1
|
Imura R, Jang J, Ozeki AN, Takahashi H, Ida H, Wada Y, Kumakura Y, Akimitsu N. Click Chemistry Enables [ 89Zr]Zr-DOTA Radioimmunoconjugation for Theranostic 89Zr-immunoPET. Bioconjug Chem 2024; 35:1744-1754. [PMID: 39151917 PMCID: PMC11583970 DOI: 10.1021/acs.bioconjchem.4c00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
There have been predictions that the use of the macrocyclic chelating agent 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) in zirconium-89 (89Zr) immuno-positron emission tomography (89Zr-immunoPET) could enhance the in vivo stability of 89Zr radioimmunoconjugates. However, conjugating [89Zr]Zr-DOTA to a monoclonal antibody (mAb) remains a challenge as the heat treatment required for [89Zr]Zr-DOTA chelation can lead to thermal denaturation of the mAb moieties. We developed a method for synthesizing [89Zr]Zr-DOTA-mAb based on a tetrazine (Tz)-conjugated bifunctional DOTA derivative 2,2',2″-(10-(1-(4-(1,2,4,5-tetrazin-3-yl)phenyl)-3,21,26-trioxo-6,9,12,15,18-pentaoxa-29-carboxy-2,22,25-triazanonacosane-29-yl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid (DOTAGA-Tz) and the inverse electron-demand Diels-Alder (IEDDA) click chemistry reaction where trans-cyclooctene-modified mAbs are conjugated to [89Zr]Zr-DOTAGA without being exposed to heat. The stability of IEDDA-derived [89Zr]Zr-DOTAGA-trastuzumab was confirmed by in vitro, ex vivo, and in vivo testing and comparative analysis against the conventional deferoxamine (DFO) counterpart [89Zr]Zr-DFO-trastuzumab. The in vivo immunoPET imaging using [89Zr]Zr-DOTAGA-trastuzumab clearly visualized human epidermal growth factor receptor 2-positive malignancies in murine xenograft models. Greater tumor contrast was observed from [89Zr]Zr-DOTAGA-trastuzumab at a 72-h delayed scan compared with [89Zr]Zr-DFO-trastuzumab. These findings suggest that our IEDDA ligation approach can be an effective means of synthesizing [89Zr]Zr-DOTA-mAb and can enhance the theranostic potential of 89Zr-immunoPET in DOTA-mediated radioimmunotherapy.
Collapse
Affiliation(s)
- Ryota Imura
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro, Tokyo 153-8904, Japan
- Isotope Science Center, The University of Tokyo, Bunkyo, Tokyo 113-0032, Japan
- JFE Engineering Corporation, Yokohama, Kanagawa 230-8611, Japan
| | - Jaewoong Jang
- Isotope Science Center, The University of Tokyo, Bunkyo, Tokyo 113-0032, Japan
| | | | - Hiroyuki Takahashi
- Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
| | - Hiroyuki Ida
- JFE Engineering Corporation, Yokohama, Kanagawa 230-8611, Japan
| | - Youichiro Wada
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro, Tokyo 153-8904, Japan
- Isotope Science Center, The University of Tokyo, Bunkyo, Tokyo 113-0032, Japan
| | - Yoshitaka Kumakura
- Isotope Science Center, The University of Tokyo, Bunkyo, Tokyo 113-0032, Japan
- Department of Diagnostic Radiology and Nuclear Medicine, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama 350-8550, Japan
| | - Nobuyoshi Akimitsu
- Isotope Science Center, The University of Tokyo, Bunkyo, Tokyo 113-0032, Japan
| |
Collapse
|
2
|
Wei Z, Li B, Wen X, Jakobsson V, Liu P, Chen X, Zhang J. Engineered Antibodies as Cancer Radiotheranostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402361. [PMID: 38874523 PMCID: PMC11321656 DOI: 10.1002/advs.202402361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/06/2024] [Indexed: 06/15/2024]
Abstract
Radiotheranostics is a rapidly growing approach in personalized medicine, merging diagnostic imaging and targeted radiotherapy to allow for the precise detection and treatment of diseases, notably cancer. Radiolabeled antibodies have become indispensable tools in the field of cancer theranostics due to their high specificity and affinity for cancer-associated antigens, which allows for accurate targeting with minimal impact on surrounding healthy tissues, enhancing therapeutic efficacy while reducing side effects, immune-modulating ability, and versatility and flexibility in engineering and conjugation. However, there are inherent limitations in using antibodies as a platform for radiopharmaceuticals due to their natural activities within the immune system, large size preventing effective tumor penetration, and relatively long half-life with concerns for prolonged radioactivity exposure. Antibody engineering can solve these challenges while preserving the many advantages of the immunoglobulin framework. In this review, the goal is to give a general overview of antibody engineering and design for tumor radiotheranostics. Particularly, the four ways that antibody engineering is applied to enhance radioimmunoconjugates: pharmacokinetics optimization, site-specific bioconjugation, modulation of Fc interactions, and bispecific construct creation are discussed. The radionuclide choices for designed antibody radionuclide conjugates and conjugation techniques and future directions for antibody radionuclide conjugate innovation and advancement are also discussed.
Collapse
Affiliation(s)
- Zhenni Wei
- Department of Diagnostic Radiology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis Way, HeliosSingapore138667Singapore
| | - Bingyu Li
- Department of Diagnostic Radiology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis Way, HeliosSingapore138667Singapore
| | - Xuejun Wen
- Department of Diagnostic Radiology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis Way, HeliosSingapore138667Singapore
| | - Vivianne Jakobsson
- Department of Diagnostic Radiology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
| | - Peifei Liu
- Department of Diagnostic Radiology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis Way, HeliosSingapore138667Singapore
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis Way, HeliosSingapore138667Singapore
- Departments of SurgeryChemical and Biomolecular Engineeringand Biomedical EngineeringYong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingapore119074Singapore
- Institute of Molecular and Cell BiologyAgency for ScienceTechnologyand Research (A*STAR)61 Biopolis Drive, ProteosSingapore138673Singapore
| | - Jingjing Zhang
- Department of Diagnostic Radiology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis Way, HeliosSingapore138667Singapore
| |
Collapse
|
3
|
Mishra A, Carrascal-Miniño A, Kim J, T M de Rosales R. [ 68Ga]Ga-THP-tetrazine for bioorthogonal click radiolabelling: pretargeted PET imaging of liposomal nanomedicines. RSC Chem Biol 2024; 5:622-639. [PMID: 38966673 PMCID: PMC11221536 DOI: 10.1039/d4cb00039k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/10/2024] [Indexed: 07/06/2024] Open
Abstract
Pretargeted PET imaging using bioorthogonal chemistry is a leading strategy for the tracking of long-circulating agents such as antibodies and nanoparticle-drug delivery systems with short-lived isotopes. Here, we report the synthesis, characterisation and in vitro/vivo evaluation of a new 68Ga-based radiotracer [68Ga]Ga-THP-Tetrazine ([68Ga]Ga-THP-Tz) for bioorthogonal click radiochemistry and in vivo labelling of agents with slow pharmacokinetics. THP-tetrazine (THP-Tz) can be radiolabelled to give [68/67Ga]Ga-THP-Tz at room temperature in less than 15 minutes with excellent radiochemical stability in vitro and in vivo. [68Ga]Ga-THP-Tz was tested in vitro and in vivo for pretargeted imaging of stealth PEGylated liposomes, chosen as a leading clinically-approved platform of nanoparticle-based drug delivery, and for their known long-circulating properties. To achieve this, PEGylated liposomes were functionalised with a synthesised transcyclooctene (TCO) modified phospholipid. Radiolabelling of TCO-PEG-liposomes with [68/67Ga]Ga-THP-Tz was demonstrated in vitro in human serum, and in vivo using both healthy mice and in a syngeneic cancer murine model (WEHI-164 fibrosarcoma). Interestingly in vivo data revealed that [68Ga]Ga-THP-Tz was able to in vivo radiolabel liposomes present in the liver and spleen, and not those in the blood pool or in the tumour. Overall, these results demonstrate the potential of [68Ga]Ga-THP-Tz for pretargeted imaging/therapy but also some unexpected limitations of this system.
Collapse
Affiliation(s)
- Aishwarya Mishra
- School of Biomedical Engineering & Imaging Sciences, King's College London St Thomas' Hospital London SE1 7EH UK
| | - Amaia Carrascal-Miniño
- School of Biomedical Engineering & Imaging Sciences, King's College London St Thomas' Hospital London SE1 7EH UK
| | - Jana Kim
- School of Biomedical Engineering & Imaging Sciences, King's College London St Thomas' Hospital London SE1 7EH UK
| | - Rafael T M de Rosales
- School of Biomedical Engineering & Imaging Sciences, King's College London St Thomas' Hospital London SE1 7EH UK
| |
Collapse
|
4
|
Bohrmann L, Poulie CBM, Rodríguez-Rodríguez C, Karagiozov S, Saatchi K, Herth MM, Häfeli UO. Development of a 99mTc-labeled tetrazine for pretargeted SPECT imaging using an alendronic acid-based bone targeting model. PLoS One 2024; 19:e0300466. [PMID: 38626058 PMCID: PMC11020896 DOI: 10.1371/journal.pone.0300466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/27/2024] [Indexed: 04/18/2024] Open
Abstract
Pretargeting, which is the separation of target accumulation and the administration of a secondary imaging agent into two sequential steps, offers the potential to improve image contrast and reduce radiation burden for nuclear imaging. In recent years, the tetrazine ligation has emerged as a promising approach to facilitate covalent pretargeted imaging due to its unprecedented kinetics and bioorthogonality. Pretargeted bone imaging with TCO-modified alendronic acid (Aln-TCO) is an attractive model that allows the evaluation of tetrazines in healthy animals without the need for complex disease models or targeting regimens. Recent structure-activity relationship studies of tetrazines evaluated important parameters for the design of potent tetrazine-radiotracers for pretargeted imaging. However, limited information is available for 99mTc-labeled tetrazines. In this study, four tetrazines intended for labeling with fac-[99mTc(OH2)3 (CO)3]+ were synthesized and evaluated using an Aln-TCO mouse model. 3,6-bis(2-pyridyl)-1,2,4,5-Tz without additional linker showed higher pretargeted bone uptake and less background activity compared to the same scaffold with a PEG8 linker or 3-phenyl-1,2,4,5-Tz-based compounds. Additionally, improved bone/blood ratios were observed in pretargeted animals compared to animals receiving directly labeled Aln-TCO. The results of this study implicate 3,6-bis(2-pyridyl)-1,2,4,5-Tz as a promising scaffold for potential 99mTc-labeled tetrazines.
Collapse
Affiliation(s)
- Lennart Bohrmann
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken, Copenhagen, Denmark
| | - Christian B. M. Poulie
- Department of Drug Design and Pharmacology, Faculty of Health and Medicinal Sciences, University of Copenhagen, Universitetsparken, Copenhagen, Denmark
| | | | - Stoyan Karagiozov
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Katayoun Saatchi
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Matthias M. Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medicinal Sciences, University of Copenhagen, Universitetsparken, Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej, Copenhagen, Denmark
| | - Urs O. Häfeli
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken, Copenhagen, Denmark
| |
Collapse
|
5
|
Yang H, Zeng X, Liu J, Li J, Li Y, Zhang Q, Shu L, Liu H, Wang X, Liang Y, Hu J, Huang L, Guo Z, Zhang X. A proof-of-concept study on bioorthogonal-based pretargeting and signal amplify radiotheranostic strategy. J Nanobiotechnology 2024; 22:101. [PMID: 38462598 PMCID: PMC10926607 DOI: 10.1186/s12951-024-02312-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/26/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Radiotheranostics differs from the vast majority of other cancer therapies in its capacity for simultaneous imaging and therapy, and it is becoming more widely implemented. A balance between diagnostic and treatment requirements is essential for achieving effective radiotheranostics. Herein, we propose a proof-of-concept strategy aiming to address the profound differences in the specific requirements of the diagnosis and treatment of radiotheranostics. RESULTS To validate the concept, we designed an s-tetrazine (Tz) conjugated prostate-specific membrane antigen (PSMA) ligand (DOTA-PSMA-Tz) for 68Ga or 177Lu radiolabeling and tumor radiotheranostics, a trans-cyclooctene (TCO) modified Pd@Au nanoplates (Pd@Au-PEG-TCO) for signal amplification, respectively. We then demonstrated this radiotheranostic strategy in the tumor-bearing mice with the following three-step procedures: (1) i.v. injection of the [68Ga]Ga-PSMA-Tz for diagnosis; (2) i.v. injection of the signal amplification module Pd@Au-PEG-TCO; (3) i.v. injection of the [177Lu]Lu-PSMA-Tz for therapy. Firstly, this strategy was demonstrated in 22Rv1 tumor-bearing mice via positron emission tomography (PET) imaging with [68Ga]Ga-PSMA-Tz. We observed significantly higher tumor uptake (11.5 ± 0.8%ID/g) with the injection of Pd@Au-PEG-TCO than with the injection [68Ga]Ga-PSMA-Tz alone (5.5 ± 0.9%ID/g). Furthermore, we validated this strategy through biodistribution studies of [177Lu]Lu-PSMA-Tz, with the injection of the signal amplification module, approximately five-fold higher tumor uptake of [177Lu]Lu-PSMA-Tz (24.33 ± 2.53% ID/g) was obtained when compared to [177Lu]Lu-PSMA-Tz alone (5.19 ± 0.26%ID/g) at 48 h post-injection. CONCLUSION In summary, the proposed strategy has the potential to expand the toolbox of pretargeted radiotherapy in the field of theranostics.
Collapse
Affiliation(s)
- Hongzhang Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xinying Zeng
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jia Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jingchao Li
- PET Center, Department of Nuclear Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, China
| | - Yun Li
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Qinglin Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Linlin Shu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Huanhuan Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xueqi Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yuanyuan Liang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Ji Hu
- HTA Co., Ltd., No. 1 Sanqiang Road, Fangshan District, Beijing, 102413, China
| | - Lumei Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Zhide Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Xianzhong Zhang
- Theranostics and Translational Research Center, Institute of Clinical Medicine & Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
6
|
Morgan KA, Rudd SE, Noor A, Donnelly PS. Theranostic Nuclear Medicine with Gallium-68, Lutetium-177, Copper-64/67, Actinium-225, and Lead-212/203 Radionuclides. Chem Rev 2023; 123:12004-12035. [PMID: 37796539 DOI: 10.1021/acs.chemrev.3c00456] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Molecular changes in malignant tissue can lead to an increase in the expression levels of various proteins or receptors that can be used to target the disease. In oncology, diagnostic imaging and radiotherapy of tumors is possible by attaching an appropriate radionuclide to molecules that selectively bind to these target proteins. The term "theranostics" describes the use of a diagnostic tool to predict the efficacy of a therapeutic option. Molecules radiolabeled with γ-emitting or β+-emitting radionuclides can be used for diagnostic imaging using single photon emission computed tomography or positron emission tomography. Radionuclide therapy of disease sites is possible with either α-, β-, or Auger-emitting radionuclides that induce irreversible damage to DNA. This Focus Review centers on the chemistry of theranostic approaches using metal radionuclides for imaging and therapy. The use of tracers that contain β+-emitting gallium-68 and β-emitting lutetium-177 will be discussed in the context of agents in clinical use for the diagnostic imaging and therapy of neuroendocrine tumors and prostate cancer. A particular emphasis is then placed on the chemistry involved in the development of theranostic approaches that use copper-64 for imaging and copper-67 for therapy with functionalized sarcophagine cage amine ligands. Targeted therapy with radionuclides that emit α particles has potential to be of particular use in late-stage disease where there are limited options, and the role of actinium-225 and lead-212 in this area is also discussed. Finally, we highlight the challenges that impede further adoption of radiotheranostic concepts while highlighting exciting opportunities and prospects.
Collapse
Affiliation(s)
- Katherine A Morgan
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Stacey E Rudd
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Asif Noor
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| |
Collapse
|
7
|
Hernández-Gil J, Chow CY, Chatras H, de Souza França PD, Samuels ZV, Cornejo M, King GF, Lewis JS, Reiner T, Gonzales J. Development and Validation of Nerve-Targeted Bacteriochlorin Sensors. J Am Chem Soc 2023; 145:14276-14287. [PMID: 37339504 PMCID: PMC11443384 DOI: 10.1021/jacs.3c02520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
We report an innovative approach to producing bacteriochlorins (bacs) via formal cycloaddition by subjecting a porphyrin to a trimolecular reaction. Bacs are near-infrared probes with the intrinsic ability to serve in multimodal imaging. However, despite their ability to fluoresce and chelate metal ions, existing bacs have thus offered limited ability to label biomolecules for target specificity or have lacked chemical purity, limiting their use in bio-imaging. In this work, bacs allowed a precise and controlled appending of clickable linkers, lending the porphyrinoids substantially more chemical stability, clickability, and solubility, rendering them more suitable for preclinical investigation. Our bac probes enable the targeted use of biomolecules in fluorescence imaging and Cerenkov luminescence for guided intraoperative imaging. Bacs' capacity for chelation provides opportunities for use in non-invasive positron emission tomography/computed tomography. Herein, we report the labeling of bacs with Hs1a, a (NaV1.7)-sodium-channel-binding peptide derived from the Chinese tarantula Cyriopagopus schmidti to yield Bac-Hs1a and radiolabeled Hs1a, which shuttles our bac sensor(s) to mouse nerves. In vivo, the bac sensor allowed us to observe high signal-to-background ratios in the nerves of animals injected with fluorescent Bac-Hs1a and radiolabeled Hs1a in all imaging modes. This study demonstrates that Bac-Hs1a and [64Cu]Cu-Bac-Hs1a accumulate in peripheral nerves, providing contrast and utility in the preclinical space. For the chemistry and bio-imaging fields, this study represents an exciting starting point for the modular manipulation of bacs, their development and use as probes for diagnosis, and their deployment as formidable multiplex nerve-imaging agents for use in routine imaging experiments.
Collapse
Affiliation(s)
- Javier Hernández-Gil
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Katholieke Universiteit Leuven, B3000 Leuven, Belgium
- Instituto de Tecnología Química, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Valencia E-46022, Spain
| | - Chun Yuen Chow
- Institute for Molecular Bioscience and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Research, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hugo Chatras
- Department of Chemistry, Cleveland State University, Cleveland, Ohio 44115, United States
| | - Paula Demétrio de Souza França
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Department of Otorhinolaryngology and Head and Neck Surgery, Federal University of São Paulo, São Paulo, SP 04020-041, Brazil
| | - Zachary V. Samuels
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Mike Cornejo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Glenn F. King
- Institute for Molecular Bioscience and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Research, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jason S. Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Department of Pharmacology, Weill-Cornell Medical College, New York, New York 10065, United States
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Department of Radiology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Department of Pharmacology, Weill-Cornell Medical College, New York, New York 10065, United States
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Department of Radiology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Junior Gonzales
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Department of Chemistry, Cleveland State University, Cleveland, Ohio 44115, United States
- Center for Gene Regulation in Health and Disease, Cleveland, Ohio 44115, United States
| |
Collapse
|
8
|
Zhong X, Yan J, Ding X, Su C, Xu Y, Yang M. Recent Advances in Bioorthogonal Click Chemistry for Enhanced PET and SPECT Radiochemistry. Bioconjug Chem 2023; 34:457-476. [PMID: 36811499 DOI: 10.1021/acs.bioconjchem.2c00583] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Due to their high reaction rate and reliable selectivity, bioorthogonal click reactions have been extensively investigated in numerous research fields, such as nanotechnology, drug delivery, molecular imaging, and targeted therapy. Previous reviews on bioorthogonal click chemistry for radiochemistry mainly focus on 18F-labeling protocols employed to produce radiotracers and radiopharmaceuticals. In fact, besides fluorine-18, other radionuclides such as gallium-68, iodine-125, and technetium-99m are also used in the field of bioorthogonal click chemistry. Herein, to provide a more comprehensive perspective, we provide a summary of recent advances in radiotracers prepared using bioorthogonal click reactions, including small molecules, peptides, proteins, antibodies, and nucleic acids as well as nanoparticles based on these radionuclides. The combination of pretargeting with imaging modalities or nanoparticles, as well as the clinical translations study, are also discussed to illustrate the effects and potential of bioorthogonal click chemistry for radiopharmaceuticals.
Collapse
Affiliation(s)
- Xinlin Zhong
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Junjie Yan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
| | - Xiang Ding
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
| | - Chen Su
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi 214002, P. R. China
| | - Yuping Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
| | - Min Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
9
|
Melendez-Alafort L, Ferro-Flores G, De Nardo L, Ocampo-García B, Bolzati C. Zirconium immune-complexes for PET molecular imaging: Current status and prospects. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.215005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
10
|
Bidesi N, Shalgunov V, Battisti UM, Hvass L, Jørgensen JT, Poulie CBM, Jensen AI, Kjaer A, Herth MM. Synthesis and radiolabeling of a polar [ 125 I]I-1,2,4,5-tetrazine. J Labelled Comp Radiopharm 2023; 66:22-30. [PMID: 36539610 PMCID: PMC10107300 DOI: 10.1002/jlcr.4009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/13/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Pretargeting imaging has gained a lot of prominence, due to its excellent bioorthogonality and improved imaging contrast compared to conventional imaging. A new iodo tetrazine (Tz) derivative has been synthesized and further developed into the corresponding iodine-125 (125 I) analog (12), via the trimethylstannane precursor. Radiolabeling with either N-chlorosuccinimide or chloramine-T, in either MeCN or MeOH proceeded with a radiochemical conversion (RCC) of >80%. Subsequent deprotection only proved successful, among the tested conditions, when the radiolabeled Tz was stirred in 6-M HCl(aq.) at 60°C for 2.5 h. To the best of our knowledge, this is the first H-tetrazine labeled with iodine. In vivo investigations on the pretargeting ability of 12 are currently under way.
Collapse
Affiliation(s)
- Natasha Bidesi
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Umberto Maria Battisti
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Hvass
- Department of Clinical Physiology, Nuclear Medicine and PET & Cluster for Molecular Imaging, Copenhagen University Hospital - Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Tranekjaer Jørgensen
- Department of Clinical Physiology, Nuclear Medicine and PET & Cluster for Molecular Imaging, Copenhagen University Hospital - Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian B M Poulie
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andreas I Jensen
- Center for Nuclear Technologies (DTU Nutech), Technical University of Denmark (DTU), Roskilde, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine and PET & Cluster for Molecular Imaging, Copenhagen University Hospital - Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthias M Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
11
|
Cook BE, Archbold J, Nasr K, Girmay S, Goldstein SI, Li P, Dandapani S, Genung NE, Tang SP, McClusky S, Plisson C, Afetian ME, Dwyer CA, Fazio M, Drury WJ, Rigo F, Martarello L, Kaliszczak M. Non-invasive Imaging of Antisense Oligonucleotides in the Brain via In Vivo Click Chemistry. Mol Imaging Biol 2022; 24:940-949. [PMID: 35655109 DOI: 10.1007/s11307-022-01744-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/10/2022] [Accepted: 05/22/2022] [Indexed: 12/29/2022]
Abstract
PURPOSE The treatment of complex neurological diseases often requires the administration of large therapeutic drugs, such as antisense oligonucleotide (ASO), by lumbar puncture into the intrathecal space in order to bypass the blood-brain barrier. Despite the growing number of ASOs in clinical development, there are still uncertainties regarding their dosing, primarily around their distribution and kinetics in the brain following intrathecal injection. The challenge of taking measurements within the delicate structures of the central nervous system (CNS) necessitates the use of non-invasive nuclear imaging, such as positron emission tomography (PET). Herein, an emergent strategy known as "pretargeted imaging" is applied to image the distribution of an ASO in the brain by developing a novel PET tracer, [18F]F-537-Tz. This tracer is able to undergo an in vivo "click" reaction, covalently binding to a trans-cyclooctene conjugated ASO. PROCEDURES A novel small molecule tracer for pretargeted PET imaging of ASOs in the CNS is developed and tested in a series of in vitro and in vivo experiments, including biodistribution in rats and non-human primates. RESULTS In vitro data and extensive in vivo rat data demonstrated delivery of the tracer to the CNS, and its successful ligation to its ASO target in the brain. In an NHP study, the slow tracer kinetics did not allow for specific binding to be determined by PET. CONCLUSION A CNS-penetrant radioligand for pretargeted imaging was successfully demonstrated in a proof-of-concept study in rats, laying the groundwork for further optimization.
Collapse
Affiliation(s)
| | | | - Khaled Nasr
- Invicro, A Konica Minolta Company, Boston, MA, 02210, USA
| | | | | | - Pei Li
- , Biogen, Cambridge, MA, 02142, USA
| | | | | | - Sac-Pham Tang
- Invicro, A Konica Minolta Company, Boston, MA, 02210, USA
| | | | | | | | | | | | | | - Frank Rigo
- Ionis Pharmaceuticals Inc, Carlsbad, CA, 92010, USA
| | | | | |
Collapse
|
12
|
Antibody-Based In Vivo Imaging of Central Nervous System Targets-Evaluation of a Pretargeting Approach Utilizing a TCO-Conjugated Brain Shuttle Antibody and Radiolabeled Tetrazines. Pharmaceuticals (Basel) 2022; 15:ph15121445. [PMID: 36558900 PMCID: PMC9787164 DOI: 10.3390/ph15121445] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
Bioorthogonal pretargeted imaging using the inverse-electron-demand Diels-Alder (IEDDA) reaction between a tetrazine (Tz) and a trans-cyclooctene (TCO) represents an attractive strategy for molecular imaging via antibodies. The advantages of using a pretargeted imaging approach are on the one hand the possibility to achieve a high signal-to-noise ratio and imaging contrast; on the other hand, the method allows the uncoupling of the biological half-life of antibodies from the physical half-life of short-lived radionuclides. A brain-penetrating antibody (mAb) specific for β-amyloid (Aβ) plaques was functionalized with TCO moieties for pretargeted labeling of Aβ plaques in vitro, ex vivo, and in vivo by a tritium-labeled Tz. The overall aim was to explore the applicability of mAbs for brain imaging, using a preclinical model system. In vitro clicked mAb-TCO-Tz was able to pass the blood-brain barrier of transgenic PS2APP mice and specifically visualize Aβ plaques ex vivo. Further experiments showed that click reactivity of the mAb-TCO construct in vivo persisted up to 3 days after injection by labeling Aβ plaques ex vivo after incubation of brain sections with the Tz in vitro. An attempted in vivo click reaction between injected mAb-TCO and Tz did not lead to significant labeling of Aβ plaques, most probably due to unfavorable in vivo properties of the used Tz and a long half-life of the mAb-TCO in the blood stream. This study clearly demonstrates that pretargeted imaging of CNS targets via antibody-based click chemistry is a viable approach. Further experiments are warranted to optimize the balance between stability and reactivity of all reactants, particularly the Tz.
Collapse
|
13
|
Bhise A, Park H, Lee W, Sarkar S, Ha YS, Rajkumar S, Nam B, Lim JE, Huynh PT, Lee K, Son JY, Kim JY, Lee KC, Yoo J. Preclinical Evaluation of hnRNPA2B1 Antibody in Human Triple-Negative Breast Cancer MDA-MB-231 Cells via PET Imaging. Pharmaceutics 2022; 14:pharmaceutics14081677. [PMID: 36015303 PMCID: PMC9415040 DOI: 10.3390/pharmaceutics14081677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/27/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022] Open
Abstract
Triple-negative breast cancer (TNBC) does not express estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. Because TNBC lacks the expression of commonly targeted receptors, it is challenging to develop a new imaging agent for this cancer subtype. Heterogeneous nuclear ribonucleoproteins (hnRNPs) are RNA–protein complexes that have been linked to tumor development and progression. Considering the high expression of hnRNPA2B1, an hnRNP subtype, in TNBC MDA-MB-231 cells, this study aimed to develop a novel hnRNPA2B1 antibody-based nuclear imaging agent. The hnRNPA2B1-specific antibody was radiolabeled with 64Cu and evaluated in vitro and in vivo. The trans-cyclooctene (TCO) was functionalized on the antibody to obtain hnRNP-PEG4-TCO and reactive tetrazine (Tz) on the ultrastable bifunctional chelator PCB-TE2A-alkyne to yield PCB-TE2A-Tz for the inverse electron demand Diels–Alder reaction. The 64Cu-radiolabeled antibody was administered and imaged at 1–18 h time points for conventional imaging. Alternatively, the unlabeled antibody conjugate was administered, and 48 h later radiolabeled 64Cu-PCB-TE2A-Tz was administered to the same mice for the pretargeting strategy and imaged at the same time intervals for direct comparison. The tumor was successfully visualized in both strategies, and comparatively, pretargeting showed superior results. The 64Cu-PCB-TE2A-Tz was successfully clicked at the tumor site with hnRNP-PEG4-TCO and the non-clicked were concurrently eliminated. This led to increase the tumor uptake with extremely high tumor-to-background ratio manifested by positron emission tomography (PET) imaging and biodistribution studies.
Collapse
Affiliation(s)
- Abhinav Bhise
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Hyun Park
- Division of Applied RI, Korea Institute of Radiological and Medical Science, Seoul 01812, Korea
| | - Woonghee Lee
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Swarbhanu Sarkar
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Yeong Su Ha
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Subramani Rajkumar
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Bora Nam
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Jeong Eun Lim
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Phuong Tu Huynh
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Kiwoong Lee
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Ji-Yoon Son
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Jung Young Kim
- Division of Applied RI, Korea Institute of Radiological and Medical Science, Seoul 01812, Korea
| | - Kyo Chul Lee
- Division of Applied RI, Korea Institute of Radiological and Medical Science, Seoul 01812, Korea
| | - Jeongsoo Yoo
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Correspondence: ; Tel.: +82-53-420-4947
| |
Collapse
|
14
|
Jallinoja VIJ, Carney BD, Bhatt K, Abbriano CH, Schlyer DJ, Yazaki PJ, Houghton JL. Investigation of Copper-64-Based Host-Guest Chemistry Pretargeted Positron Emission Tomography. Mol Pharm 2022; 19:2268-2278. [PMID: 35700402 PMCID: PMC11271262 DOI: 10.1021/acs.molpharmaceut.2c00102] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pretargeting is a technique that uses macromolecules as targeting agents for nuclear imaging and therapy with the goal of reducing the radiation toxicity to healthy tissues often associated with directly radiolabeled macromolecules. In pretargeting, a macromolecule is radiolabeled in vivo at the target site using a radiolabeled small molecule (radioligand) that interacts with the macromolecule with high specificity. We report an investigation of host-guest chemistry-driven pretargeting using copper-64 radiolabeled ferrocene (Fc; guest) compounds and a cucurbit[7]uril (CB7; host) molecule functionalized carcinoembryonic antigen targeting hT84.66-M5A monoclonal antibody (CB7-M5A). Two novel ferrocene-based radioligands ([64Cu]Cu-NOTA-PEG3-Fc and [64Cu]Cu-NOTA-PEG7-Fc) were prepared, and their in vitro stability, pharmacokinetic in vivo profile in healthy mice, and pretargeting performance in a subcutaneous BxPC3 human pancreatic cancer cell xenograft mouse model were compared. The antibody dosing was optimized using a zirconium-89 radiolabeled M5A antibody ([89Zr]Zr-DFO-M5A) in a BxPC3 xenograft model, and the dosimetry of [89Zr]Zr-DFO-M5A and the pretargeting approach were compared. Finally, the effects of varying lag times up to 9 days between CB7-M5A and radioligand injection were investigated. In vivo pretargeting studies with both ferrocene radioligands resulted in specific tumor uptake (p = 0.0006 and p = 0.003) and also showed that the host-guest-based pretargeting approach excels with extended lag times up to 9 days with good tumor localization, suggesting that host-guest pretargeting may be suitable for use without clearing agents which have complicated clinical application of this technique. To our knowledge, the reported lag time of 9 days is the longest investigated lag time in any reported pretargeting studies.
Collapse
Affiliation(s)
- Vilma I J Jallinoja
- Department of Radiology, Stony Brook University, Stony Brook, New York 11794, United States
- Chemical and Physical Biology Graduate Program, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Brandon D Carney
- Department of Radiology, Stony Brook University, Stony Brook, New York 11794, United States
| | - Kavita Bhatt
- Department of Radiology, Stony Brook University, Stony Brook, New York 11794, United States
| | - Courtney H Abbriano
- Department of Radiology, Stony Brook University, Stony Brook, New York 11794, United States
| | - David J Schlyer
- Department of Radiology, Stony Brook University, Stony Brook, New York 11794, United States
- Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Paul J Yazaki
- Beckman Institute, City of Hope, Duarte, California 91010, United States
| | - Jacob L Houghton
- Department of Radiology, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
15
|
Manafi-Farid R, Ataeinia B, Ranjbar S, Jamshidi Araghi Z, Moradi MM, Pirich C, Beheshti M. ImmunoPET: Antibody-Based PET Imaging in Solid Tumors. Front Med (Lausanne) 2022; 9:916693. [PMID: 35836956 PMCID: PMC9273828 DOI: 10.3389/fmed.2022.916693] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/24/2022] [Indexed: 12/13/2022] Open
Abstract
Immuno-positron emission tomography (immunoPET) is a molecular imaging modality combining the high sensitivity of PET with the specific targeting ability of monoclonal antibodies. Various radioimmunotracers have been successfully developed to target a broad spectrum of molecules expressed by malignant cells or tumor microenvironments. Only a few are translated into clinical studies and barely into clinical practices. Some drawbacks include slow radioimmunotracer kinetics, high physiologic uptake in lymphoid organs, and heterogeneous activity in tumoral lesions. Measures are taken to overcome the disadvantages, and new tracers are being developed. In this review, we aim to mention the fundamental components of immunoPET imaging, explore the groundbreaking success achieved using this new technique, and review different radioimmunotracers employed in various solid tumors to elaborate on this relatively new imaging modality.
Collapse
Affiliation(s)
- Reyhaneh Manafi-Farid
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahar Ataeinia
- Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Shaghayegh Ranjbar
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Zahra Jamshidi Araghi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mobin Moradi
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Christian Pirich
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
16
|
Recent Advances in the Development of Tetrazine Ligation Tools for Pretargeted Nuclear Imaging. Pharmaceuticals (Basel) 2022; 15:ph15060685. [PMID: 35745604 PMCID: PMC9227058 DOI: 10.3390/ph15060685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 01/25/2023] Open
Abstract
Tetrazine ligation has gained interest as a bio-orthogonal chemistry tool within the last decade. In nuclear medicine, tetrazine ligation is currently being explored for pretargeted approaches, which have the potential to revolutionize state-of-the-art theranostic strategies. Pretargeting has been shown to increase target-to-background ratios for radiopharmaceuticals based on nanomedicines, especially within early timeframes. This allows the use of radionuclides with short half-lives which are more suited for clinical applications. Pretargeting bears the potential to increase the therapeutic dose delivered to the target as well as reduce the respective dose to healthy tissue. Combined with the possibility to be applied for diagnostic imaging, pretargeting could be optimal for theranostic approaches. In this review, we highlight efforts that have been made to radiolabel tetrazines with an emphasis on imaging.
Collapse
|
17
|
Matiz CA, Delaney S, Cook BE, Genady AR, Hoerres R, Kuchuk M, Makris G, Valliant JF, Sadeghi S, Lewis JS, Hennkens HM, Bryan JN, Zeglis BM. Pretargeted PET of Osteodestructive Lesions in Dogs. Mol Pharm 2022; 19:3153-3162. [DOI: 10.1021/acs.molpharmaceut.2c00220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Charles A. Matiz
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, Missouri 65211, United States
| | - Samantha Delaney
- Department of Chemistry, Hunter College, City University of New York, New York, New York 10065, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Brendon E. Cook
- Department of Chemistry, Hunter College, City University of New York, New York, New York 10065, United States
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Afaf R. Genady
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Rebecca Hoerres
- Department of Chemistry and Research Reactor, University of Missouri, Columbia, Missouri 65211, United States
| | - Marina Kuchuk
- Department of Chemistry and Research Reactor, University of Missouri, Columbia, Missouri 65211, United States
| | - Georgios Makris
- Department of Chemistry and Research Reactor, University of Missouri, Columbia, Missouri 65211, United States
| | - John F. Valliant
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Saman Sadeghi
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Jason S. Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Department of Pharmacology, Weill Cornell Medical College, New York, New York 10021, United States
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Department of Radiology, Weill Cornell Medical College, New York, New York 10021, United States
| | - Heather M. Hennkens
- Department of Chemistry and Research Reactor, University of Missouri, Columbia, Missouri 65211, United States
| | - Jeffrey N. Bryan
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, Missouri 65211, United States
| | - Brian M. Zeglis
- Department of Chemistry, Hunter College, City University of New York, New York, New York 10065, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
- Department of Radiology, Weill Cornell Medical College, New York, New York 10021, United States
| |
Collapse
|
18
|
Battisti UM, García-Vázquez R, Svatunek D, Herrmann B, Löffler A, Mikula H, Herth MM. Synergistic Experimental and Computational Investigation of the Bioorthogonal Reactivity of Substituted Aryltetrazines. Bioconjug Chem 2022; 33:608-624. [PMID: 35290735 PMCID: PMC9026259 DOI: 10.1021/acs.bioconjchem.2c00042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
![]()
Tetrazines (Tz) have
been applied as bioorthogonal agents for various
biomedical applications, including pretargeted imaging approaches.
In radioimmunoimaging, pretargeting increases the target-to-background
ratio while simultaneously reducing the radiation burden. We have
recently reported a strategy to directly 18F-label highly
reactive tetrazines based on a 3-(3-fluorophenyl)-Tz core structure.
Herein, we report a kinetic study on this versatile scaffold. A library
of 40 different tetrazines was prepared, fully characterized, and
investigated with an emphasis on second-order rate constants for the
reaction with trans-cyclooctene (TCO). Our results
reveal the effects of various substitution patterns and moreover demonstrate
the importance of measuring reactivities in the solvent of interest,
as click rates in different solvents do not necessarily correlate
well. In particular, we report that tetrazines modified in the 2-position
of the phenyl substituent show high intrinsic reactivity toward TCO,
which is diminished in aqueous systems by unfavorable solvent effects.
The obtained results enable the prediction of the bioorthogonal reactivity
and thereby facilitate the development of the next generation of substituted
aryltetrazines for in vivo applications.
Collapse
Affiliation(s)
- Umberto M Battisti
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
| | - Rocío García-Vázquez
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Dennis Svatunek
- Institute of Applied Synthetic Chemistry, Technische Universität Wien (TU Wien), Getreidemarkt 9, 1060 Vienna, Austria
| | - Barbara Herrmann
- Institute of Applied Synthetic Chemistry, Technische Universität Wien (TU Wien), Getreidemarkt 9, 1060 Vienna, Austria
| | - Andreas Löffler
- Institute of Applied Synthetic Chemistry, Technische Universität Wien (TU Wien), Getreidemarkt 9, 1060 Vienna, Austria
| | - Hannes Mikula
- Institute of Applied Synthetic Chemistry, Technische Universität Wien (TU Wien), Getreidemarkt 9, 1060 Vienna, Austria
| | - Matthias Manfred Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| |
Collapse
|
19
|
García-Vázquez R, Jørgensen JT, Bratteby KE, Shalgunov V, Hvass L, Herth MM, Kjær A, Battisti UM. Development of 18F-Labeled Bispyridyl Tetrazines for In Vivo Pretargeted PET Imaging. Pharmaceuticals (Basel) 2022; 15:ph15020245. [PMID: 35215356 PMCID: PMC8879724 DOI: 10.3390/ph15020245] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 02/05/2023] Open
Abstract
Pretargeted PET imaging is an emerging and fast-developing method to monitor immuno-oncology strategies. Currently, tetrazine ligation is considered the most promising bioorthogonal reaction for pretargeting in vivo. Recently, we have developed a method to 18F-label ultrareactive tetrazines by copper-mediated fluorinations. However, bispyridyl tetrazines—one of the most promising structures for in vivo pretargeted applications—were inaccessible using this strategy. We believed that our successful efforts to 18F-label H-tetrazines using low basic labeling conditions could also be used to label bispyridyl tetrazines via aliphatic nucleophilic substitution. Here, we report the first direct 18F-labeling of bispyridyl tetrazines, their optimization for in vivo use, as well as their successful application in pretargeted PET imaging. This strategy resulted in the design of [18F]45, which could be labeled in a satisfactorily radiochemical yield (RCY = 16%), molar activity (Am = 57 GBq/µmol), and high radiochemical purity (RCP > 98%). The [18F]45 displayed a target-to-background ratio comparable to previously successfully applied tracers for pretargeted imaging. This study showed that bispyridyl tetrazines can be developed into pretargeted imaging agents. These structures allow an easy chemical modification of 18F-labeled tetrazines, paving the road toward highly functionalized pretargeting tools. Moreover, bispyridyl tetrazines led to near-instant drug release of iTCO-tetrazine-based ‘click-to-release’ reactions. Consequently, 18F-labeled bispyridyl tetrazines bear the possibility to quantify such release in vivo in the future.
Collapse
Affiliation(s)
- Rocío García-Vázquez
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (R.G.-V.); (K.E.B.); (V.S.)
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Jesper Tranekjær Jørgensen
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen, Denmark; (J.T.J.); (L.H.)
| | - Klas Erik Bratteby
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (R.G.-V.); (K.E.B.); (V.S.)
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Department of Radiation Physics, Skåne University Hospital, Barngatan 3, 22242 Lund, Sweden
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (R.G.-V.); (K.E.B.); (V.S.)
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Lars Hvass
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen, Denmark; (J.T.J.); (L.H.)
| | - Matthias M. Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (R.G.-V.); (K.E.B.); (V.S.)
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Correspondence: (M.M.H.); (A.K.); (U.M.B.)
| | - Andreas Kjær
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen, Denmark; (J.T.J.); (L.H.)
- Correspondence: (M.M.H.); (A.K.); (U.M.B.)
| | - Umberto Maria Battisti
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (R.G.-V.); (K.E.B.); (V.S.)
- Correspondence: (M.M.H.); (A.K.); (U.M.B.)
| |
Collapse
|
20
|
Zhang Y, Lin Q, Wang T, Shi D, Fu Z, Si Z, Xu Z, Cheng Y, Shi H, Cheng D. Targeting Infiltrating Myeloid Cells in Gastric Cancer Using a Pretargeted Imaging Strategy Based on Bio-Orthogonal Diels-Alder Click Chemistry and Comparison with 89Zr-Labeled Anti-CD11b Positron Emission Tomography Imaging. Mol Pharm 2022; 19:246-257. [PMID: 34816721 DOI: 10.1021/acs.molpharmaceut.1c00745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Gastric cancer (GC) is a common cancer worldwide, with high incidence and mortality rates. Therefore, early and precise diagnosis is critical to improving GC prognosis. Tumor-associated myeloid cells infiltrate the tumor microenvironment (TME) and can produce immunosuppressive effects in the early stage of the tumor. The surface integrin receptor CD11b is widely expressed in the specific subsets of myeloid cells, and it has the characteristics of high abundance, high specificity, and high potential for targeted immunotherapy. In this study, two strategies for labeling anti-CD11b, including 89Zr-DFO-anti-CD11b and pretargeted imaging (68Ga-NOTA-polypeptide-PEG11-Tz/anti-CD11b-TCO), were used to evaluate the value of early diagnosis of GC and confirm the advantages of the pretargeted strategy for the diagnosis of GC. Pretargeted molecular probe 68Ga-NOTA-polypeptide-PEG11-Tz was synthesized. The binding affinity of the Tz-radioligand to CD11b was evaluated in vitro, and its blood pharmacokinetic test was performed in vivo. Moreover, the anti-CD11b antibody was conjugated with a p-isothiocyanatobenzyl-desferrioxamine (SCN-DFO) chelator and radiolabeled with zirconium-89. Biodistribution and positron-emission computed tomography imaging experiments were performed in MGC-803 tumor-bearing model mice to evaluate the value of the early diagnosis of GC. Histological evaluation of MGC-803 tumors was conducted to confirm the infiltration of the GC TME with CD11b+ myeloid cells. 68Ga-NOTA-polypeptide-PEG11-Tz was successfully radiosynthesized, with the radiochemical purity above 95%, as confirmed by reversed-phase high-performance liquid chromatography. The radioligand showed favorable stability in normal saline and phosphate-buffered saline, good affinity to RAW264.7 cells, and rapid blood clearance in mice. The results of biodistribution and imaging experiments using the pretargeted method showed that the tumor/muscle ratios were 5.17 ± 2.98, 5.94 ± 1.46, and 4.46 ± 2.73 at the pretargeting intervals of 24, 48, and 72 h, respectively. The experimental results using the method of the directly labeling antibody (89Zr-DFO-anti-CD11b) showed that, despite radioactive accumulation in the tumor, there was a higher level of radioactive accumulation in normal tissues. The tumor/muscle ratios were 1.09 ± 0.67, 1.66 ± 0.95, 2.94 ± 1.24, 3.64 ± 1.21, and 3.55 ± 1.64 at 1, 24, 48, 72, and 120 h. The current research proved the value of 68Ga-NOTA-polypeptide-PEG11-Tz/anti-CD11b-TCO in the diagnosis of GC using the pretargeted strategy. Compared to 89Zr-DFO-anti-CD11b, the image contrast achieved by the pretargeted strategy was relatively improved, and the background accumulation of the probe was relatively low. These advantages can improve the diagnostic efficiency for GC and provide supporting evidence for radioimmunotherapy targeting CD11b receptors.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, People's Republic of China
| | - Qingyu Lin
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, People's Republic of China.,Institute of Nuclear Medicine, Fudan University, Shanghai 200032, People's Republic of China.,Shanghai Institute of Medical Imaging, Shanghai 200032, People's Republic of China
| | - Tingting Wang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, People's Republic of China
| | - Dai Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, People's Republic of China
| | - Zhequan Fu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, People's Republic of China
| | - Zhan Si
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, People's Republic of China
| | - Zhan Xu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, People's Republic of China
| | - Yuan Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, People's Republic of China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, People's Republic of China.,Institute of Nuclear Medicine, Fudan University, Shanghai 200032, People's Republic of China.,Shanghai Institute of Medical Imaging, Shanghai 200032, People's Republic of China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, People's Republic of China.,Institute of Nuclear Medicine, Fudan University, Shanghai 200032, People's Republic of China.,Shanghai Institute of Medical Imaging, Shanghai 200032, People's Republic of China
| |
Collapse
|
21
|
Shalgunov V, Engudar G, Bohrmann L, Wharton L, Maskell K, Johann K, Barz M, Schaffer P, Herth MM, Radchenko V. Radiolabeling of a polypeptide polymer for intratumoral delivery of alpha-particle emitter, 225Ac, and beta-particle emitter, 177Lu. Nucl Med Biol 2021; 104-105:11-21. [PMID: 34839209 DOI: 10.1016/j.nucmedbio.2021.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/22/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Radiotherapy of cancer requires both alpha- and beta-particle emitting radionuclides, as these radionuclide types are efficient at destroying different types of tumors. Both classes of radionuclides require a vehicle, such as an antibody or a polymer, to be delivered and retained within the tumor. Polyglutamic acid (pGlu) is a polymer that has proven itself effective as a basis of drug-polymer conjugates in the clinic, while its derivatives have been used for pretargeted tumor imaging in a research setup. trans-Cyclooctene (TCO) modified pGlu is suitable for pretargeted imaging or therapy, as well as for intratumoral radionuclide therapy. In all cases, it becomes indirectly radiolabeled via the bioorthogonal click reaction with the tetrazine (Tz) molecule carrying the radionuclide. In this study, we report the radiolabeling of TCO-modified pGlu with either lutetium-177 (177Lu), a beta-particle emitter, or actinium-225 (225Ac), an alpha-particle emitter, using the click reaction between TCO and Tz. METHODS A panel of Tz derivatives containing a metal ion binding chelator (DOTA or macropa) connected to the Tz moiety directly or through a polyethylene glycol (PEG) linker was synthesized and tested for their ability to chelate 177Lu and 225Ac, and click to pGlu-TCO. Radiolabeled 177Lu-pGlu and 225Ac-pGlu were isolated by size exclusion chromatography. The retention of 177Lu or 225Ac by the obtained conjugates was investigated in vitro in human serum. RESULTS All DOTA-modified Tzs efficiently chelated 177Lu resulting in average radiochemical conversions (RCC) of >75%. Isolated radiochemical yields (RCY) for 177Lu-pGlu prepared from 177Lu-Tzs ranged from 31% to 55%. TLC analyses detected <5% unchelated 177Lu for all 177Lu-pGlu preparations over six days in human serum. For 225Ac chelation, optimized RCCs ranged from 61 ± 34% to quantitative for DOTA-Tzs and were quantitative for the macropa-modified Tz (>98%). Isolated radiochemical yields (RCY) for 225Ac-pGlu prepared from 225Ac-Tzs ranged from 28% to 51%. For 3 out of 5 225Ac-pGlu conjugates prepared from DOTA-Tzs, the amount of unchelated 225Ac stayed below 10% over six days in human serum, while 225Ac-pGlu prepared from macropa-Tz showed a steady release of up to 37% 225Ac. CONCLUSION We labeled TCO-modified pGlu polymers with alpha- and beta-emitting radionuclides in acceptable RCYs. All 177Lu-pGlu preparations and some 225Ac-pGlu preparations showed excellent stability in human plasma. Our work shows the potential of pGlu as a vehicle for alpha- and beta-radiotherapy of tumors and demonstrated the usefulness of Tz ligation for indirect radiolabeling.
Collapse
Affiliation(s)
- Vladimir Shalgunov
- Department for Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Gokce Engudar
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
| | - Lennart Bohrmann
- Department for Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Luke Wharton
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada; Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z, Canada
| | - Keiran Maskell
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada; Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 0A7, Canada
| | - Kerstin Johann
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Matthias Barz
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany; Division of Biotherapeutics, Leiden Academic Center for Drug Research (LACDR), Einsteinweg 55, 2333CC Leiden, the Netherlands
| | - Paul Schaffer
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada; Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 0A7, Canada; Department of Radiology, University of British Columbia, 2775 Lauret St, Vancouver, BC V5Z 1M9, Canada
| | - Matthias M Herth
- Department for Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | - Valery Radchenko
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada; Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z, Canada.
| |
Collapse
|
22
|
Battisti UM, Bratteby K, Jørgensen JT, Hvass L, Shalgunov V, Mikula H, Kjær A, Herth MM. Development of the First Aliphatic 18F-Labeled Tetrazine Suitable for Pretargeted PET Imaging-Expanding the Bioorthogonal Tool Box. J Med Chem 2021; 64:15297-15312. [PMID: 34649424 DOI: 10.1021/acs.jmedchem.1c01326] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pretargeted imaging of nanomedicines have attracted considerable interest because it has the potential to increase imaging contrast while reducing radiation burden to healthy tissue. Currently, the tetrazine ligation is the fastest bioorthogonal reaction for this strategy and, consequently, the state-of-art choice for in vivo chemistry. We have recently identified key properties for tetrazines in pretargeting. We have also developed a method to 18F-label reactive tetrazines using an aliphatic nucleophilic substitution strategy. Here, we combined this knowledge and developed an 18F-labeled tetrazine for pretargeted imaging. In order to develop this ligand, a small SAR study was performed. The most promising compound was selected for labeling and subsequent positron-emission-tomography in vivo imaging. Radiolabeling was achieved in satisfactory yields, molar activities, and high radiochemical purities. [18F]15 displayed favorable pharmacokinetics and remarkable target-to-background ratios-as early as 1 h post injection. We believe that this agent could be a promising candidate for translation into clinical studies.
Collapse
Affiliation(s)
- Umberto M Battisti
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Klas Bratteby
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.,Department of Radiation Physics, Skåne University Hospital, Barngatan 3, 22242 Lund, Sweden
| | - Jesper T Jørgensen
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Lars Hvass
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Hannes Mikula
- Institute of Applied Synthetic Chemistry, Technische Universität Wien (TU Wien), Getreidemarkt 9, 1060 Vienna, Austria
| | - Andreas Kjær
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Matthias Manfred Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| |
Collapse
|
23
|
Sun L, Gai Y, Li Z, Zhang X, Li J, Ma Y, Li H, Barajas RJ, Zeng D. Development of Dual Receptor Enhanced Pre-Targeting Strategy-A Novel Promising Technology for Immuno-Positron Emission Tomography Imaging. ADVANCED THERAPEUTICS 2021; 4:2100110. [PMID: 35309962 PMCID: PMC8932640 DOI: 10.1002/adtp.202100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Indexed: 11/06/2022]
Abstract
PET imaging has become an important diagnostic tool in the era of precise medicine. Various pre-targeting systems have been reported to address limitations associated with traditional immuno-PET. However, the application of these mono-receptor based pre-targeting (MRPT) strategies is limited to non-internalizable antibodies, and the tumor uptake is usually much lower than that in the corresponding immuno-PET. To circumvent these limitations, we develop the first Dual-Receptor Pre-Targeting (DRPT) system through entrapping the tumor-receptor-specific radioligand by the pre-administered antibody. Besides the similar ligation pathway happens in MRPT, incorporation of a tumor-receptor-specific peptide into the radioligand in DRPT enhances both concentration and retention of the radioligand on tumor, promoting its ligation with pre-administered mAb on cell-surface and/or internalized into tumor-cells. In this study, 64Cu based DRPT shows superior performance over corresponding MRPT and immuno-PET using internalizable antibodies. Besides, the compatibility of DRPT with short-lived and generator-produced 68Ga is demonstrated, leveraging its advantage in reducing radio-dose exposure. Furthermore, the feasibility of reducing the amount of the pre-administered antibody is confirmed, indicating the cost saving potential of DRPT. In summary, synergizing advantages of dual-receptor targeting and pre-targeting, we expect that this DRPT strategy can become a breakthrough technology in the field of antibody-based molecular imaging.
Collapse
Affiliation(s)
- Lingyi Sun
- Department of Radiology, University of Pittsburgh, Pittsburgh 15213, USA; Center of Radiochemistry Research, Knight Cardiovascular Institute, Oregon Health & Science University, Portland 97239, USA
| | - Yongkang Gai
- Department of Radiology, University of Pittsburgh, Pittsburgh 15213, USA
| | - Zhonghan Li
- Center of Radiochemistry Research, Knight Cardiovascular Institute, Oregon Health & Science University, Portland 97239, USA
| | - Xiaohui Zhang
- Department of Radiology, University of Pittsburgh, Pittsburgh 15213, USA
| | - Jianchun Li
- Department of Radiology, University of Pittsburgh, Pittsburgh 15213, USA
| | - Yongyong Ma
- Department of Radiology, University of Pittsburgh, Pittsburgh 15213, USA
| | - Huiqiang Li
- Department of Radiology, University of Pittsburgh, Pittsburgh 15213, USA
| | - Ramon J Barajas
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland 97239, USA; Advanced Imaging Research Center, Oregon Health & Science University, Portland 97239, USA; Translational Oncology Research Program, Knight Cancer Institute, Oregon Health & Science University, Portland 97239, USA
| | - Dexing Zeng
- Department of Radiology, University of Pittsburgh, Pittsburgh 15213, USA; Center of Radiochemistry Research, Knight Cardiovascular Institute, Oregon Health & Science University, Portland 97239, USA; Department of Diagnostic Radiology, Oregon Health & Science University, Portland 97239, USA
| |
Collapse
|
24
|
Handula M, Chen KT, Seimbille Y. IEDDA: An Attractive Bioorthogonal Reaction for Biomedical Applications. Molecules 2021; 26:molecules26154640. [PMID: 34361793 PMCID: PMC8347371 DOI: 10.3390/molecules26154640] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/26/2022] Open
Abstract
The pretargeting strategy has recently emerged in order to overcome the limitations of direct targeting, mainly in the field of radioimmunotherapy (RIT). This strategy is directly dependent on chemical reactions, namely bioorthogonal reactions, which have been developed for their ability to occur under physiological conditions. The Staudinger ligation, the copper catalyzed azide-alkyne cycloaddition (CuAAC) and the strain-promoted [3 + 2] azide–alkyne cycloaddition (SPAAC) were the first bioorthogonal reactions introduced in the literature. However, due to their incomplete biocompatibility and slow kinetics, the inverse-electron demand Diels-Alder (IEDDA) reaction was advanced in 2008 by Blackman et al. as an optimal bioorthogonal reaction. The IEDDA is the fastest bioorthogonal reaction known so far. Its biocompatibility and ideal kinetics are very appealing for pretargeting applications. The use of a trans-cyclooctene (TCO) and a tetrazine (Tz) in the reaction encouraged researchers to study them deeply. It was found that both reagents are sensitive to acidic or basic conditions. Furthermore, TCO is photosensitive and can be isomerized to its cis-conformation via a radical catalyzed reaction. Unfortunately, the cis-conformer is significantly less reactive toward tetrazine than the trans-conformation. Therefore, extensive research has been carried out to optimize both click reagents and to employ the IEDDA bioorthogonal reaction in biomedical applications.
Collapse
Affiliation(s)
- Maryana Handula
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands;
| | - Kuo-Ting Chen
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974301, Taiwan;
| | - Yann Seimbille
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands;
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- Correspondence: ; Tel.: +31-10-703-8961
| |
Collapse
|
25
|
Qiu L, Tan H, Lin Q, Si Z, Mao W, Wang T, Fu Z, Cheng D, Shi H. A Pretargeted Imaging Strategy for Immune Checkpoint Ligand PD-L1 Expression in Tumor Based on Bioorthogonal Diels-Alder Click Chemistry. Mol Imaging Biol 2021; 22:842-853. [PMID: 31741201 DOI: 10.1007/s11307-019-01441-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE The use of antibodies as tracers requires labeling with isotopes with long half-lives due to their slow pharmacokinetics, which creates prohibitively high radiation dose to non-target organs. Pretargeted methodology could avoid the high radiation exposure due to the slow pharmacokinetics of antibodies. In this investigation, we reported the development of a novel pretargeted single photon emission computed tomography (SPECT) imaging strategy (atezolizumab-TCO/[99mTc]HYNIC-PEG11-Tz) for evaluating immune checkpoint ligand PD-L1 expression in tumor based on bioorthogonal Diels-Alder click chemistry. PROCEDURES The radioligand [99mTc]HYNIC-PEG11-Tz was achieved by the synthesis of a 6-hydrazinonicotinc acid (HYNIC) modified 1,2,4,5-tetrazine (Tz) and subsequently radiolabeled with technetium-99m (Tc-99m). The stability of [99mTc]HYNIC-PEG11-Tz was evaluated in vitro, and its blood pharmacokinetic test was performed in vivo. Atezolizumab was modified with trans-cyclooctene (TCO). The [99mTc]HYNIC-PEG11-Tz and atezolizumab-TCO interaction was tested in vitro. Pretargeted H1975 cell immunoreactivity binding and saturation binding assays were evaluated. Pretargeted biodistribution and SPECT imaging experiments were performed in H1975 and A549 tumor-bearing modal mice to evaluate the PD-L1 expression level. RESULTS [99mTc]HYNIC-PEG11-Tz was successfully radiosynthesized with a specific activity of 9.25 MBq/μg and a radiochemical purity above 95 % as confirmed by reversed-phase HPLC (RP-HPLC). [99mTc]HYNIC-PEG11-Tz showed favorable stability in NS, PBS, and FBS and rapid blood clearance in mice. The atezolizumab was modified with TCO-NHS ester to produce a conjugate with an average 6.4 TCO moieties as confirmed by liquid chromatograph-mass spectrometer (LC-MS). Size exclusion HPLC revealed almost complete reaction between atezolizumab-TCO and [99mTc]HYNIC-PEG11-Tz in vitro, with the 1:1 Tz-to-mAb reaction providing a conversion yield of 88.65 ± 1.22 %. Pretargeted cell immunoreactivity binding and saturation binding assays showed high affinity to H1975 cells. After allowing 48 h for accumulation of atezolizumab-TCO in H1975 tumor, pretargeted in vivo biodistribution revealed high uptake of the radiotracer in the tumor with a tumor-to-muscle ratio of 27.51 and tumor-to-blood ratio of 1.91. Pretargeted SPECT imaging delineated the H1975 tumor clearly. Pretargeted biodistribution and SPECT imaging in control groups demonstrated a significantly reduced tracer accumulation in the A549 tumor. CONCLUSIONS We have developed a HYNIC-modified Tz derivative, and the HYNIC-PEG11-Tz was labeled with Tc-99m with a high specific activity and radiochemical purity. [99mTc]HYNIC-PEG11-Tz reacted rapidly and almost completely towards atezolizumab-TCO in vitro with the 1:1 Tz-to-mAb reaction. SPECT imaging using the pretargeted strategy (atezolizumab-TCO/[99mTc]HYNIC-PEG11-Tz) demonstrated high-contrast images for high PD-L1 expression H1975 tumor and a low background accumulation of the probe. The pretargeted imaging strategy is a powerful tool for evaluating PD-L1 expression in xenograft mice tumor models and a potential candidate for translational clinical application.
Collapse
Affiliation(s)
- Lin Qiu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Hui Tan
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Qingyu Lin
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Zhan Si
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Wujian Mao
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Tingting Wang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Zhequan Fu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China.
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
26
|
Sarrett SM, Keinänen O, Dayts EJ, Dewaele-Le Roi G, Rodriguez C, Carnazza KE, Zeglis BM. Inverse electron demand Diels-Alder click chemistry for pretargeted PET imaging and radioimmunotherapy. Nat Protoc 2021; 16:3348-3381. [PMID: 34127865 PMCID: PMC8917728 DOI: 10.1038/s41596-021-00540-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 03/22/2021] [Indexed: 11/08/2022]
Abstract
Radiolabeled antibodies have shown promise as tools for both the nuclear imaging and endoradiotherapy of cancer, but the protracted circulation time of radioimmunoconjugates can lead to high radiation doses to healthy tissues. To circumvent this issue, we have developed an approach to positron emission tomography (PET) imaging and radioimmunotherapy (RIT) predicated on radiolabeling the antibody after it has reached its target within the body. This in vivo pretargeting strategy is based on the rapid and bio-orthogonal inverse electron demand Diels-Alder reaction between tetrazine (Tz) and trans-cyclooctene (TCO). Pretargeted PET imaging and RIT using TCO-modified antibodies in conjunction with Tz-bearing radioligands produce high activity concentrations in target tissues as well as reduced radiation doses to healthy organs compared to directly labeled radioimmunoconjugates. Herein, we describe how to prepare a TCO-modified antibody (humanized A33-TCO) as well as how to synthesize two Tz-bearing radioligands: one labeled with the positron-emitting radiometal copper-64 ([64Cu]Cu-SarAr-Tz) and one labeled with the β-emitting radiolanthanide lutetium-177 ([177Lu]Lu-DOTA-PEG7-Tz). We also provide a detailed description of pretargeted PET and pretargeted RIT experiments in a murine model of human colorectal carcinoma. Proper training in both radiation safety and the handling of laboratory mice is required for the successful execution of this protocol.
Collapse
Affiliation(s)
- Samantha M Sarrett
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA
- PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, NY, USA
| | - Outi Keinänen
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki, Finland
| | - Eric J Dayts
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA
| | - Guillaume Dewaele-Le Roi
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, NY, USA
| | - Cindy Rodriguez
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, NY, USA
| | - Kathryn E Carnazza
- Brain and Mind Research Institute & Appel Institute for Alzheimer's Disease Research, Weill Cornell Medical College, New York, NY, USA
| | - Brian M Zeglis
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA.
- PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, NY, USA.
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, NY, USA.
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
27
|
Bolzati C, Spolaore B. Enzymatic Methods for the Site-Specific Radiolabeling of Targeting Proteins. Molecules 2021; 26:3492. [PMID: 34201280 PMCID: PMC8229434 DOI: 10.3390/molecules26123492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/19/2022] Open
Abstract
Site-specific conjugation of proteins is currently required to produce homogenous derivatives for medicine applications. Proteins derivatized at specific positions of the polypeptide chain can actually show higher stability, superior pharmacokinetics, and activity in vivo, as compared with conjugates modified at heterogeneous sites. Moreover, they can be better characterized regarding the composition of the derivatization sites as well as the conformational and activity properties. To this aim, several site-specific derivatization approaches have been developed. Among these, enzymes are powerful tools that efficiently allow the generation of homogenous protein-drug conjugates under physiological conditions, thus preserving their native structure and activity. This review will summarize the progress made over the last decade on the use of enzymatic-based methodologies for the production of site-specific labeled immunoconjugates of interest for nuclear medicine. Enzymes used in this field, including microbial transglutaminase, sortase, galactosyltransferase, and lipoic acid ligase, will be overviewed and their recent applications in the radiopharmaceutical field will be described. Since nuclear medicine can benefit greatly from the production of homogenous derivatives, we hope that this review will aid the use of enzymes for the development of better radio-conjugates for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Cristina Bolzati
- Institute of Condensed Matter Chemistry and Technologies for Energy ICMATE-CNR, Corso Stati Uniti, 4, I-35127 Padova, Italy
| | - Barbara Spolaore
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via Marzolo, 5, I-35131 Padova, Italy
- CRIBI Biotechnology Center, University of Padua, Viale G. Colombo, 3, I-35131 Padova, Italy
| |
Collapse
|
28
|
Scinto SL, Bilodeau DA, Hincapie R, Lee W, Nguyen SS, Xu M, am Ende CW, Finn MG, Lang K, Lin Q, Pezacki JP, Prescher JA, Robillard MS, Fox JM. Bioorthogonal chemistry. NATURE REVIEWS. METHODS PRIMERS 2021; 1:30. [PMID: 34585143 PMCID: PMC8469592 DOI: 10.1038/s43586-021-00028-z] [Citation(s) in RCA: 211] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/05/2021] [Indexed: 12/11/2022]
Abstract
Bioorthogonal chemistry represents a class of high-yielding chemical reactions that proceed rapidly and selectively in biological environments without side reactions towards endogenous functional groups. Rooted in the principles of physical organic chemistry, bioorthogonal reactions are intrinsically selective transformations not commonly found in biology. Key reactions include native chemical ligation and the Staudinger ligation, copper-catalysed azide-alkyne cycloaddition, strain-promoted [3 + 2] reactions, tetrazine ligation, metal-catalysed coupling reactions, oxime and hydrazone ligations as well as photoinducible bioorthogonal reactions. Bioorthogonal chemistry has significant overlap with the broader field of 'click chemistry' - high-yielding reactions that are wide in scope and simple to perform, as recently exemplified by sulfuryl fluoride exchange chemistry. The underlying mechanisms of these transformations and their optimal conditions are described in this Primer, followed by discussion of how bioorthogonal chemistry has become essential to the fields of biomedical imaging, medicinal chemistry, protein synthesis, polymer science, materials science and surface science. The applications of bioorthogonal chemistry are diverse and include genetic code expansion and metabolic engineering, drug target identification, antibody-drug conjugation and drug delivery. This Primer describes standards for reproducibility and data deposition, outlines how current limitations are driving new research directions and discusses new opportunities for applying bioorthogonal chemistry to emerging problems in biology and biomedicine.
Collapse
Affiliation(s)
- Samuel L. Scinto
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Didier A. Bilodeau
- Department of Chemistry and Biomolecular Science, University of Ottawa, Ottawa, Ontario, Canada
- These authors contributed equally: Didier A. Bilodeau, Robert Hincapie, Wankyu Lee, Sean S. Nguyen, Minghao Xu
| | - Robert Hincapie
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- These authors contributed equally: Didier A. Bilodeau, Robert Hincapie, Wankyu Lee, Sean S. Nguyen, Minghao Xu
| | - Wankyu Lee
- Pfizer Worldwide Research and Development, Cambridge, MA, USA
- These authors contributed equally: Didier A. Bilodeau, Robert Hincapie, Wankyu Lee, Sean S. Nguyen, Minghao Xu
| | - Sean S. Nguyen
- Department of Chemistry, University of California, Irvine, CA, USA
- These authors contributed equally: Didier A. Bilodeau, Robert Hincapie, Wankyu Lee, Sean S. Nguyen, Minghao Xu
| | - Minghao Xu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- These authors contributed equally: Didier A. Bilodeau, Robert Hincapie, Wankyu Lee, Sean S. Nguyen, Minghao Xu
| | | | - M. G. Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kathrin Lang
- Department of Chemistry, Technical University of Munich, Garching, Germany
- Laboratory of Organic Chemistry, ETH Zurich, Zurich, Switzerland
| | - Qing Lin
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY, USA
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Jennifer A. Prescher
- Department of Chemistry, University of California, Irvine, CA, USA
- Molecular Biology & Biochemistry, University of California, Irvine, CA, USA
| | | | - Joseph M. Fox
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| |
Collapse
|
29
|
Debnath SK, Srivastava R. Drug Delivery With Carbon-Based Nanomaterials as Versatile Nanocarriers: Progress and Prospects. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.644564] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
With growing interest, a large number of researches have been conducted on carbon-based nanomaterials (CBNs). However, their uses are limited due to comprehensive potential environmental and human health effects. It is often confusing for researchers to make an informed choice regarding the versatile carbon-based nanocarrier system and its potential applications. This review has highlighted emerging applications and cutting-edge progress of CBNs in drug delivery. Some critical factors like enzymatic degradation, surface modification, biological interactions, and bio-corona have been discussed here. These factors will help to fabricate CBNs for effective drug delivery. This review also addresses recent advancements in carbon-based target specific and release controlled drug delivery to improve disease treatment. The scientific community has turned their research efforts into the development of novel production methods of CBNs to make their production more attractive to the industrial sector. Due to the nanosize and diversified physical properties, these CBNs have demonstrated distinct biological interaction. Thus long-term preclinical toxicity study is recommended before finally translating to clinical application.
Collapse
|
30
|
Stéen EJ, Jørgensen JT, Denk C, Battisti UM, Nørregaard K, Edem PE, Bratteby K, Shalgunov V, Wilkovitsch M, Svatunek D, Poulie CBM, Hvass L, Simón M, Wanek T, Rossin R, Robillard M, Kristensen JL, Mikula H, Kjaer A, Herth MM. Lipophilicity and Click Reactivity Determine the Performance of Bioorthogonal Tetrazine Tools in Pretargeted In Vivo Chemistry. ACS Pharmacol Transl Sci 2021; 4:824-833. [PMID: 33860205 PMCID: PMC8033778 DOI: 10.1021/acsptsci.1c00007] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Indexed: 12/12/2022]
Abstract
The development of highly selective and fast biocompatible reactions for ligation and cleavage has paved the way for new diagnostic and therapeutic applications of pretargeted in vivo chemistry. The concept of bioorthogonal pretargeting has attracted considerable interest, in particular for the targeted delivery of radionuclides and drugs. In nuclear medicine, pretargeting can provide increased target-to-background ratios at early time-points compared to traditional approaches. This reduces the radiation burden to healthy tissue and, depending on the selected radionuclide, enables better imaging contrast or higher therapeutic efficiency. Moreover, bioorthogonally triggered cleavage of pretargeted antibody-drug conjugates represents an emerging strategy to achieve controlled release and locally increased drug concentrations. The toolbox of bioorthogonal reactions has significantly expanded in the past decade, with the tetrazine ligation being the fastest and one of the most versatile in vivo chemistries. Progress in the field, however, relies heavily on the development and evaluation of (radio)labeled compounds, preventing the use of compound libraries for systematic studies. The rational design of tetrazine probes and triggers has thus been impeded by the limited understanding of the impact of structural parameters on the in vivo ligation performance. In this work, we describe the development of a pretargeted blocking assay that allows for the investigation of the in vivo fate of a structurally diverse library of 45 unlabeled tetrazines and their capability to reach and react with pretargeted trans-cyclooctene (TCO)-modified antibodies in tumor-bearing mice. This study enabled us to assess the correlation of click reactivity and lipophilicity of tetrazines with their in vivo performance. In particular, high rate constants (>50 000 M-1 s-1) for the reaction with TCO and low calculated logD 7.4 values (below -3) of the tetrazine were identified as strong indicators for successful pretargeting. Radiolabeling gave access to a set of selected 18F-labeled tetrazines, including highly reactive scaffolds, which were used in pretargeted PET imaging studies to confirm the results from the blocking study. These insights thus enable the rational design of tetrazine probes for in vivo application and will thereby assist the clinical translation of bioorthogonal pretargeting.
Collapse
Affiliation(s)
- E. Johanna
L. Stéen
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Department
of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej
9, 2100 Copenhagen, Denmark
| | - Jesper T. Jørgensen
- Department
of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej
9, 2100 Copenhagen, Denmark
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Christoph Denk
- Institute
of Applied Synthetic Chemistry, Technische
Universität Wien (TU Wien), Getreidemarkt 9, 1060 Vienna, Austria
| | - Umberto M. Battisti
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Kamilla Nørregaard
- Department
of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej
9, 2100 Copenhagen, Denmark
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Patricia E. Edem
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Klas Bratteby
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Department
of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej
9, 2100 Copenhagen, Denmark
- Department
of Radiation Physics, Skåne University
Hospital, Barngatan 3, 22242 Lund, Sweden
| | - Vladimir Shalgunov
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Martin Wilkovitsch
- Institute
of Applied Synthetic Chemistry, Technische
Universität Wien (TU Wien), Getreidemarkt 9, 1060 Vienna, Austria
| | - Dennis Svatunek
- Institute
of Applied Synthetic Chemistry, Technische
Universität Wien (TU Wien), Getreidemarkt 9, 1060 Vienna, Austria
| | - Christian B. M. Poulie
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Lars Hvass
- Department
of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej
9, 2100 Copenhagen, Denmark
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Marina Simón
- Department
of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej
9, 2100 Copenhagen, Denmark
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Thomas Wanek
- Preclinical
Molecular Imaging, AIT Austrian Institute
of Technology GmbH, 2444 Seibersdorf, Austria
| | - Raffaella Rossin
- Tagworks
Pharmaceuticals, Geert
Grooteplein 10, 6525 GA Nijmegen, Netherlands
| | - Marc Robillard
- Tagworks
Pharmaceuticals, Geert
Grooteplein 10, 6525 GA Nijmegen, Netherlands
| | - Jesper L. Kristensen
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Hannes Mikula
- Institute
of Applied Synthetic Chemistry, Technische
Universität Wien (TU Wien), Getreidemarkt 9, 1060 Vienna, Austria
| | - Andreas Kjaer
- Department
of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej
9, 2100 Copenhagen, Denmark
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Matthias M. Herth
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Department
of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej
9, 2100 Copenhagen, Denmark
| |
Collapse
|
31
|
Qiu L, Lin Q, Si Z, Tan H, Liu G, Zhou J, Wang T, Chen Y, Huang Y, Yu T, Jin M, Cheng D, Shi H. A Pretargeted Imaging Strategy for EGFR-Positive Colorectal Carcinoma via Modulation of Tz-Radioligand Pharmacokinetics. Mol Imaging Biol 2021; 23:38-51. [PMID: 32914391 DOI: 10.1007/s11307-020-01539-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 11/27/2022]
Abstract
PURPOSE Previously, we successfully developed a pretargeted imaging strategy (atezolizumab-TCO/[99mTc]HYNIC-PEG11-Tz) for evaluating programmed cell death ligand-1 (PD-L1) expression in xenograft mice. However, the surplus unclicked [99mTc]HYNIC-PEG11-Tz is cleared somewhat sluggishly through the intestines, which is not ideal for colorectal cancer (CRC) imaging. To shift the excretion of the Tz-radioligand to the renal system, we developed a novel Tz-radioligand by adding a polypeptide linker between HYNIC and PEG11. PROCEDURES Pretargeted molecular probes [99mTc]HYNIC-polypeptide-PEG11-Tz and cetuximab-TCO were synthesized. [99mTc]HYNIC-polypeptide-PEG11-Tz was evaluated for in vitro stability and in vivo blood pharmacokinetics. In vitro ligation reactivity of [99mTc]HYNIC-polypeptide-PEG11-Tz towards cetuximab-TCO was also tested. Biodistribution assay and imaging of [99mTc]HYNIC-polypeptide-PEG11-Tz were performed to observe its excretion pathway. Pretargeted biodistribution was measured at three different accumulation intervals to determine the optimal pretargeted interval time. Pretargeted (cetuximab-TCO 48 h/[99mTc]HYNIC-PEG11-Tz 6 h) and (cetuximab-TCO 48 h/[99mTc]HYNIC-Polypeptide-PEG11-Tz 6 h) imagings were compared to examine the effect of the excretion pathway on tumor imaging. RESULTS [99mTc]HYNIC-polypeptide-PEG11-Tz showed favorable in vitro stability and rapid blood clearance in mice. SEC-HPLC revealed almost complete reaction between cetuximab-TCO and [99mTc]HYNIC-polypeptide-PEG11-Tz in vitro, with the 8:1 Tz-to-mAb reaction providing a conversion yield of 87.83 ± 3.27 %. Biodistribution and imaging analyses showed that the Tz-radioligand was cleared through the kidneys. After 24, 48, and 72 h of accumulation in HCT116 tumor, the tumor-to-blood ratio of cetuximab-TCO was 0.83 ± 0.13, 1.40 ± 0.31, and 1.15 ± 0.21, respectively. Both pretargeted (cetuximab-TCO 48 h/[99mTc]HYNIC-PEG11-Tz 6 h) and (cetuximab-TCO 48 h/[99mTc]HYNIC-polypeptide-PEG11-Tz 6 h) clearly delineated HCT116 tumor. Pretargeted imaging strategy using cetuximab-TCO/[99mTc]HYNIC-polypeptide-PEG11-Tz could be used for diagnosing CRC, as the surplus unclicked [99mTc]HYNIC-polypeptide-PEG11-Tz was cleared through the urinary system, leading to low abdominal uptake background. CONCLUSION Our novel pretargeted imaging strategy (cetuximab-TCO/[99mTc]HYNIC-polypeptide-PEG11-Tz) was useful for imaging CRC, broadening the application scope of pretargeted imaging strategy. The pretargeted imaging strategy clearly delineated HCT116 tumor, showing that its use could be extended to selection of internalizing antibodies.
Collapse
Affiliation(s)
- Lin Qiu
- Department of Nuclear Medicine, Zhongshan Hospital Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Qingyu Lin
- Department of Nuclear Medicine, Zhongshan Hospital Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Zhan Si
- Department of Nuclear Medicine, Zhongshan Hospital Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Hui Tan
- Department of Nuclear Medicine, Zhongshan Hospital Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Guobing Liu
- Department of Nuclear Medicine, Zhongshan Hospital Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Jun Zhou
- Department of Nuclear Medicine, Zhongshan Hospital Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Tingting Wang
- Department of Nuclear Medicine, Zhongshan Hospital Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | | | - Tao Yu
- WuXi AppTec, Shanghai, China
| | - Mingzhi Jin
- WuXi Biologics (Shanghai) Co., Ltd, Shanghai, China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China.
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
32
|
Poulie CBM, Jørgensen JT, Shalgunov V, Kougioumtzoglou G, Jeppesen TE, Kjaer A, Herth MM. Evaluation of [ 64Cu]Cu-NOTA-PEG 7-H-Tz for Pretargeted Imaging in LS174T Xenografts-Comparison to [ 111In]In-DOTA-PEG 11-BisPy-Tz. Molecules 2021; 26:544. [PMID: 33494416 PMCID: PMC7865927 DOI: 10.3390/molecules26030544] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
Pretargeted nuclear imaging for the diagnosis of various cancers is an emerging and fast developing field. The tetrazine ligation is currently considered the most promising reaction in this respect. Monoclonal antibodies are often the preferred choice as pretargeting vector due to their outstanding targeting properties. In this work, we evaluated the performance of [64Cu]Cu-NOTA-PEG7-H-Tz using a setup we previously used for [111In]In-DOTA-PEG11-BisPy-Tz, thereby allowing for comparison of the performance of these two promising pretargeting imaging agents. The evaluation included a comparison of the physicochemical properties of the compounds and their performance in an ex vivo blocking assay. Finally, [64Cu]Cu-NOTA-PEG7-H-Tz was evaluated in a pretargeted imaging study and compared to [111In]In-DOTA-PEG11-BisPy-Tz. Despite minor differences, this study indicated that both evaluated tetrazines are equally suited for pretargeted imaging.
Collapse
Affiliation(s)
- Christian B. M. Poulie
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark; (C.B.M.P.); (V.S.); (G.K.)
| | - Jesper T. Jørgensen
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark; (J.T.J.); (T.E.J.)
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark; (C.B.M.P.); (V.S.); (G.K.)
| | - Georgios Kougioumtzoglou
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark; (C.B.M.P.); (V.S.); (G.K.)
| | - Troels Elmer Jeppesen
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark; (J.T.J.); (T.E.J.)
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark; (J.T.J.); (T.E.J.)
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Matthias M. Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark; (C.B.M.P.); (V.S.); (G.K.)
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark; (J.T.J.); (T.E.J.)
| |
Collapse
|
33
|
Mukai H, Watanabe Y. Review: PET imaging with macro- and middle-sized molecular probes. Nucl Med Biol 2021; 92:156-170. [PMID: 32660789 DOI: 10.1016/j.nucmedbio.2020.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 12/16/2022]
Abstract
Recent progress in radiolabeling of macro- and middle-sized molecular probes has been extending possibilities to use PET molecular imaging for dynamic application to drug development and therapeutic evaluation. Theranostics concept also accelerated the use of macro- and middle-sized molecular probes for sharpening the contrast of proper target recognition even the cellular types/subtypes and proper selection of the patients who should be treated by the same molecules recognition. Here, brief summary of the present status of immuno-PET, and then further development of advanced technologies related to immuno-PET, peptidic PET probes, and nucleic acids PET probes are described.
Collapse
Affiliation(s)
- Hidefumi Mukai
- Laboratory for Molecular Delivery and Imaging Technology, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
34
|
Lee W, Bobba KN, Kim JY, Park H, Bhise A, Kim W, Lee K, Rajkumar S, Nam B, Lee KC, Lee SH, Ko S, Lee HJ, Jung ST, Yoo J. A short PEG linker alters the in vivo pharmacokinetics of trastuzumab to yield high-contrast immuno-PET images. J Mater Chem B 2021; 9:2993-2997. [DOI: 10.1039/d0tb02911d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A PEGylated antibody with short PEG linkers was excreted faster to visualize tumors clearly with exceptionally high tumor-to-background ratio in nuclear imaging.
Collapse
|
35
|
Abstract
Over the past decade, theranostic imaging has emerged as a powerful clinical tool in oncology for identifying patients likely to respond to targeted therapies and for monitoring the response of patients to treatment. Herein, we report a theranostic approach to pretargeted radioimmunotherapy (PRIT) based on a pair of radioisotopes of copper: positron-emitting copper-64 (64Cu, t 1/2 = 12.7 h) and beta particle-emitting copper-67 (67Cu, t 1/2 = 61.8 h). This strategy is predicated on the in vivo ligation between a trans-cyclooctene (TCO)-bearing antibody and a tetrazine (Tz)-based radioligand via the rapid and bioorthogonal inverse electron-demand Diels-Alder reaction. Longitudinal therapy studies were conducted in a murine model of human colorectal carcinoma using an immunoconjugate of the huA33 antibody modified with TCO (huA33-TCO) and a 67Cu-labeled Tz radioligand ([67Cu]Cu-MeCOSar-Tz). The injection of huA33-TCO followed 72 h later by the administration of 18.5, 37.0, or 55.5 MBq of [67Cu]Cu-MeCOSar-Tz produced a dose-dependent therapeutic response, with the median survival time increasing from 68 d for the lowest dose to >200 d for the highest. Furthermore, we observed that mice that received the highest dose of [67Cu]Cu-MeCOSar-Tz in a fractionated manner exhibited improved hematological values without sacrificing therapeutic efficacy. Dual radionuclide experiments in which a single administration of huA33-TCO was followed by separate injections of [64Cu]Cu-MeCOSar-Tz and [67Cu]Cu-MeCOSar-Tz revealed that the positron emission tomography images produced by the former accurately predicted the efficacy of the latter. In these experiments, a correlation was observed between the tumoral uptake of [64Cu]Cu-MeCOSar-Tz and the subsequent therapeutic response to [67Cu]Cu-MeCOSar-Tz.
Collapse
|
36
|
Slikboer S, Naperstkow Z, Janzen N, Faraday A, Soenjaya Y, Le Floc'h J, Al-Karmi S, Swann R, Wyszatko K, Demore CEM, Foster S, Valliant JF. Tetrazine-Derived Near-Infrared Dye as a Facile Reagent for Developing Targeted Photoacoustic Imaging Agents. Mol Pharm 2020; 17:3369-3377. [PMID: 32697098 DOI: 10.1021/acs.molpharmaceut.0c00441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A new photoacoustic (PA) dye was developed as a simple-to-use reagent for creating targeted PA imaging agents. The lead molecule was prepared via an efficient two-step synthesis from an inexpensive commercially available starting material. With the dye's innate albumin-binding properties, the resulting tetrazine-derived dye is capable of localizing to tumor and exhibits a biological half-life of a few hours, allowing for an optimized distribution profile. The presence of tetrazine in turn makes it possible to link the albumin-binding optoacoustic signaling agent to a wide range of targeting molecules. To demonstrate the utility and ease of use of the platform, a novel PA probe for imaging calcium accretion was generated using a single-step bioorthogonal coupling reaction where high-resolution PA images of the knee joint in mice were obtained as early as 1 h post injection. Whole-body distribution was subsequently determined by labeling the probe with 99mTc and performing tissue counting following necropsy. These studies, along with tumor imaging and in vitro albumin binding studies, revealed that the core PA contrast agent can be imaged in vivo and can be easily linked to targeting molecules for organ-specific uptake.
Collapse
Affiliation(s)
- Samantha Slikboer
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street, Hamilton, Ontario L8S 4M1, Canada
| | - Zoya Naperstkow
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street, Hamilton, Ontario L8S 4M1, Canada
| | - Nancy Janzen
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street, Hamilton, Ontario L8S 4M1, Canada
| | - Amber Faraday
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street, Hamilton, Ontario L8S 4M1, Canada
| | - Yohannes Soenjaya
- Department of Medical Biophysics University of Toronto, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Johann Le Floc'h
- Department of Medical Biophysics University of Toronto, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Salma Al-Karmi
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street, Hamilton, Ontario L8S 4M1, Canada
| | - Rowan Swann
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street, Hamilton, Ontario L8S 4M1, Canada
| | - Kevin Wyszatko
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street, Hamilton, Ontario L8S 4M1, Canada
| | - Christine E M Demore
- Department of Medical Biophysics University of Toronto, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Stuart Foster
- Department of Medical Biophysics University of Toronto, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - John F Valliant
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
37
|
Zhang X, Ding B, Qu C, Li H, Sun Y, Gai Y, Chen H, Fang H, Qian K, Zhang Y, Cheng Z, Lan X. A thiopyrylium salt for PET/NIR-II tumor imaging and image-guided surgery. Mol Oncol 2020; 14:1089-1100. [PMID: 32191387 PMCID: PMC7191196 DOI: 10.1002/1878-0261.12674] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/17/2020] [Accepted: 03/17/2020] [Indexed: 12/26/2022] Open
Abstract
All tumor imaging modalities have resolution limits below which deeply situated small metastatic foci may not be identified. Moreover, incomplete lesion excision will affect the outcomes of the patients. Scintigraphy is adept in locating lesions, and second near-infrared window (NIR-II) imaging may allow precise real-time tumor delineation. To achieve complete excision of all lesions, multimodality imaging is a promising method for tumor identification and management. Here, a NIR-II thiopyrylium salt, XB1034, was first synthesized and bound to cetuximab and trans-cyclooctene (TCO) to produce XB1034-cetuximab-TCO. This probe provides excellent sensitivity and high temporal resolution NIR-II imaging in mice bearing tumors developed from human breast cancer cells MDA-MB-231. To enable PET imaging, 68 Ga-NETA-tetrazine is subsequently injected into the mice to undergo a bio-orthogonal reaction with the preinjected XB1034-cetuximab-TCO. PET images achieved in the tumor models using the pretargeting strategy are of much higher quality than those obtained using the direct radiolabeling method. Moreover, real-time NIR-II imaging allows accurate tumor excision and sentinel lymph node mapping. In conclusion, XB1034 is a promising molecular imaging probe for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Nuclear MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Molecular Imaging Program at StanfordBio‐X Program, and Department of RadiologyCanary Center at Stanford for Cancer Early DetectionStanford UniversityCAUSA
- Hubei Key Laboratory of Molecular ImagingWuhanChina
| | - Bingbing Ding
- Molecular Imaging Program at StanfordBio‐X Program, and Department of RadiologyCanary Center at Stanford for Cancer Early DetectionStanford UniversityCAUSA
| | - Chunrong Qu
- Molecular Imaging Program at StanfordBio‐X Program, and Department of RadiologyCanary Center at Stanford for Cancer Early DetectionStanford UniversityCAUSA
| | - Huiling Li
- Department of Nuclear MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Molecular ImagingWuhanChina
| | - Yu Sun
- Molecular Imaging Program at StanfordBio‐X Program, and Department of RadiologyCanary Center at Stanford for Cancer Early DetectionStanford UniversityCAUSA
| | - Yongkang Gai
- Department of Nuclear MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Molecular ImagingWuhanChina
| | - Hao Chen
- Molecular Imaging Program at StanfordBio‐X Program, and Department of RadiologyCanary Center at Stanford for Cancer Early DetectionStanford UniversityCAUSA
| | - Hanyi Fang
- Department of Nuclear MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Molecular ImagingWuhanChina
| | - Kun Qian
- Molecular Imaging Program at StanfordBio‐X Program, and Department of RadiologyCanary Center at Stanford for Cancer Early DetectionStanford UniversityCAUSA
| | - Yongxue Zhang
- Department of Nuclear MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Molecular ImagingWuhanChina
| | - Zhen Cheng
- Molecular Imaging Program at StanfordBio‐X Program, and Department of RadiologyCanary Center at Stanford for Cancer Early DetectionStanford UniversityCAUSA
| | - Xiaoli Lan
- Department of Nuclear MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Molecular ImagingWuhanChina
| |
Collapse
|
38
|
Abstract
Immuno-positron emission tomography (immunoPET) is a paradigm-shifting molecular imaging modality combining the superior targeting specificity of monoclonal antibody (mAb) and the inherent sensitivity of PET technique. A variety of radionuclides and mAbs have been exploited to develop immunoPET probes, which has been driven by the development and optimization of radiochemistry and conjugation strategies. In addition, tumor-targeting vectors with a short circulation time (e.g., Nanobody) or with an enhanced binding affinity (e.g., bispecific antibody) are being used to design novel immunoPET probes. Accordingly, several immunoPET probes, such as 89Zr-Df-pertuzumab and 89Zr-atezolizumab, have been successfully translated for clinical use. By noninvasively and dynamically revealing the expression of heterogeneous tumor antigens, immunoPET imaging is gradually changing the theranostic landscape of several types of malignancies. ImmunoPET is the method of choice for imaging specific tumor markers, immune cells, immune checkpoints, and inflammatory processes. Furthermore, the integration of immunoPET imaging in antibody drug development is of substantial significance because it provides pivotal information regarding antibody targeting abilities and distribution profiles. Herein, we present the latest immunoPET imaging strategies and their preclinical and clinical applications. We also emphasize current conjugation strategies that can be leveraged to develop next-generation immunoPET probes. Lastly, we discuss practical considerations to tune the development and translation of immunoPET imaging strategies.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
| | - Zachary T Rosenkrans
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Quan-Yong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin 53705, United States
| |
Collapse
|
39
|
Chen Z, Chen M, Zhou K, Rao J. Pre‐targeted Imaging of Protease Activity through In Situ Assembly of Nanoparticles. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916352] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Zixin Chen
- Departments of Radiology and Chemistry Molecular Imaging Program at Stanford Stanford University School of Medicine Stanford CA 94305 USA
| | - Min Chen
- Departments of Radiology and Chemistry Molecular Imaging Program at Stanford Stanford University School of Medicine Stanford CA 94305 USA
| | - Kaixiang Zhou
- Departments of Radiology and Chemistry Molecular Imaging Program at Stanford Stanford University School of Medicine Stanford CA 94305 USA
| | - Jianghong Rao
- Departments of Radiology and Chemistry Molecular Imaging Program at Stanford Stanford University School of Medicine Stanford CA 94305 USA
| |
Collapse
|
40
|
Chen Z, Chen M, Zhou K, Rao J. Pre-targeted Imaging of Protease Activity through In Situ Assembly of Nanoparticles. Angew Chem Int Ed Engl 2020; 59:7864-7870. [PMID: 32056345 DOI: 10.1002/anie.201916352] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/11/2020] [Indexed: 02/06/2023]
Abstract
The pre-targeted imaging of enzyme activity has not been reported, likely owing to the lack of a mechanism to retain the injected substrate in the first step for subsequent labeling. Herein, we report the use of two bioorthogonal reactions-the condensation reaction of aromatic nitriles and aminothiols and the inverse-electron demand Diels-Alder reaction between tetrazine and trans-cyclooctene (TCO)-to develop a novel strategy for pre-targeted imaging of the activity of proteases. The substrate probe (TCO-C-SNAT4) can be selectively activated by an enzyme target (e.g. caspase-3/7), which triggers macrocyclization and subsequent in situ self-assembly into nanoaggregates retained at the target site. The tetrazine-imaging tag conjugate labels TCO in the nanoaggregates to generate selective signal retention for imaging in vitro, in cells, and in mice. Owing to the decoupling of enzyme activation and imaging tag immobilization, TCO-C-SNAT4 can be repeatedly injected to generate and accumulate more TCO-nanoaggregates for click labeling.
Collapse
Affiliation(s)
- Zixin Chen
- Departments of Radiology and Chemistry, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Min Chen
- Departments of Radiology and Chemistry, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Kaixiang Zhou
- Departments of Radiology and Chemistry, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jianghong Rao
- Departments of Radiology and Chemistry, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
41
|
Ediriweera GR, Simpson JD, Fuchs AV, Venkatachalam TK, Van De Walle M, Howard CB, Mahler SM, Blinco JP, Fletcher NL, Houston ZH, Bell CA, Thurecht KJ. Targeted and modular architectural polymers employing bioorthogonal chemistry for quantitative therapeutic delivery. Chem Sci 2020; 11:3268-3280. [PMID: 34122834 PMCID: PMC8157365 DOI: 10.1039/d0sc00078g] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
There remain several key challenges to existing therapeutic systems for cancer therapy, such as quantitatively determining the true, tissue-specific drug release profile in vivo, as well as reducing side-effects for an increased standard of care. Hence, it is crucial to engineer new materials that allow for a better understanding of the in vivo pharmacokinetic/pharmacodynamic behaviours of therapeutics. We have expanded on recent “click-to-release” bioorthogonal pro-drug activation of antibody-drug conjugates (ADCs) to develop a modular and controlled theranostic system for quantitatively assessing site-specific drug activation and deposition from a nanocarrier molecule, by employing defined chemistries. The exploitation of quantitative imaging using positron emission tomography (PET) together with pre-targeted bioorthogonal chemistries in our system provided an effective means to assess in real-time the exact amount of active drug administered at precise sites in the animal; our methodology introduces flexibility in both the targeting and therapeutic components that is specific to nanomedicines and offers unique advantages over other technologies. In this approach, the in vivo click reaction facilitates pro-drug activation as well as provides a quantitative means to investigate the dynamic behaviour of the therapeutic agent. There remain several key challenges to existing therapeutic systems for cancer therapy, such as quantitatively determining the true, tissue-specific drug release profile in vivo, as well as reducing side-effects for an increased standard of care.![]()
Collapse
Affiliation(s)
- Gayathri R Ediriweera
- Centre for Advanced Imaging, The University of Queensland Brisbane QLD 4072 Australia .,Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland Brisbane QLD 4072 Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland Brisbane QLD 4072 Australia
| | - Joshua D Simpson
- Centre for Advanced Imaging, The University of Queensland Brisbane QLD 4072 Australia .,Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland Brisbane QLD 4072 Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland Brisbane QLD 4072 Australia
| | - Adrian V Fuchs
- Centre for Advanced Imaging, The University of Queensland Brisbane QLD 4072 Australia .,Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland Brisbane QLD 4072 Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland Brisbane QLD 4072 Australia
| | - Taracad K Venkatachalam
- Centre for Advanced Imaging, The University of Queensland Brisbane QLD 4072 Australia .,Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland Brisbane QLD 4072 Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland Brisbane QLD 4072 Australia
| | - Matthias Van De Walle
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology 2 George St Brisbane QLD 4000 Australia
| | - Christopher B Howard
- Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland Brisbane QLD 4072 Australia.,ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland Brisbane QLD 4072 Australia
| | - Stephen M Mahler
- Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland Brisbane QLD 4072 Australia.,ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland Brisbane QLD 4072 Australia
| | - James P Blinco
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology 2 George St Brisbane QLD 4000 Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging, The University of Queensland Brisbane QLD 4072 Australia .,Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland Brisbane QLD 4072 Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland Brisbane QLD 4072 Australia
| | - Zachary H Houston
- Centre for Advanced Imaging, The University of Queensland Brisbane QLD 4072 Australia .,Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland Brisbane QLD 4072 Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland Brisbane QLD 4072 Australia
| | - Craig A Bell
- Centre for Advanced Imaging, The University of Queensland Brisbane QLD 4072 Australia .,Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland Brisbane QLD 4072 Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland Brisbane QLD 4072 Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging, The University of Queensland Brisbane QLD 4072 Australia .,Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland Brisbane QLD 4072 Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland Brisbane QLD 4072 Australia
| |
Collapse
|
42
|
Stéen EJ, Jørgensen JT, Johann K, Nørregaard K, Sohr B, Svatunek D, Birke A, Shalgunov V, Edem PE, Rossin R, Seidl C, Schmid F, Robillard MS, Kristensen JL, Mikula H, Barz M, Kjær A, Herth MM. Trans-Cyclooctene-Functionalized PeptoBrushes with Improved Reaction Kinetics of the Tetrazine Ligation for Pretargeted Nuclear Imaging. ACS NANO 2020; 14:568-584. [PMID: 31820928 PMCID: PMC7075664 DOI: 10.1021/acsnano.9b06905] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/10/2019] [Indexed: 05/24/2023]
Abstract
Tumor targeting using agents with slow pharmacokinetics represents a major challenge in nuclear imaging and targeted radionuclide therapy as they most often result in low imaging contrast and high radiation dose to healthy tissue. To address this challenge, we developed a polymer-based targeting agent that can be used for pretargeted imaging and thus separates tumor accumulation from the imaging step in time. The developed targeting agent is based on polypeptide-graft-polypeptoid polymers (PeptoBrushes) functionalized with trans-cyclooctene (TCO). The complementary 111In-labeled imaging agent is a 1,2,4,5-tetrazine derivative, which can react with aforementioned TCO-modified PeptoBrushes in a rapid bioorthogonal ligation. A high degree of TCO loading (up to 30%) was achieved, without altering the physicochemical properties of the polymeric nanoparticle. The highest degree of TCO loading resulted in significantly increased reaction rates (77-fold enhancement) compared to those with small molecule TCO moieties when using lipophilic tetrazines. Based on computer simulations, we hypothesize that this increase is a result of hydrophobic effects and significant rearrangements within the polymer framework, in which hydrophobic patches of TCO moieties are formed. These patches attract lipophilic tetrazines, leading to increased reaction rates in the bioorthogonal ligation. The most reactive system was evaluated as a targeting agent for pretargeted imaging in tumor-bearing mice. After the setup was optimized, sufficient tumor-to-background ratios were achieved as early as 2 h after administration of the tetrazine imaging agent, which further improved at 22 h, enabling clear visualization of CT-26 tumors. These findings show the potential of PeptoBrushes to be used as a pretargeting agent when an optimized dose of polymer is used.
Collapse
Affiliation(s)
- E. Johanna
L. Stéen
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Department
of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Jesper T. Jørgensen
- Department
of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Kerstin Johann
- Institute
of Organic Chemistry, Johannes Gutenberg
University, Duesbergweg 10-14, D-55099 Mainz, Germany
| | - Kamilla Nørregaard
- Department
of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Barbara Sohr
- Institute
of Applied Synthetic Chemistry, Technische
Universität Wien (TU Wien), Getreidemarkt 9, 1060 Vienna, Austria
| | - Dennis Svatunek
- Institute
of Applied Synthetic Chemistry, Technische
Universität Wien (TU Wien), Getreidemarkt 9, 1060 Vienna, Austria
| | - Alexander Birke
- Institute
of Organic Chemistry, Johannes Gutenberg
University, Duesbergweg 10-14, D-55099 Mainz, Germany
| | - Vladimir Shalgunov
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Patricia E. Edem
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Department
of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Raffaella Rossin
- Tagworks
Pharmaceuticals, Geert
Grooteplein 10, 6525 GA Nijmegen, The Netherlands
| | - Christine Seidl
- Institute
of Organic Chemistry, Johannes Gutenberg
University, Duesbergweg 10-14, D-55099 Mainz, Germany
| | - Friederike Schmid
- Institute
of Physics, Johannes Gutenberg University, Staudingerweg 7-9, D-55099 Mainz, Germany
| | - Marc S. Robillard
- Tagworks
Pharmaceuticals, Geert
Grooteplein 10, 6525 GA Nijmegen, The Netherlands
| | - Jesper L. Kristensen
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Hannes Mikula
- Institute
of Applied Synthetic Chemistry, Technische
Universität Wien (TU Wien), Getreidemarkt 9, 1060 Vienna, Austria
| | - Matthias Barz
- Institute
of Organic Chemistry, Johannes Gutenberg
University, Duesbergweg 10-14, D-55099 Mainz, Germany
| | - Andreas Kjær
- Department
of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Matthias M. Herth
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Department
of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| |
Collapse
|
43
|
Edem PE, Jørgensen JT, Nørregaard K, Rossin R, Yazdani A, Valliant JF, Robillard M, Herth MM, Kjaer A. Evaluation of a 68Ga-Labeled DOTA-Tetrazine as a PET Alternative to 111In-SPECT Pretargeted Imaging. Molecules 2020; 25:molecules25030463. [PMID: 31979070 PMCID: PMC7036891 DOI: 10.3390/molecules25030463] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 01/22/2023] Open
Abstract
The bioorthogonal reaction between a tetrazine and strained trans-cyclooctene (TCO) has garnered success in pretargeted imaging. This reaction was first validated in nuclear imaging using an 111In-labeled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-linked bispyridyl tetrazine (Tz) ([111In]In-DOTA-PEG11-Tz) and a TCO functionalized CC49 antibody. Given the initial success of this Tz, it has been paired with TCO functionalized small molecules, diabodies, and affibodies for in vivo pretargeted studies. Furthermore, the single photon emission tomography (SPECT) radionuclide, 111In, has been replaced with the β-emitter, 177Lu and α-emitter, 212Pb, both yielding the opportunity for targeted radiotherapy. Despite use of the ‘universal chelator’, DOTA, there is yet to be an analogue suitable for positron emission tomography (PET) using a widely available radionuclide. Here, a 68Ga-labeled variant ([68Ga]Ga-DOTA-PEG11-Tz) was developed and evaluated using two different in vivo pretargeting systems (Aln-TCO and TCO-CC49). Small animal imaging and ex vivo biodistribution studies were performed and revealed target specific uptake of [68Ga]Ga-DOTA-PEG11-Tz in the bone (3.7 %ID/g, knee) in mice pretreated with Aln-TCO and tumor specific uptake (5.8 %ID/g) with TCO-CC49 in mice bearing LS174 xenografts. Given the results of this study, [68Ga]Ga-DOTA-PEG11-Tz can serve as an alternative to [111In]In-DOTA-PEG11-Tz.
Collapse
Affiliation(s)
- Patricia E. Edem
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark; (P.E.E.); (J.T.J.); (K.N.)
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - Jesper T. Jørgensen
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark; (P.E.E.); (J.T.J.); (K.N.)
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Kamilla Nørregaard
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark; (P.E.E.); (J.T.J.); (K.N.)
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Rafaella Rossin
- Tagworks Pharmaceuticals, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands; (R.R.); (M.R.)
| | - Abdolreza Yazdani
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St West, Hamilton, ON L8S 4M1, Canada; (A.Y.); (J.F.V.)
- Pharmaceutical Chemistry and Radiopharmacy Department, School of Pharmacy, Shahid Beheshti University of Medical Sciences, PO Box 14155–6153, Tehran, Iran
| | - John F. Valliant
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St West, Hamilton, ON L8S 4M1, Canada; (A.Y.); (J.F.V.)
| | - Marc Robillard
- Tagworks Pharmaceuticals, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands; (R.R.); (M.R.)
| | - Matthias M. Herth
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark; (P.E.E.); (J.T.J.); (K.N.)
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
- Correspondence: (M.M.H.); (A.K.)
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark; (P.E.E.); (J.T.J.); (K.N.)
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
- Correspondence: (M.M.H.); (A.K.)
| |
Collapse
|
44
|
Rondon A, Degoul F. Antibody Pretargeting Based on Bioorthogonal Click Chemistry for Cancer Imaging and Targeted Radionuclide Therapy. Bioconjug Chem 2020; 31:159-173. [PMID: 31855602 DOI: 10.1021/acs.bioconjchem.9b00761] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bioorthogonal click chemistry-employing antibody-conjugated trans-cyclooctenes (TCO) and tetrazine (Tz)-based radioligands able to covalently bind in vivo-appeared recently as a potential alternative to circumvent the hematotoxicity induced by radioimmunotherapy of solid tumors. This Review focuses on the recent advances concerning TCO/Tz pretargeting in both cancer imaging and targeted-radionuclide therapy for prospective clinical transfer. We exhaustively identified 25 PubMed publications reporting preclinical imaging and 5 therapy studies with full mAbs as targeting vectors, since its first application in 2010. The fast, safe, modulable, and specific TCO/Tz pretargeting showed high potential as a theranostic tool to get more personalized and precise cancer care. The recent optimizations reported here highlighted a possible first clinical evaluation of IEDDA pretargeting in the coming years.
Collapse
Affiliation(s)
- Aurélie Rondon
- Université Clermont Auvergne , Imagerie Moléculaire et Stratégies Théranostiques , BP 184, F-63005 Clermont-Ferrand , France.,Inserm, U 1240 , F-63000 Clermont-Ferrand , France.,Centre Jean Perrin , F-63011 Clermont-Ferrand , France
| | - Françoise Degoul
- Université Clermont Auvergne , Imagerie Moléculaire et Stratégies Théranostiques , BP 184, F-63005 Clermont-Ferrand , France.,Inserm, U 1240 , F-63000 Clermont-Ferrand , France.,Centre Jean Perrin , F-63011 Clermont-Ferrand , France
| |
Collapse
|
45
|
Johann K, Svatunek D, Seidl C, Rizzelli S, Bauer TA, Braun L, Koynov K, Mikula H, Barz M. Tetrazine- and trans-cyclooctene-functionalised polypept(o)ides for fast bioorthogonal tetrazine ligation. Polym Chem 2020. [DOI: 10.1039/d0py00375a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tetrazine- and trans-cyclooctene-functionalised polypeptides and polypetoids were prepared by ring-opening polymerisation of N-carboxyanhydrides using the respective functional initiators and shown to react in fast bioorthogonal tetrazine ligations.
Collapse
Affiliation(s)
- Kerstin Johann
- Department of Chemistry
- Johannes Gutenberg University Mainz
- 55128 Mainz
- Germany
| | - Dennis Svatunek
- Institute of Applied Synthetic Chemistry
- Technische Universität Wien
- 1060 Vienna
- Austria
| | - Christine Seidl
- Department of Chemistry
- Johannes Gutenberg University Mainz
- 55128 Mainz
- Germany
| | - Silvia Rizzelli
- Department of Chemistry
- Johannes Gutenberg University Mainz
- 55128 Mainz
- Germany
| | - Tobias A. Bauer
- Department of Chemistry
- Johannes Gutenberg University Mainz
- 55128 Mainz
- Germany
| | - Lydia Braun
- Department of Chemistry
- Johannes Gutenberg University Mainz
- 55128 Mainz
- Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
| | - Hannes Mikula
- Institute of Applied Synthetic Chemistry
- Technische Universität Wien
- 1060 Vienna
- Austria
| | - Matthias Barz
- Department of Chemistry
- Johannes Gutenberg University Mainz
- 55128 Mainz
- Germany
| |
Collapse
|
46
|
Keinänen O, Brennan JM, Membreno R, Fung K, Gangangari K, Dayts EJ, Williams CJ, Zeglis BM. Dual Radionuclide Theranostic Pretargeting. Mol Pharm 2019; 16:4416-4421. [PMID: 31483993 DOI: 10.1021/acs.molpharmaceut.9b00746] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent years have played witness to the advent of nuclear theranostics: the synergistic use of "matched pair" radiopharmaceuticals for diagnostic imaging and targeted radiotherapy. In this investigation, we report the extension of this concept to in vivo pretargeting based on the rapid and bioorthogonal inverse electron demand Diels-Alder reaction between tetrazine (Tz) and trans-cyclooctene (TCO). We demonstrate that a single injection of a TCO-modified immunoconjugate can be used as a platform for pretargeted PET imaging and radiotherapy via the sequential administration of a pair of Tz-bearing radioligands labeled with the positron-emitting radiometal copper-64 (t1/2 ≈ 12.7 h) and the beta-emitting radiometal lutetium-177 (t1/2 ≈ 6.7 days). More specifically, a mouse model of human colorectal carcinoma received a dose of the A33 antigen-targeting immunoconjugate huA33-TCO, followed 24 and 48 h later by injections of [64Cu]Cu-SarAr-Tz and [177Lu]Lu-DOTA-PEG7-Tz, respectively. This approach produces high activity concentrations of both radioligands in tumor tissue (16.4 ± 2.7 %ID/g for [64Cu]Cu-SarAr-Tz at 48 h post-injection and 18.1 ± 2.1 %ID/g for [177Lu]Lu-DOTA-PEG7-Tz at 120 h post-injection) as well as promising tumor-to-healthy organ activity concentration ratios. Ultimately, we believe that this work could not only have important implications in nuclear theranostics-most excitingly with isotopologue-based radioligand pairs such as [64Cu]Cu-SarAr-Tz and [67Cu]Cu-SarAr-Tz-but also in the delivery of fractionated doses during pretargeted radioimmunotherapy.
Collapse
Affiliation(s)
- Outi Keinänen
- Department of Chemistry , Hunter College, City University of New York , New York , New York 10021 , United States
| | - James M Brennan
- Department of Chemistry , Hunter College, City University of New York , New York , New York 10021 , United States
| | - Rosemery Membreno
- Department of Chemistry , Hunter College, City University of New York , New York , New York 10021 , United States.,Ph.D. Program in Chemistry , The Graduate Center of the City University of New York , New York , New York 10016 , United States
| | - Kimberly Fung
- Department of Chemistry , Hunter College, City University of New York , New York , New York 10021 , United States.,Ph.D. Program in Chemistry , The Graduate Center of the City University of New York , New York , New York 10016 , United States
| | - Kishore Gangangari
- Department of Chemistry , Hunter College, City University of New York , New York , New York 10021 , United States.,Ph.D. Program in Chemistry , The Graduate Center of the City University of New York , New York , New York 10016 , United States
| | - Eric J Dayts
- Department of Chemistry , Hunter College, City University of New York , New York , New York 10021 , United States
| | - Carter J Williams
- Department of Chemistry , Hunter College, City University of New York , New York , New York 10021 , United States
| | - Brian M Zeglis
- Department of Chemistry , Hunter College, City University of New York , New York , New York 10021 , United States.,Ph.D. Program in Chemistry , The Graduate Center of the City University of New York , New York , New York 10016 , United States.,Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States.,Department of Radiology , Weill Cornell Medical College , New York , New York 10065 , United States
| |
Collapse
|
47
|
Pretargeted Nuclear Imaging and Radioimmunotherapy Based on the Inverse Electron-Demand Diels-Alder Reaction and Key Factors in the Pretargeted Synthetic Design. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:9182476. [PMID: 31531006 PMCID: PMC6732628 DOI: 10.1155/2019/9182476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/20/2019] [Accepted: 08/01/2019] [Indexed: 11/18/2022]
Abstract
The exceptional speed and biorthogonality of the inverse electron-demand Diels-Alder (IEDDA) click chemistry between 1,2,4,5-tetrazines and strained alkene dienophiles have made it promising in the realm of pretargeted imaging and therapy. During the past 10 years, the IEDDA-pretargeted strategies have been tested and have already proven capable of producing images with high tumor-to-background ratios and improving therapeutic effect. This review will focus on recent applications of click chemistry ligations in the pretargeted imaging studies of single photon emission computed tomography (SPECT), positron emission tomography (PET), and pretargeted radioimmunotherapy investigations. Additionally, the influence factors of stability, reactivity, and pharmacokinetic properties of TCO tag modified immunoconjugates and radiolabeled Tz derivatives were also summarized in this article, which should be carefully considered in the system design in order to develop a successful pretargeted methodology. We hope that this review will not only equip readers with a knowledge of pretargeted methodology based on IEDDA click chemistry but also inspire synthetic chemists and radiochemists to develop pretargeted radiopharmaceutical components in a more innovative way with various influence factors considered.
Collapse
|
48
|
Membreno R, Keinänen OM, Cook BE, Tully KM, Fung KC, Lewis JS, Zeglis BM. Toward the Optimization of Click-Mediated Pretargeted Radioimmunotherapy. Mol Pharm 2019; 16:2259-2263. [PMID: 30912951 DOI: 10.1021/acs.molpharmaceut.9b00062] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pretargeted radioimmunotherapy (PRIT) based on the inverse electron demand Diels-Alder reaction has shown promise in murine models of disease, yet the radiation dosimetry of this approach must be optimized to make it a viable clinical option. To this end, we have leveraged two recent developments in pretargeted imaging-dendritic scaffolds and masking agents-to improve the dosimetric profile of a proof-of-concept PRIT system that is based on the huA33 antibody, a 177Lu-labeled tetrazine radioligand ([177Lu]Lu-DOTA-PEG7-Tz), and a mouse model of A33 antigen-expressing colorectal carcinoma. Pretargeting using an huA33 immunoconjugate bearing a trans-cyclooctene-decorated dendritic scaffold (sshuA33-DEN-TCO) produced significantly higher tumoral activity concentrations at 120 h post-injection (23.0 ± 2.2 %ID/g) than those achieved with an analogous, dendrimer-lacking immunoconjugate (12.7 ± 2.6 %ID/g). However, pretargeting using sshuA33-DEN-TCO also resulted in increased activity concentrations in the blood at the same time point (1.9 ± 0.4 %ID/g) compared to the dendrimer-lacking construct (0.7 ± 0.2 %ID/g), thereby curtailing improvements to the tumor-to-blood therapeutic ratio of the system. In order to circumvent this issue, a tetrazine-labeled, dextran-based masking agent (Tz-DP) was injected prior to the radioligand to prevent the ligation between [177Lu]Lu-DOTA-PEG7-Tz and circulating immunoconjugate. This approach dramatically decreased the absorbed dose to the blood but also attenuated the absorbed dose to the tumor and increased the absorbed dose to the lungs. Ultimately, these data suggest that dendritic scaffolds and masking agents could be used to improve the dosimetry of PRIT, but the combination of these technologies will require extensive optimization.
Collapse
Affiliation(s)
- Rosemery Membreno
- Department of Chemistry , Hunter College of the City University of New York , New York , New York 10021 , United States.,Ph.D. Program in Chemistry , The Graduate Center of the City University of New York , New York , New York 10016 , United States
| | - Outi M Keinänen
- Department of Chemistry , Hunter College of the City University of New York , New York , New York 10021 , United States
| | - Brendon E Cook
- Department of Chemistry , Hunter College of the City University of New York , New York , New York 10021 , United States.,Ph.D. Program in Chemistry , The Graduate Center of the City University of New York , New York , New York 10016 , United States
| | | | - Kimberly C Fung
- Department of Chemistry , Hunter College of the City University of New York , New York , New York 10021 , United States.,Ph.D. Program in Chemistry , The Graduate Center of the City University of New York , New York , New York 10016 , United States
| | | | - Brian M Zeglis
- Department of Chemistry , Hunter College of the City University of New York , New York , New York 10021 , United States.,Ph.D. Program in Chemistry , The Graduate Center of the City University of New York , New York , New York 10016 , United States
| |
Collapse
|
49
|
Maiti D, Tong X, Mou X, Yang K. Carbon-Based Nanomaterials for Biomedical Applications: A Recent Study. Front Pharmacol 2019; 9:1401. [PMID: 30914959 PMCID: PMC6421398 DOI: 10.3389/fphar.2018.01401] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/15/2018] [Indexed: 01/08/2023] Open
Abstract
The study of carbon-based nanomaterials (CBNs) for biomedical applications has attracted great attention due to their unique chemical and physical properties including thermal, mechanical, electrical, optical and structural diversity. With the help of these intrinsic properties, CBNs, including carbon nanotubes (CNT), graphene oxide (GO), and graphene quantum dots (GQDs), have been extensively investigated in biomedical applications. This review summarizes the most recent studies in developing of CBNs for various biomedical applications including bio-sensing, drug delivery and cancer therapy.
Collapse
Affiliation(s)
- Debabrata Maiti
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Xiangmin Tong
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Xiaozhou Mou
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| |
Collapse
|
50
|
Stéen EJL, Jørgensen JT, Petersen IN, Nørregaard K, Lehel S, Shalgunov V, Birke A, Edem PE, L'Estrade ET, Hansen HD, Villadsen J, Erlandsson M, Ohlsson T, Yazdani A, Valliant JF, Kristensen JL, Barz M, Knudsen GM, Kjær A, Herth MM. Improved radiosynthesis and preliminary in vivo evaluation of the 11C-labeled tetrazine [ 11C]AE-1 for pretargeted PET imaging. Bioorg Med Chem Lett 2019; 29:986-990. [PMID: 30795854 DOI: 10.1016/j.bmcl.2019.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/31/2019] [Accepted: 02/10/2019] [Indexed: 10/27/2022]
Abstract
Pretargeted nuclear imaging based on the ligation between tetrazines and nano-sized targeting agents functionalized with trans-cyclooctene (TCO) has recently been shown to improve both imaging contrast and dosimetry in nuclear imaging of nanomedicines. Herein, we describe the improved radiosynthesis of a 11C-labeled tetrazine ([11C]AE-1) and its preliminary evaluation in both mice and pigs. Pretargeted imaging in mice was carried out using both a new TCO-functionalized polyglutamic acid and a previously reported TCO-functionalized bisphosphonate system as targeting agents. Unfortunately, pretargeted imaging was not successful using these targeting agents in pair with [11C]AE-1. However, brain imaging in pig indicated that the tracer crossed the blood-brain-barrier. Hence, we suggest that this tetrazine scaffold could be used as a starting point for the development of pretargeted brain imaging, which has so far been a challenging task.
Collapse
Affiliation(s)
- E Johanna L Stéen
- Department for Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine and PET, University Hospital Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Jesper T Jørgensen
- Department of Clinical Physiology, Nuclear Medicine and PET, University Hospital Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark; Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Ida N Petersen
- Department of Clinical Physiology, Nuclear Medicine and PET, University Hospital Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark; Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Kamilla Nørregaard
- Department of Clinical Physiology, Nuclear Medicine and PET, University Hospital Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark; Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Szabolcs Lehel
- Department of Clinical Physiology, Nuclear Medicine and PET, University Hospital Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Vladimir Shalgunov
- Department for Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Alexander Birke
- Institute of Organic Chemistry, Johannes-Gutenberg University, Duesbergweg 10-14, D-55099 Mainz, Germany
| | - Patricia E Edem
- Department for Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine and PET, University Hospital Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark; Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Elina T L'Estrade
- Department for Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine and PET, University Hospital Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark; Neurobiology Research Unit, Rigshospitalet and University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark; Radiation Physics, Nuclear Medicine Physics Unit, Skånes University Hospital, Barngatan 3, 222 42 Lund, Sweden
| | - Hanne D Hansen
- Neurobiology Research Unit, Rigshospitalet and University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Jonas Villadsen
- Neurobiology Research Unit, Rigshospitalet and University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Maria Erlandsson
- Radiation Physics, Nuclear Medicine Physics Unit, Skånes University Hospital, Barngatan 3, 222 42 Lund, Sweden
| | - Tomas Ohlsson
- Radiation Physics, Nuclear Medicine Physics Unit, Skånes University Hospital, Barngatan 3, 222 42 Lund, Sweden
| | - Abdolreza Yazdani
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - John F Valliant
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Jesper L Kristensen
- Department for Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Matthias Barz
- Institute of Organic Chemistry, Johannes-Gutenberg University, Duesbergweg 10-14, D-55099 Mainz, Germany
| | - Gitte M Knudsen
- Neurobiology Research Unit, Rigshospitalet and University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Andreas Kjær
- Department of Clinical Physiology, Nuclear Medicine and PET, University Hospital Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark; Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| | - Matthias M Herth
- Department for Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine and PET, University Hospital Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| |
Collapse
|