1
|
Prašnikar M, Bjelošević Žiberna M, Gosenca Matjaž M, Ahlin Grabnar P. Novel strategies in systemic and local administration of therapeutic monoclonal antibodies. Int J Pharm 2024; 667:124877. [PMID: 39490550 DOI: 10.1016/j.ijpharm.2024.124877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/03/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Monoclonal antibodies (mAbs) are an evolving class of biopharmaceuticals, with advancements evident across various stages of their development. While discovery, mAb chemical optimization, production and purification processes have been thoroughly reviewed, this paper aims to offer a summary of novel strategies in administration of mAbs. At present, systemic delivery of mAbs is available through parenteral administration routes with focus on subcutaneous administration. In addition, oriented toward patient-friendly therapy, other less invasive administration routes of mAbs, such as inhalation, nasal, transdermal, and oral administration, are explored. Literature data reveals the potential for local delivery of mAbs via inhalation, nasal, transdermal, intratumoral, intravitreal and vaginal administration, offering high efficacy with fewer systemic adverse effects. However, to date, only mAb medicines are available for intravitreal administration, mainly due to higher bioavailability, and an intranasal spray is authorised as a medical device. The review highlights the promising data in approval of novel administration routes, likely through inhalation, but further intensive research considering the current obstacles, is essential.
Collapse
Affiliation(s)
- Monika Prašnikar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | | | - Mirjam Gosenca Matjaž
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Pegi Ahlin Grabnar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
2
|
Jacquot G, Lopez Navarro P, Grange C, Boudali L, Harlepp S, Pivot X, Detappe A. Landscape of Subcutaneous Administration Strategies for Monoclonal Antibodies in Oncology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406604. [PMID: 39165046 DOI: 10.1002/adma.202406604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/15/2024] [Indexed: 08/22/2024]
Abstract
In recent decades, subcutaneous (SC) administration of monoclonal antibodies (mAbs) has emerged as a promising alternative to intravenous delivery in oncology, offering comparable therapeutic efficacy while addressing patient preferences. This perspective article provides an in-depth analysis of the technological landscape surrounding SC mAb administration in oncology. It outlines various technologies under evaluation across developmental stages, spanning from preclinical investigations to the integration of established methodologies in clinical practice. Additionally, this perspective article explores emerging trends and prospective trajectories, shedding light on the evolving landscape of SC mAb administration. Furthermore, it emphasizes key checkpoints related to quality attributes essential for optimizing mAb delivery via the SC route. This review serves as a valuable resource for researchers, clinicians, and healthcare policymakers, offering insights into the advancement of SC mAb administration in oncology and its implications for patient care.
Collapse
Affiliation(s)
- Guillaume Jacquot
- Institut de Cancérologie Strasbourg Europe, Strasbourg, 67000, France
- Equipe labellisée Ligue contre le Cancer, France
- Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, 67000, France
| | - Pedro Lopez Navarro
- Institut de Cancérologie Strasbourg Europe, Strasbourg, 67000, France
- Equipe labellisée Ligue contre le Cancer, France
- Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, 67000, France
| | - Coralie Grange
- Institut de Cancérologie Strasbourg Europe, Strasbourg, 67000, France
- Equipe labellisée Ligue contre le Cancer, France
- Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, 67000, France
| | - Lotfi Boudali
- Institut de Cancérologie Strasbourg Europe, Strasbourg, 67000, France
- Equipe labellisée Ligue contre le Cancer, France
- Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, 67000, France
| | - Sébastien Harlepp
- Institut de Cancérologie Strasbourg Europe, Strasbourg, 67000, France
- Equipe labellisée Ligue contre le Cancer, France
- Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, 67000, France
| | - Xavier Pivot
- Institut de Cancérologie Strasbourg Europe, Strasbourg, 67000, France
- Equipe labellisée Ligue contre le Cancer, France
- Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, 67000, France
| | - Alexandre Detappe
- Institut de Cancérologie Strasbourg Europe, Strasbourg, 67000, France
- Equipe labellisée Ligue contre le Cancer, France
- Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, 67000, France
- Equipe de Synthèse Pour l'Analyse, Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 CNRS/University of Strasbourg, Strasbourg, Cedex 2, 67087, France
| |
Collapse
|
3
|
Gulotta A, Polimeni M, Lenton S, Starr CG, Stradner A, Zaccarelli E, Schurtenberger P. Combining Scattering Experiments and Colloid Theory to Characterize Charge Effects in Concentrated Antibody Solutions. Mol Pharm 2024; 21:2250-2271. [PMID: 38661388 PMCID: PMC11080060 DOI: 10.1021/acs.molpharmaceut.3c01023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
Charges and their contribution to protein-protein interactions are essential for the key structural and dynamic properties of monoclonal antibody (mAb) solutions. In fact, they influence the apparent molecular weight, the static structure factor, the collective diffusion coefficient, or the relative viscosity, and their concentration dependence. Further, charges play an important role in the colloidal stability of mAbs. There exist standard experimental tools to characterize mAb net charges, such as the measurement of the electrophoretic mobility, the second virial coefficient, or the diffusion interaction parameter. However, the resulting values are difficult to directly relate to the actual overall net charge of the antibody and to theoretical predictions based on its known molecular structure. Here, we report the results of a systematic investigation of the solution properties of a charged IgG1 mAb as a function of concentration and ionic strength using a combination of electrophoretic measurements, static and dynamic light scattering, small-angle X-ray scattering, and tracer particle-based microrheology. We analyze and interpret the experimental results using established colloid theory and coarse-grained computer simulations. We discuss the potential and limits of colloidal models for the description of the interaction effects of charged mAbs, in particular pointing out the importance of incorporating shape and charge anisotropy when attempting to predict structural and dynamic solution properties at high concentrations.
Collapse
Affiliation(s)
- Alessandro Gulotta
- Physical
Chemistry, Department of Chemistry, Lund
University, Lund SE-221 00, Sweden
| | - Marco Polimeni
- Physical
Chemistry, Department of Chemistry, Lund
University, Lund SE-221 00, Sweden
| | - Samuel Lenton
- Physical
Chemistry, Department of Chemistry, Lund
University, Lund SE-221 00, Sweden
| | - Charles G. Starr
- Biologics
Drug Product Development and Manufacturing, CMC Development, Sanofi, Framingham, Massachusetts 01701, United States
| | - Anna Stradner
- Physical
Chemistry, Department of Chemistry, Lund
University, Lund SE-221 00, Sweden
- LINXS
Institute of Advanced Neutron and X-ray Science, Scheelevägen 19, Lund SE-223 70, Sweden
| | - Emanuela Zaccarelli
- Institute
for Complex Systems, National Research Council (ISC−CNR), Piazzale Aldo Moro 5, Rome 00185, Italy
- Department
of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, Rome 00185, Italy
| | - Peter Schurtenberger
- Physical
Chemistry, Department of Chemistry, Lund
University, Lund SE-221 00, Sweden
- LINXS
Institute of Advanced Neutron and X-ray Science, Scheelevägen 19, Lund SE-223 70, Sweden
| |
Collapse
|
4
|
Escobar ELN, Griffin VP, Dhar P. Correlating Surface Activity with Interface-Induced Aggregation in a High-Concentration mAb Solution. Mol Pharm 2024; 21:1490-1500. [PMID: 38385557 DOI: 10.1021/acs.molpharmaceut.3c01125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Interface-induced aggregation resulting in protein particle formation is an issue during the manufacturing and storage of protein-based therapeutics. High-concentration formulations of therapeutic proteins are even more prone to protein particle formation due to increased protein-protein interactions. However, the dependence of interface-induced protein particle formation on bulk protein concentration is not understood. Furthermore, the formation of protein particles is often mitigated by the addition of polysorbate-based surfactants. However, the details of surfactant-protein interactions that prevent protein particle formation at high concentrations remain unclear. In this work, a tensiometer technique was used to evaluate the surface pressure of an industrially relevant mAb at different bulk concentrations, and in the absence and presence of a polysorbate-based surfactant, polysorbate 20 (PS20). The adsorption kinetics was correlated with subvisible protein particle formation at the air-water interface and in the bulk protein solution using a microflow imaging technique. Our results showed that, in the absence of any surfactant, the number of subvisible particles in the bulk protein solutions increased linearly with mAb concentration, while the number of protein particles measured at the interface showed a logarithmic dependence on bulk protein concentration. In the presence of surfactants above the critical micelle concentration (CMC), our results for low-concentration mAb solutions (10 mg/mL) showed an interface that is surfactant-dominated, and particle characterization results showed that the addition of the surfactant led to reduced particle formation. In contrast, for the highest concentration (170 mg/mL), coadsorption of proteins and surfactants was observed at the air-water interface, even for surfactant formulations above CMC and the surfactant did not mitigate subvisible particle formation. Our results taken together provide evidence that the ratio between the surfactant and mAb molecules is an important consideration when formulating high-concentration mAb therapeutics to prevent unwanted aggregation.
Collapse
Affiliation(s)
- Estephanie L N Escobar
- Department of Chemical and Petroleum Engineering, The University of Kansas, 1530W 15th Street, Lawrence, Kansas 66045, United States
| | - Valerie P Griffin
- Department of Chemical and Petroleum Engineering, The University of Kansas, 1530W 15th Street, Lawrence, Kansas 66045, United States
| | - Prajnaparamita Dhar
- Department of Chemical and Petroleum Engineering, The University of Kansas, 1530W 15th Street, Lawrence, Kansas 66045, United States
| |
Collapse
|
5
|
Forder JK, Palakollu V, Adhikari S, Blanco MA, Derebe MG, Ferguson HM, Luthra SA, Munsell EV, Roberts CJ. Electrostatically Mediated Attractive Self-Interactions and Reversible Self-Association of Fc-Fusion Proteins. Mol Pharm 2024; 21:1321-1333. [PMID: 38334418 DOI: 10.1021/acs.molpharmaceut.3c01009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Attractive self-interactions and reversible self-association are implicated in many problematic solution behaviors for therapeutic proteins, such as irreversible aggregation, elevated viscosity, phase separation, and opalescence. Protein self-interactions and reversible oligomerization of two Fc-fusion proteins (monovalent and bivalent) and the corresponding fusion partner protein were characterized experimentally with static and dynamic light scattering as a function of pH (5 and 6.5) and ionic strength (10 mM to at least 300 mM). The fusion partner protein and monovalent Fc-fusion each displayed net attractive electrostatic self-interactions at pH 6.5 and net repulsive electrostatic self-interactions at pH 5. Solutions of the bivalent Fc-fusion contained higher molecular weight species that prevented quantification of typical interaction parameters (B22 and kD). All three of the proteins displayed reversible self-association at pH 6.5, where oligomers dissociated with increased ionic strength. Coarse-grained molecular simulations were used to model the self-interactions measured experimentally, assess net self-interactions for the bivalent Fc-fusion, and probe the specific electrostatic interactions between charged amino acids that were involved in attractive electrostatic self-interactions. Mayer-weighted pairwise electrostatic energies from the simulations suggested that attractive electrostatic self-interactions at pH 6.5 for the two Fc-fusion proteins were due to cross-domain interactions between the fusion partner domain(s) and the Fc domain.
Collapse
Affiliation(s)
- James K Forder
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19713, United States
| | - Veerabhadraiah Palakollu
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19713, United States
| | - Sudeep Adhikari
- Analytical R&D, Digital & NMR Sciences, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Marco A Blanco
- Discovery Pharmaceutical Sciences, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Mehabaw Getahun Derebe
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Heidi M Ferguson
- Discovery Pharmaceutical Sciences, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Suman A Luthra
- Discovery Pharmaceutical Sciences, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Erik V Munsell
- Discovery Pharmaceutical Sciences, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Christopher J Roberts
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19713, United States
| |
Collapse
|
6
|
Heisler J, Kovner D, Izadi S, Zarzar J, Carter PJ. Modulation of the high concentration viscosity of IgG 1 antibodies using clinically validated Fc mutations. MAbs 2024; 16:2379560. [PMID: 39028186 PMCID: PMC11262234 DOI: 10.1080/19420862.2024.2379560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024] Open
Abstract
The self-association of therapeutic antibodies can result in elevated viscosity and create problems in manufacturing and formulation, as well as limit delivery by subcutaneous injection. The high concentration viscosity of some antibodies has been reduced by variable domain mutations or by the addition of formulation excipients. In contrast, the impact of Fc mutations on antibody viscosity has been minimally explored. Here, we studied the effect of a panel of common and clinically validated Fc mutations on the viscosity of two closely related humanized IgG1, κ antibodies, omalizumab (anti-IgE) and trastuzumab (anti-HER2). Data presented here suggest that both Fab-Fab and Fab-Fc interactions contribute to the high viscosity of omalizumab, in a four-contact model of self-association. Most strikingly, the high viscosity of omalizumab (176 cP) was reduced 10.7- and 2.2-fold by Fc modifications for half-life extension (M252Y:S254T:T256E) and aglycosylation (N297G), respectively. Related single mutations (S254T and T256E) each reduced the viscosity of omalizumab by ~6-fold. An alternative half-life extension Fc mutant (M428L:N434S) had the opposite effect in increasing the viscosity of omalizumab by 1.5-fold. The low viscosity of trastuzumab (8.6 cP) was unchanged or increased by ≤ 2-fold by the different Fc variants. Molecular dynamics simulations provided mechanistic insight into the impact of Fc mutations in modulating electrostatic and hydrophobic surface properties as well as conformational stability of the Fc. This study demonstrates that high viscosity of some IgG1 antibodies can be mitigated by Fc mutations, and thereby offers an additional tool to help design future antibody therapeutics potentially suitable for subcutaneous delivery.
Collapse
Affiliation(s)
- Joel Heisler
- Department of Antibody Engineering, Genentech, Inc, South San Francisco, CA, USA
| | - Daniel Kovner
- Department of Pharmaceutical Development, Genentech, Inc, South San Francisco, CA, USA
| | - Saeed Izadi
- Department of Pharmaceutical Development, Genentech, Inc, South San Francisco, CA, USA
| | - Jonathan Zarzar
- Department of Pharmaceutical Development, Genentech, Inc, South San Francisco, CA, USA
| | - Paul J. Carter
- Department of Antibody Engineering, Genentech, Inc, South San Francisco, CA, USA
| |
Collapse
|
7
|
Vlachy V, Kalyuzhnyi YV, Hribar-Lee B, Dill KA. Protein Association in Solution: Statistical Mechanical Modeling. Biomolecules 2023; 13:1703. [PMID: 38136574 PMCID: PMC10742237 DOI: 10.3390/biom13121703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Protein molecules associate in solution, often in clusters beyond pairwise, leading to liquid phase separations and high viscosities. It is often impractical to study these multi-protein systems by atomistic computer simulations, particularly in multi-component solvents. Instead, their forces and states can be studied by liquid state statistical mechanics. However, past such approaches, such as the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, were limited to modeling proteins as spheres, and contained no microscopic structure-property relations. Recently, this limitation has been partly overcome by bringing the powerful Wertheim theory of associating molecules to bear on protein association equilibria. Here, we review these developments.
Collapse
Affiliation(s)
- Vojko Vlachy
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | | | - Barbara Hribar-Lee
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Ken A. Dill
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, New York, NY 11794, USA;
- Department of Chemistry, Physics and Astronomy, Stony Brook University, New York, NY 11790, USA
| |
Collapse
|
8
|
Chowdhury AA, Manohar N, Lanzaro A, Kimball WD, Witek MA, Woldeyes MA, Majumdar R, Qian KK, Xu S, Gillilan RE, Huang Q, Truskett TM, Johnston KP. Characterizing Protein-Protein Interactions and Viscosity of a Monoclonal Antibody from Low to High Concentration Using Small-Angle X-ray Scattering and Molecular Dynamics Simulations. Mol Pharm 2023; 20:5563-5578. [PMID: 37782765 DOI: 10.1021/acs.molpharmaceut.3c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Understanding protein-protein interactions and formation of reversible oligomers (clusters) in concentrated monoclonal antibody (mAb) solutions is necessary for designing stable, low viscosity (η) concentrated formulations for processing and subcutaneous injection. Here we characterize the strength (K) of short-range anisotropic attractions (SRA) for 75-200 mg/mL mAb2 solutions at different pH and cosolute conditions by analyzing structure factors (Seff(q)) from small-angle X-ray scattering (SAXS) using coarse-grained molecular dynamics simulations. Best fit simulations additionally provide cluster size distributions, fractal dimensions, cluster occluded volume, and mAb coordination numbers. These equilibrium properties are utilized in a model to account for increases in viscosity caused by occluded volume in the clusters (packing effects) and dissipation of stress across lubricated fractal clusters. Seff(q) is highly sensitive to K at 75 mg/mL where mAbs can mutually align to form SRA contacts but becomes less sensitive at 200 mg/mL as steric repulsion due to packing becomes dominant. In contrast, η at 200 mg/mL is highly sensitive to SRA and the average cluster size from SAXS/simulation, which is observed to track the cluster relaxation time from shear thinning. By analyzing the distribution of sub-bead hot spots on the 3D mAb surface, we identify a strongly attractive hydrophobic patch in the complementarity determining region (CDR) at pH 4.5 that contributes to the high K and consequently large cluster sizes and high η. Adding NaCl screens electrostatic interactions and increases the impact of hydrophobic attraction on cluster size and raises η, whereas nonspecific binding of Arg attenuates all SRA, reducing η. The hydrophobic patch is absent at higher pH values, leading to smaller K, smaller clusters, and lower η. This work constitutes a first attempt to use SAXS and CG modeling to link both structural and rheological properties of concentrated mAb solutions to the energetics of specific hydrophobic patches on mAb surfaces. As such, our work opens an avenue for future research, including the possibility of designing coarse-grained models with physically meaningful interacting hot spots.
Collapse
Affiliation(s)
- Amjad A Chowdhury
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Neha Manohar
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Alfredo Lanzaro
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - William D Kimball
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Marta A Witek
- Eli Lilly and Company, Indianapolis, Indiana 46225, United States
| | | | - Ranajoy Majumdar
- Eli Lilly and Company, Indianapolis, Indiana 46225, United States
| | - Ken K Qian
- Eli Lilly and Company, Indianapolis, Indiana 46225, United States
| | - Shifeng Xu
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Richard E Gillilan
- Center for High Energy X-ray Sciences at CHESS, Cornell University, Ithaca, New York 14853, United States
| | - Qingqiu Huang
- Center for High Energy X-ray Sciences at CHESS, Cornell University, Ithaca, New York 14853, United States
| | - Thomas M Truskett
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Physics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Keith P Johnston
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
9
|
Xu AY, Blanco MA, Castellanos MM, Meuse CW, Mattison K, Karageorgos I, Hatch HW, Shen VK, Curtis JE. Role of Domain-Domain Interactions on the Self-Association and Physical Stability of Monoclonal Antibodies: Effect of pH and Salt. J Phys Chem B 2023; 127:8344-8357. [PMID: 37751332 PMCID: PMC10561141 DOI: 10.1021/acs.jpcb.3c03928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Monoclonal antibodies (mAbs) make up a major class of biotherapeutics with a wide range of clinical applications. Their physical stability can be affected by various environmental factors. For instance, an acidic pH can be encountered during different stages of the mAb manufacturing process, including purification and storage. Therefore, understanding the behavior of flexible mAb molecules in acidic solution environments will benefit the development of stable mAb products. This study used small-angle X-ray scattering (SAXS) and complementary biophysical characterization techniques to investigate the conformational flexibility and protein-protein interactions (PPI) of a model mAb molecule under near-neutral and acidic conditions. The study also characterized the interactions between Fab and Fc fragments under the same buffer conditions to identify domain-domain interactions. The results suggest that solution pH significantly influences mAb flexibility and thus could help mAbs remain physically stable by maximizing local electrostatic repulsions when mAbs become crowded in solution. Under acidic buffer conditions, both Fab and Fc contribute to the repulsive PPI observed among the full mAb at a low ionic strength. However, as ionic strength increases, hydrophobic interactions lead to the self-association of Fc fragments and, subsequently, could affect the aggregation state of the mAb.
Collapse
Affiliation(s)
- Amy Y. Xu
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Marco A. Blanco
- Discovery
Pharmaceutical Sciences, Merck Research
Laboratories, Merck & Co., Inc, West Point, Pennsylvania 19486, United States
| | - Maria Monica Castellanos
- Institute
for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
- NIST
Center for Neutron Research, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Curtis W. Meuse
- Institute
for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
- Biomolecular
Measurement Division, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Kevin Mattison
- Malvern
Panalytical, Westborough, Massachusetts 01581, United States
| | - Ioannis Karageorgos
- Institute
for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
- Biomolecular
Measurement Division, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Harold W. Hatch
- Chemical
Sciences Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Vincent K. Shen
- Chemical
Sciences Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Joseph E. Curtis
- NIST
Center for Neutron Research, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|