formation and OMA antimicrobial susceptibility of S.agalactiae clinical isolates with the carrier of virulence gene scpB. Conclusively, OMC exhibits the robust antimcirobial activity against clinical S. agalactiae isolates from China compared with DOX or MIN, and the carrier of the virulence gene scpB might correlate with the biofilm formation in OMC-resistant S. agalactiae.
Collapse
|
41
|
Abolhasani Zadeh F, Abdalkareem Jasim S, Javed Ansari M, Olegovich Bokov D, Yasin G, Thangavelu L, Derakhshandeh M. Boron carbide nanotube as targeted drug delivery system for melphalan anticancer drug. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Arkaban H, Barani M, Akbarizadeh MR, Pal Singh Chauhan N, Jadoun S, Dehghani Soltani M, Zarrintaj P. Polyacrylic Acid Nanoplatforms: Antimicrobial, Tissue Engineering, and Cancer Theranostic Applications. Polymers (Basel) 2022; 14:1259. [PMID: 35335590 PMCID: PMC8948866 DOI: 10.3390/polym14061259] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Polyacrylic acid (PAA) is a non-toxic, biocompatible, and biodegradable polymer that gained lots of interest in recent years. PAA nano-derivatives can be obtained by chemical modification of carboxyl groups with superior chemical properties in comparison to unmodified PAA. For example, nano-particles produced from PAA derivatives can be used to deliver drugs due to their stability and biocompatibility. PAA and its nanoconjugates could also be regarded as stimuli-responsive platforms that make them ideal for drug delivery and antimicrobial applications. These properties make PAA a good candidate for conventional and novel drug carrier systems. Here, we started with synthesis approaches, structure characteristics, and other architectures of PAA nanoplatforms. Then, different conjugations of PAA/nanostructures and their potential in various fields of nanomedicine such as antimicrobial, anticancer, imaging, biosensor, and tissue engineering were discussed. Finally, biocompatibility and challenges of PAA nanoplatforms were highlighted. This review will provide fundamental knowledge and current information connected to the PAA nanoplatforms and their applications in biological fields for a broad audience of researchers, engineers, and newcomers. In this light, PAA nanoplatforms could have great potential for the research and development of new nano vaccines and nano drugs in the future.
Collapse
Affiliation(s)
- Hassan Arkaban
- Department of Chemistry, University of Isfahan, Isfahan 8174673441, Iran;
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Majid Reza Akbarizadeh
- Department of Pediatric, Amir Al Momenin Hospital, Zabol University of Medical Sciences, Zabol 9861663335, Iran
| | - Narendra Pal Singh Chauhan
- Department of Chemistry, Faculty of Science, Bhupal Nobles’s University, Udaipur 313002, Rajasthan, India;
| | - Sapana Jadoun
- Department of Analytical and Inorganic Chemistry, Faculty of Sciences, University of Concepcion, Edmundo Larenas 129, Concepcion 4070371, Chile;
| | | | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, USA;
| |
Collapse
|
43
|
Rad MM, Saber-Samandari S, Bokov DO, Suksatan W, Esfahani MHM, Yusof M, El-Shafay A. Fabrication of elastin additive on polymethyl methacrylate and hydroxyapatite-based bioactive bone cement. MATERIALS CHEMISTRY AND PHYSICS 2022; 280:125783. [DOI: 10.1016/j.matchemphys.2022.125783] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
44
|
Barbaz-Isfahani R, Saber-Samandari S, Salehi M. Novel electrosprayed enhanced microcapsules with different nanoparticles containing healing agents in a single multicore microcapsule. Int J Biol Macromol 2022; 200:532-542. [PMID: 35066020 DOI: 10.1016/j.ijbiomac.2022.01.084] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/26/2021] [Accepted: 01/12/2022] [Indexed: 01/01/2023]
Abstract
A novel method was employed to synthesize microcapsules containing both epoxy and hardener healing agents in a single microcapsule using a two-step electrospraying technique. Moreover, the sodium alginate microcapsule shell was enhanced with three types of nanoparticles, including MWCNT, nanoclay, and nanosilica. The surface morphology of fabricated microcapsules was examined using FESEM and AFM images. The TEM and elemental mapping images illustrated that the added nanoparticles into sodium alginate microcapsule shells were dispersed homogeneously. In addition, the mechanical properties of microcapsule shells were obtained using nanoindentation tests. Based on this research, the addition of nanoparticles increased the size and the roughness of microcapsules and improved the elastic modulus and the hardness of microcapsule's outer shells, significantly. For instance, the elastic modulus and the hardness of incorporated microcapsule shells with MWCNT increased by 85.5% and 91.3%, respectively, compared to neat sodium alginate multicore microcapsules, due to intrinsic high strength and high aspect ratio of MWCNT.
Collapse
Affiliation(s)
- Reza Barbaz-Isfahani
- New Technologies Research Center, Amirkabir University of Technology, Tehran, Iran
| | | | - Manouchehr Salehi
- Mechanical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
45
|
Explore the Link between the Improvement of Metabolic Indicators in Diabetic Rats with Sleeve Gastrectomy and Changes in the Composition of Intestinal Flora. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:7027777. [PMID: 35222889 PMCID: PMC8881147 DOI: 10.1155/2022/7027777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 11/24/2022]
Abstract
Diabetes mellitus (DM) has become a major medical and health problem in my country and even the world. Doctors and patients have gradually realized that a new type of metabolic surgery is a way to treat diabetes. The operation is relatively simple, and the effect of the operation is no less than that of the gastric shunt. The initial hypothesis could not fully explain the blood pressure and blood sugar reduction mechanism in waist and abdominal surgery. According to requirements, they were divided into the sleeve gastrectomy group (SG group, n = 10) and sham operation group (SS group, n = 10), and corresponding measures were taken. Observe their weight changes; perform an oral glucose tolerance test (GB) before surgery and at 2, 8, and 16 weeks after surgery to evaluate the effect of surgery on improving the glucose metabolism. The postoperative GLP-1 specificity curve was detected in the two groups of patients; the immunohistochemical method was used to detect the postoperative changes of the digestive tract l cells in the two groups; RT-PCR was used to detect the mRNA transcription level of the digestive tract GLP-1 receptor. The bodyweight was significantly different 4 weeks after the operation. Food intake and bodyweight were not significantly different between the SG and SS groups. FBG: one week after operation, the SG group was significantly smaller than the SS group. The SS group was significantly lower than the SG group at 12 weeks after operation, and the SS group was significantly lower than the SG group at 14 weeks after operation. The transcription levels of c-kit mRNA and SCF mRNA in jejunum and ileum tissues are significantly different: the transcription levels of c-kit mRNA and SCF mRNA in the SG group are higher than those in the SS group, jejunum and ileum in the SG group. The number of cell 1 was significantly greater than that of the SS group. Sleeve gastrectomy can improve the regulation of the glucose metabolism in diabetic rats. The increase in small bowel motility may be related to the increase in ICC cells, intestinal cells, and GLP after gastric sleeve resection. The increase is in -1R and faster insoluble CHM in bowel motility. It has better contact with cell 1 and GLP-1R and stimulates cell 1 to secrete GLP-1.
Collapse
|
46
|
Almojil SF, Almohana AI, Alali AF, Attia EA, Sharma K, Shamseldin MA, Mohammed AG, Cao Y. Oxygen vacancy and p–n heterojunction in a g-C 3N 4 nanosheet/CuFeO 2 nanocomposite for enhanced photocatalytic N 2 fixation to NH 3 under ambient conditions. NEW J CHEM 2022. [DOI: 10.1039/d2nj02850f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In this article, the nitrogen fixation process over g-C3N4 nanosheets/CuFeO2 p–n heterojunction photocatalyst is presented.
Collapse
Affiliation(s)
- Sattam Fahad Almojil
- Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Abdulaziz Ibrahim Almohana
- Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Abdulrhman Fahmi Alali
- Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - El-Awady Attia
- Department of Industrial Engineering, College of Engineering, Prince Sattam bin Abdulaziz University, Al Kharj 16273, Saudi Arabia
- Mechanical Engineering Department, faculty of engineering (Shoubra), Benha University, Cairo, Egypt
| | - Kamal Sharma
- Institute of Engineering and Technology, GLA University, Mathura, U.P., 281406, India
| | - Mohamed A. Shamseldin
- Department of Mechanical Engineering, Faculty of Engineering & Technology, Future University in Egypt, 11845 New Cairo, Egypt
| | - Azheen Ghafour Mohammed
- Department of Information Technology, College of Engineering and Computer Science, Lebanese French University, Kurdistan Region, Iraq
| | - Yan Cao
- School of Mechatronic Engineering, Xi’an Technological University, Xi’an, 710021, China
| |
Collapse
|
47
|
Devi V. K. A, Shyam R, Palaniappan A, Jaiswal AK, Oh TH, Nathanael AJ. Self-Healing Hydrogels: Preparation, Mechanism and Advancement in Biomedical Applications. Polymers (Basel) 2021; 13:3782. [PMID: 34771338 PMCID: PMC8587783 DOI: 10.3390/polym13213782] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
Polymeric hydrogels are widely explored materials for biomedical applications. However, they have inherent limitations like poor resistance to stimuli and low mechanical strength. This drawback of hydrogels gave rise to ''smart self-healing hydrogels'' which autonomously repair themselves when ruptured or traumatized. It is superior in terms of durability and stability due to its capacity to reform its shape, injectability, and stretchability thereby regaining back the original mechanical property. This review focuses on various self-healing mechanisms (covalent and non-covalent interactions) of these hydrogels, methods used to evaluate their self-healing properties, and their applications in wound healing, drug delivery, cell encapsulation, and tissue engineering systems. Furthermore, composite materials are used to enhance the hydrogel's mechanical properties. Hence, findings of research with various composite materials are briefly discussed in order to emphasize the healing capacity of such hydrogels. Additionally, various methods to evaluate the self-healing properties of hydrogels and their recent advancements towards 3D bioprinting are also reviewed. The review is concluded by proposing several pertinent challenges encountered at present as well as some prominent future perspectives.
Collapse
Affiliation(s)
- Anupama Devi V. K.
- Tissue Engineering Group, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (A.D.V.K.); (R.S.); (A.P.)
- School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Rohin Shyam
- Tissue Engineering Group, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (A.D.V.K.); (R.S.); (A.P.)
- School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arunkumar Palaniappan
- Tissue Engineering Group, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (A.D.V.K.); (R.S.); (A.P.)
| | - Amit Kumar Jaiswal
- Tissue Engineering Group, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (A.D.V.K.); (R.S.); (A.P.)
| | - Tae-Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| | - Arputharaj Joseph Nathanael
- Tissue Engineering Group, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (A.D.V.K.); (R.S.); (A.P.)
| |
Collapse
|