1
|
Shi Z, Han S. Personalized statin therapy: Targeting metabolic processes to modulate the therapeutic and adverse effects of statins. Heliyon 2025; 11:e41629. [PMID: 39866414 PMCID: PMC11761934 DOI: 10.1016/j.heliyon.2025.e41629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/31/2024] [Accepted: 01/01/2025] [Indexed: 01/28/2025] Open
Abstract
Statins are widely used for treating lipid disorders and cardiovascular diseases. However, the therapeutic efficiency and adverse effects of statins vary among different patients, which numerous clinical and epidemiological studies have attributed to genetic polymorphisms in statin-metabolizing enzymes and transport proteins. The metabolic processes of statins are relatively complex, involving spontaneous or enzyme-catalyzed interconversion between more toxic lactone metabolites and active acid forms in the liver and bloodstream, influenced by multiple factors, including the expression levels of many metabolic enzymes and transporters. Addressing the variable statin therapeutic outcomes is a pressing clinical challenge. Transcription factors and epigenetic modifications regulate the metabolic enzymes and transporters involved in statin metabolism and disposition and, therefore, hold promise as 'personalized' targets for achieving optimized statin therapy. In this review, we explore the potential for customizing therapy by targeting the metabolism of statin medications. The biochemical bases of adverse reactions to statin drugs and their correlation with polymorphisms in metabolic enzymes and transporters are summarized. Next, we mainly focus on the regulatory roles of transcription factors and epigenetic modifications in regulating the gene expression of statin biochemical machinery. The recommendations for future therapies are finally proposed by targeting the central regulatory factors of statin metabolism.
Collapse
Affiliation(s)
- Zhuangqi Shi
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830046, China
| | - Shuxin Han
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830046, China
| |
Collapse
|
2
|
González-Iglesias E, Méndez-Ponce C, Ochoa D, Román M, Mejía-Abril G, Martín-Vilchez S, de Miguel A, Gómez-Fernández A, Rodríguez-Lopez A, Soria-Chacartegui P, Abad-Santos F, Novalbos J. Effect of Genetic Variants on Rosuvastatin Pharmacokinetics in Healthy Volunteers: Involvement of ABCG2, SLCO1B1 and NAT2. Int J Mol Sci 2024; 26:260. [PMID: 39796117 PMCID: PMC11720188 DOI: 10.3390/ijms26010260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Statins are the primary drugs used to prevent cardiovascular disease by inhibiting the HMG-CoA reductase, an enzyme crucial for the synthesis of LDL cholesterol in the liver. A significant number of patients experience adverse drug reactions (ADRs), particularly musculoskeletal problems, which can affect adherence to treatment. Recent clinical guidelines, such as those from the Clinical Pharmacogenetics Implementation Consortium (CPIC) in 2022, recommend adjusting rosuvastatin doses based on genetic variations in the ABCG2 and SLCO1B1 genes to minimize ADRs and improve treatment efficacy. Despite these adjustments, some patients still experience ADRs. So, we performed a candidate gene study to better understand the pharmacogenetics of rosuvastatin. This study included 119 healthy volunteers who participated in three bioequivalence trials of rosuvastatin alone or in combination with ezetimibe at the Clinical Trials Unit of the Hospital Universitario de La Princesa (UECHUP). Participants were genotyped using a custom OpenArray from ThermoFisher that assessed 124 variants in 38 genes associated with drug metabolism and transport. No significant differences were observed according to sex or biogeographic origin. A significant increase in t1/2 (pmultivariate(pmv) = 0.013) was observed in the rosuvastatin plus ezetimibe trial compared with the rosuvastatin alone trials. Genetic analysis showed that decreased (DF) and poor function (PF) volunteers for the ABCG2 transporter had higher AUC∞/DW (adjusted dose/weight), AUC72h/DW and Cmax/DW compared to normal function (NF) volunteers (pmv< 0.001). DF and PF volunteers for SLCO1B1 showed an increase in AUC72h/DW (pmv = 0.020) compared to increased (IF) and NF individuals. Results for ABCG2 and SLCO1B1 were consistent with the existing literature. In addition, AUC∞/DW, AUC72h/DW and Cmax/DW were increased in intermediate (IA) and poor (PA) NAT2 acetylators (pmv = 0.001, pmv< 0.001, pmv< 0.001, respectively) compared to rapid acetylators (RA), which could be associated through a secondary pathway that was previously unknown.
Collapse
Affiliation(s)
- Eva González-Iglesias
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-Princesa), 28006 Madrid, Spain; (E.G.-I.)
- Pharmacology Department, Faculty of Medicine, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Clara Méndez-Ponce
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-Princesa), 28006 Madrid, Spain; (E.G.-I.)
| | - Dolores Ochoa
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-Princesa), 28006 Madrid, Spain; (E.G.-I.)
- Pharmacology Department, Faculty of Medicine, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Manuel Román
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-Princesa), 28006 Madrid, Spain; (E.G.-I.)
| | - Gina Mejía-Abril
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-Princesa), 28006 Madrid, Spain; (E.G.-I.)
| | - Samuel Martín-Vilchez
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-Princesa), 28006 Madrid, Spain; (E.G.-I.)
| | - Alejandro de Miguel
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-Princesa), 28006 Madrid, Spain; (E.G.-I.)
| | - Antía Gómez-Fernández
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-Princesa), 28006 Madrid, Spain; (E.G.-I.)
- Pharmacology Department, Faculty of Medicine, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Andrea Rodríguez-Lopez
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-Princesa), 28006 Madrid, Spain; (E.G.-I.)
- Pharmacology Department, Faculty of Medicine, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Paula Soria-Chacartegui
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-Princesa), 28006 Madrid, Spain; (E.G.-I.)
- Pharmacology Department, Faculty of Medicine, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-Princesa), 28006 Madrid, Spain; (E.G.-I.)
- Pharmacology Department, Faculty of Medicine, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jesús Novalbos
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-Princesa), 28006 Madrid, Spain; (E.G.-I.)
| |
Collapse
|
3
|
Mykkänen AJH, Tarkiainen EK, Taskinen S, Neuvonen M, Paile-Hyvärinen M, Lilius TO, Tapaninen T, Klein K, Schwab M, Backman JT, Tornio A, Niemi M. Genome-Wide Association Study of Atorvastatin Pharmacokinetics: Associations With SLCO1B1, UGT1A3, and LPP. Clin Pharmacol Ther 2024; 115:1428-1440. [PMID: 38493369 DOI: 10.1002/cpt.3236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/22/2024] [Indexed: 03/18/2024]
Abstract
In a genome-wide association study of atorvastatin pharmacokinetics in 158 healthy volunteers, the SLCO1B1 c.521T>C (rs4149056) variant associated with increased area under the plasma concentration-time curve from time zero to infinity (AUC0-∞) of atorvastatin (P = 1.2 × 10-10), 2-hydroxy atorvastatin (P = 4.0 × 10-8), and 4-hydroxy atorvastatin (P = 2.9 × 10-8). An intronic LPP variant, rs1975991, associated with reduced atorvastatin lactone AUC0-∞ (P = 3.8 × 10-8). Three UGT1A variants linked with UGT1A3*2 associated with increased 2-hydroxy atorvastatin lactone AUC0-∞ (P = 3.9 × 10-8). Furthermore, a candidate gene analysis including 243 participants suggested that increased function SLCO1B1 variants and decreased activity CYP3A4 variants affect atorvastatin pharmacokinetics. Compared with individuals with normal function SLCO1B1 genotype, atorvastatin AUC0-∞ was 145% (90% confidence interval: 98-203%; P = 5.6 × 10-11) larger in individuals with poor function, 24% (9-41%; P = 0.0053) larger in those with decreased function, and 41% (16-59%; P = 0.016) smaller in those with highly increased function SLCO1B1 genotype. Individuals with intermediate metabolizer CYP3A4 genotype (CYP3A4*2 or CYP3A4*22 heterozygotes) had 33% (14-55%; P = 0.022) larger atorvastatin AUC0-∞ than those with normal metabolizer genotype. UGT1A3*2 heterozygotes had 16% (5-25%; P = 0.017) smaller and LPP rs1975991 homozygotes had 34% (22-44%; P = 4.8 × 10-5) smaller atorvastatin AUC0-∞ than noncarriers. These data demonstrate that genetic variation in SLCO1B1, UGT1A3, LPP, and CYP3A4 affects atorvastatin pharmacokinetics. This is the first study to suggest that LPP rs1975991 may reduce atorvastatin exposure. [Correction added on 6 April, after first online publication: An incomplete sentence ("= 0.017) smaller in heterozygotes for UGT1A3*2 and 34% (22%, 44%; P × 10-5) smaller in homozygotes for LPP noncarriers.") has been corrected in this version.].
Collapse
Affiliation(s)
- Anssi J H Mykkänen
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - E Katriina Tarkiainen
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Suvi Taskinen
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Mikko Neuvonen
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Maria Paile-Hyvärinen
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Tuomas O Lilius
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Tuija Tapaninen
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Kathrin Klein
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Matthias Schwab
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
- Department of Clinical Pharmacology, University of Tübingen, Tübingen, Germany
- Department of Biochemistry and Pharmacy, University of Tübingen, Tübingen, Germany
| | - Janne T Backman
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Aleksi Tornio
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Cho CK, Mo JY, Ko E, Kang P, Jang CG, Lee SY, Lee YJ, Bae JW, Choi CI. Physiologically based pharmacokinetic (PBPK) modeling of pitavastatin in relation to SLCO1B1 genetic polymorphism. Arch Pharm Res 2024; 47:95-110. [PMID: 38159179 DOI: 10.1007/s12272-023-01476-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
Pitavastatin, a potent 3-hydroxymethylglutaryl coenzyme A reductase inhibitor, is indicated for the treatment of hypercholesterolemia and mixed dyslipidemia. Hepatic uptake of pitavastatin is predominantly occupied by the organic anion transporting polypeptide 1B1 (OATP1B1) and solute carrier organic anion transporter family member 1B1 (SLCO1B1) gene, which is a polymorphic gene that encodes OATP1B1. SLCO1B1 genetic polymorphism significantly alters the pharmacokinetics of pitavastatin. This study aimed to establish the physiologically based pharmacokinetic (PBPK) model to predict pitavastatin pharmacokinetics according to SLCO1B1 genetic polymorphism. PK-Sim® version 10.0 was used to establish the whole-body PBPK model of pitavastatin. Our pharmacogenomic data and a total of 27 clinical pharmacokinetic data with different dose administration and demographic properties were used to develop and validate the model, respectively. Physicochemical properties and disposition characteristics of pitavastatin were acquired from previously reported data or optimized to capture the plasma concentration-time profiles in different SLCO1B1 diplotypes. Model evaluation was performed by comparing the predicted pharmacokinetic parameters and profiles to the observed data. Predicted plasma concentration-time profiles were visually similar to the observed profiles in the non-genotyped populations and different SLCO1B1 diplotypes. All fold error values for AUC and Cmax were included in the two fold range of observed values. Thus, the PBPK model of pitavastatin in different SLCO1B1 diplotypes was properly established. The present study can be useful to individualize the dose administration strategy of pitavastatin in individuals with various ages, races, and SLCO1B1 diplotypes.
Collapse
Affiliation(s)
- Chang-Keun Cho
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ju Yeon Mo
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Eunvin Ko
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Pureum Kang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Choon-Gon Jang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seok-Yong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Yun Jeong Lee
- College of Pharmacy, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Woo Bae
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Chang-Ik Choi
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea.
| |
Collapse
|
5
|
Zheng E, Madura P, Grandos J, Broncel M, Pawlos A, Woźniak E, Gorzelak-Pabiś P. When the same treatment has different response: The role of pharmacogenomics in statin therapy. Biomed Pharmacother 2024; 170:115966. [PMID: 38061135 DOI: 10.1016/j.biopha.2023.115966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
Statins, also known as HMG-CoA reductase inhibitors, are one of the most potently prescribed and thoroughly researched medications, predominantly utilized for managing cardiovascular diseases by modulating serum cholesterol levels. Despite the well-documented efficacy of statins in reducing overall mortality via attenuating the risk of cardiovascular diseases, notable interindividual variability in therapeutic responses persists as such variability could compromise the lipid-lowering efficacy of the drug, potentially increasing susceptibility to adverse effects or attenuating therapeutic outcomes.This phenomenon has catalysed a growing interest in the scientific community to explore common genetic polymorphisms within genes that encode for pivotal enzymes within the pharmacokinetic pathways of statins. In our review, we focus to provide insight into potentially clinically relevant polymorphisms associated with statins' pharmacokinetic participants and assess their consequent implications on modulating the therapeutic outcomes of statins among distinct genetic carrier.
Collapse
Affiliation(s)
- Edward Zheng
- Dept. of Internal Diseases and Clinical Pharmacology, The Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Poland
| | - Paulina Madura
- Dept. of Internal Diseases and Clinical Pharmacology, The Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Poland
| | - Jakub Grandos
- Dept. of Internal Diseases and Clinical Pharmacology, The Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Poland
| | - Marlena Broncel
- Dept. of Internal Diseases and Clinical Pharmacology, The Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Poland
| | - Agnieszka Pawlos
- Dept. of Internal Diseases and Clinical Pharmacology, The Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Poland
| | - Ewelina Woźniak
- Dept. of Internal Diseases and Clinical Pharmacology, The Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Poland
| | - Paulina Gorzelak-Pabiś
- Dept. of Internal Diseases and Clinical Pharmacology, The Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Poland.
| |
Collapse
|
6
|
Iga K, Kiriyama A. Interplay of UDP-Glucuronosyltransferase and CYP2C8 for CYP2C8 Mediated Drug Oxidation and Its Impact on Drug-Drug Interaction Produced by Standardized CYP2C8 Inhibitors, Clopidogrel and Gemfibrozil. Clin Pharmacokinet 2024; 63:43-56. [PMID: 37921907 DOI: 10.1007/s40262-023-01322-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 11/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Early investigations into drug-drug interactions (DDIs) involving cytochrome P450 2C8 (CYP2C8) have highlighted the complexity of interactions between CYP2C8 substrate drugs, including montelukast, desloratadine, pioglitazone, repaglinide, and cerivastatin (the latter two being OATP1B1 substrates), and standardized CYP2C8 inhibitors such as clopidogrel (Clop) and gemfibrozil (Gem). These interactions have proven challenging to predict based solely on simple CYP inhibition. A hypothesis has emerged suggesting that these substrate drugs first distribute to UDP-glucuronosyltransferase (UGT) before undergoing oxidation by CYP2C8, resulting in bidirectional elimination. The process of drug distribution to UGT is believed to significantly impact these DDIs. This study aims to explore the intricate interplay between UGT and CYP2C8 in the context of DDIs involving CYP2C8 substrates affected by Clop and Gem. METHODS Plasma-level data for the unchanged drug and its metabolite, drawn from the respective literature, formed the basis of our analysis. We evaluated the enzymatic inhibitory activities of DDIs and utilized simulations to estimate plasma levels of the unchanged victim drug and its metabolite in each DDI. This was accomplished by employing a functional relationship that considered the fractional contributions of CYP2C8 and UGT to clearance, perpetrator-specific inhibitory activities against CYP2C8, and drug distribution to UGT. RESULTS Our findings emphasize the pivotal role of UGT-mediated distribution in the context of CYP2C8 substrate metabolism, particularly in the complex DDIs induced by Clop and Gem. In these DDIs, Gem exerts inhibitory effects on both UGT and CYP2C8, whereas Clop (specifically its metabolite, Clop-COOH) solely targets CYP2C8. Importantly, the inhibition of CYP2C8 by both Clop and Gem is achieved through a non-competitive mechanism, driven by the actions of their acyl-glucuronides. Clop and Gem exhibit inhibition activities accounting for 85% (pAi,CYP2C8 = 7) and 93% (pAi,CYP2C8 = 15), respectively. In contrast, Gem's inhibition of UGT is relatively modest (50%, pAi,UGT(d) = 2), and it operates through a non-specific, competitive process in drug distribution to UGT. Within this context, our UGT-CYP2C8 interplay model offers an accurate means of predicting the alterations resulting from DDIs, encompassing changes in plasma levels of the unchanged drug and its metabolites, as well as shifts in metabolite formation rates. Our analysis highlights the critical importance of considering the fractional contributions of CYP2C8 and UGT to the victim drug's clearance (fm,CYP2C8; fm,UGT) in DDI prediction. Furthermore, our examination of DDIs involving OATP1B1 substrate drugs underscores that accounting for the hepatic uptake transporters' role in the liver is superfluous in DDI prediction. CONCLUSION These findings substantially enhance our comprehension of CYP2C8-mediated oxidation and DDIs, holding crucial implications for drug development and the planning of clinical trials involving these inhibitors.
Collapse
Affiliation(s)
- Katsumi Iga
- Pharmaceutical Research and Technology Unit, R & D Division, Pre-formulation Department, Towa Pharmaceutical Co., Ltd, Kyoto Research Park KISTIC #202, 134, Chudoji Minami-machi, Shimogyo-ku, Kyoto, 600-8813, Japan.
| | - Akiko Kiriyama
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo Kyotanabe-shi, Kyoto, 610-0395, Japan
| |
Collapse
|
7
|
Avvari SK, Cusumano JA, Jogiraju VK, Manchandani P, Taft DR. PBPK Modeling of Azithromycin Systemic Exposure in a Roux-en-Y Gastric Bypass Surgery Patient Population. Pharmaceutics 2023; 15:2520. [PMID: 38004500 PMCID: PMC10674169 DOI: 10.3390/pharmaceutics15112520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
In this investigation, PBPK modeling using the Simcyp® Simulator was performed to evaluate whether Roux-en-Y gastric bypass (RYGB) surgery impacts the oral absorption and bioavailability of azithromycin. An RYGB surgery patient population was adapted from the published literature and verified using the same probe medications, atorvastatin and midazolam. Next, a PBPK model of azithromycin was constructed to simulate changes in systemic drug exposure after the administration of different oral formulations (tablet, suspension) to patients pre- and post-RYGB surgery using the developed and verified population model. Clinically observed changes in azithromycin systemic exposure post-surgery following oral administration (single-dose tablet formulation) were captured using PBPK modeling based on the comparison of model-predicted exposure metrics (Cmax, AUC) to published clinical data. Model simulations predicted a 30% reduction in steady-state AUC after surgery for three- and five-day multiple dose regimens of an azithromycin tablet formulation. The relative bioavailability of a suspension formulation was 1.5-fold higher than the tablet formulation after multiple dosing. The changes in systemic exposure observed after surgery were used to evaluate the clinical efficacy of azithromycin against two of the most common pathogens causing community acquired pneumonia based on the corresponding AUC24/MIC pharmacodynamic endpoint. The results suggest lower bioavailability of the tablet formulation post-surgery may impact clinical efficacy. Overall, the research demonstrates the potential of a PBPK modeling approach as a framework to optimize oral drug therapy in patients post-RYGB surgery.
Collapse
Affiliation(s)
- Suvarchala Kiranmai Avvari
- Samuel J. and Joan B. Williamson Institute for Pharmacometrics, Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA;
| | - Jaclyn A. Cusumano
- Division of Pharmacy Practice, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA;
| | | | | | - David R. Taft
- Samuel J. and Joan B. Williamson Institute for Pharmacometrics, Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA;
| |
Collapse
|
8
|
Somers T, Siddiqi S, Morshuis WJ, Russel FGM, Schirris TJJ. Statins and Cardiomyocyte Metabolism, Friend or Foe? J Cardiovasc Dev Dis 2023; 10:417. [PMID: 37887864 PMCID: PMC10607220 DOI: 10.3390/jcdd10100417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/23/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
Statins inhibit HMG-CoA reductase, the rate-limiting enzyme in cholesterol synthesis, and are the cornerstone of lipid-lowering treatment. They significantly reduce cardiovascular morbidity and mortality. However, musculoskeletal symptoms are observed in 7 to 29 percent of all users. The mechanism underlying these complaints has become increasingly clear, but less is known about the effect on cardiac muscle function. Here we discuss both adverse and beneficial effects of statins on the heart. Statins exert pleiotropic protective effects in the diseased heart that are independent of their cholesterol-lowering activity, including reduction in hypertrophy, fibrosis and infarct size. Adverse effects of statins seem to be associated with altered cardiomyocyte metabolism. In this review we explore the differences in the mechanism of action and potential side effects of statins in cardiac and skeletal muscle and how they present clinically. These insights may contribute to a more personalized treatment strategy.
Collapse
Affiliation(s)
- Tim Somers
- Department of Cardiothoracic Surgery, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Sailay Siddiqi
- Department of Cardiothoracic Surgery, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Wim J. Morshuis
- Department of Cardiothoracic Surgery, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Frans G. M. Russel
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Tom J. J. Schirris
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
9
|
Reig-López J, Merino-Sanjuan M, García-Arieta A, Mangas-Sanjuán V. A physiologically based pharmacokinetic model for open acid and lactone forms of atorvastatin and metabolites to assess the drug-gene interaction with SLCO1B1 polymorphisms. Biomed Pharmacother 2022; 156:113914. [DOI: 10.1016/j.biopha.2022.113914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 11/29/2022] Open
|
10
|
Liu J, Shi Y, Wu C, Hong B, Peng D, Yu N, Wang G, Wang L, Chen W. Comparison of Sweated and Non-Sweated Ethanol Extracts of Salvia miltiorrhiza Bge. (Danshen) Effects on Human and rat Hepatic UDP-Glucuronosyltransferase and Preclinic Herb-Drug Interaction Potential Evaluation. Curr Drug Metab 2022; 23:473-483. [PMID: 35585828 DOI: 10.2174/1389200223666220517115845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/16/2022] [Accepted: 03/08/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND The ethanol of Danshen (DEE) preparation has been widely used to treat cardiac-cerebral disease and cancer. Sweating is one of the primary processing methods of Danshen, which greatly influenced its quality and pharmacological properties. Sweated and non-sweated DEE preparation combining with various synthetic drugs, adding up the possibility of herbal-drug interactions. OBJECTIVE This study explored the effects of sweated and non-sweated DEE on human and rat hepatic UGT enzymes expression and activity and proposed a potential mechanism. METHODS The expression of two processed DEE on rat UGT1A, UGT2B and nuclear receptors including pregnane X receptor (PXR), constitutive androstane receptor (CAR), and peroxisome proliferator-activated receptor α (PPARα) were investigated after intragastric administration in rats by Western blot. Enzyme activity of DEE and its active ingredients (Tanshinone I, Cryptotanshinone, and Tanshinone I) on UGT isoenzymes was evaluated by quantifying probe substrate metabolism and metabolite formation in vitro using Ultra Performance Liquid Chromatography. RESULTS The two processed DEE (5.40 g/kg) improved UGT1A (P<0.01) and UGT2B (P<0.05) protein expression, and the non-sweated DEE (2.70 g/kg) upregulated UGT2B expression protein (P<0.05), compared with the CMCNa group. On day 28, UGT1A protein expression was increased (P<0.05) both in two processed DEE groups, meanwhile the non-sweated DEE significantly enhanced UGT2B protein expression (P<0.05) on day 21, compared with the CMCNa group. The process underlying this mechanism involved with the activation of nuclear receptors CAR, PXR, and PPARα; In vitro, sweated DEE (0-80 μg/mL) significantly inhibited the activity of human UGT1A7 (P<0.05) and rat UGT1A1, 1A8, and 1A9 (P<0.05). Non-sweated DEE (0-80 μg/mL) dramatically suppressed the activity of human UGT1A1, 1A3, 1A6, 1A7, 2B4, and 2B15, and rat UGT1A1, 1A3, 1A7, and 1A9 (P<0.05); Tanshinone I (0-1 μM) inhibited the activity of human UGT1A3, 1A6, and 1A7 (P<0.01) and rat UGT1A3, 1A6, 1A7, and 1A8 (P<0.05). Cryptotanshinone (0-1 μM) remarkably inhibited the activity of human UGT1A3 and 1A7 (P<0.05) and rat UGT1A7, 1A8, and 1A9 (P<0.05). Nonetheless, Tanshinone IIA (0-2 μM) is not a potent UGT inhibitor both in humans and rats; Additionally, there existed significant differences between two processed DEE in expression of PXR, and the activity of human UGT1A1, 1A3, 1A6, and 2B15 and rat UGT1A3 and 2B15 (P<0.05). CONCLUSION The effects of two processed DEE on hepatic UGT enzyme expression and activity were different. Accordingly, the combined usage of related UGTs substrates with DEE and its monomer components preparations may call for caution, depending on the drug's exposure-response relationship and dose adjustment. Besides, it is vital to pay attention to the distinction between sweated and non-sweated Danshen in clinic, which exerted an important influence on its pharmacological activity.
Collapse
Affiliation(s)
- Jie Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui,230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China.,Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui Hefei 230012, China
| | - Yun Shi
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui,230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Chengyuan Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui,230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Bangzhen Hong
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui,230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui,230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui,230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Guokai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui,230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Lei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui,230012, China.,Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui Hefei 230012, China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui,230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China.,Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui Hefei 230012, China
| |
Collapse
|
11
|
Yang X, Zhu G, Zhang Y, Wu X, Liu B, Liu Y, Yang Q, Du W, Liang J, Hu J, Yang P, Ge G, Cai W, Ma G. Inhibition of Human UGT1A1-Mediated Bilirubin Glucuronidation by the Popular Flavonoids Baicalein, Baicalin and Hyperoside is responsible for Herbs (Shuang-huang-lian) -Induced Jaundice. Drug Metab Dispos 2022; 50:552-565. [PMID: 35241486 DOI: 10.1124/dmd.121.000714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/11/2022] [Indexed: 11/22/2022] Open
Abstract
Bilirubin-related adverse drug reactions (ADRs) or malady (e.g., jaundice) induced by some herbs rich in certain flavonoids have been widely reported. However, the causes and mechanisms of the ADRs are not well understood. The aim of this paper was to explore the mechanism of Shuang-huang-lian injections (SHL) and its major constituents-induced jaundice via inhibiting human UDP-glucuronosyltransferases1A1 (hUGT1A1)-mediated bilirubin glucuronidation. The inhibitory effects of SHL and its major constituents in the herbal medicine including baicalein (BAI), baicalin (BA) and hyperoside (HYP) on bilirubin glucuronidation were investigated. This study indicated that the average formation rates of bilirubin glucuronides (i.e., BMG1, BMG2, BDG) displayed significant differences (P <0.05), specially, the formation of mono-glucuronides (BMGs) was favored regardless whether an inhibitor was absent or presence. SHL, BAI, BA and HYP dose-dependently inhibit bilirubin glucuronidation, showing the IC50 values against total bilirubin glucuronidation (TBG) were in the range of (7.69 {plus minus} 0.94) μg/mL - (37.09 {plus minus} 2.03) μg/mL, (4.51 {plus minus} 0.27) μM - (20.84 {plus minus} 1.99) μM, (22.36 {plus minus} 5.74) μM - (41.35 {plus minus} 2.40) μM, and (15.16 {plus minus} 1.12) μM - (42.80 {plus minus} 2.63) μM for SHL, BAI, BA, and HYP, respectively. Both inhibition kinetics assays and molecular docking simulations suggested that SHL, BAI, BA, and HYP significantly inhibited hUGT1A1-mediated bilirubin glucuronidation via a mixed-type inhibition. Collectively, some naturally occurring flavonoids (BAI, BA and HYP) in SHL have been identified as the inhibitors against hUGT1A1-mediated bilirubin glucuronidation, which well-explains the bilirubin-related ADRs or malady triggered by SHL in clinical settings. Significance Statement Herbal products and their components (e.g., flavonoids), which been widely used in the whole world, may cause liver injury. As a commonly used herbal products rich in flavonoids, Shuang-huang-lian injections (SHL), easily lead to symptoms of liver injury (e.g., jaundice) owing to significant inhibition of hUGT1A1-mediated bilirubin glucuronidation by its flavonoid components (i.e., baicalein, baicalin, hyperoside). Herbs-induced bilirubin-related ADRs and its associated clinical significance should be seriously considered.
Collapse
Affiliation(s)
| | - Guanghao Zhu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, China
| | - Ying Zhang
- School of Pharmacy, Fudan University, China
| | - Xubo Wu
- Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, China
| | - Bei Liu
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; School of Pharmacy, Fudan University, China
| | - Ye Liu
- School of Pharmacy, Fudan University, China
| | - Qing Yang
- School of Pharmacy, Fudan University, China
| | - Wandi Du
- School of Pharmacy, Fudan University, China
| | | | - Jiarong Hu
- School of Pharmacy, Fudan University, China
| | - Ping Yang
- School of Pharmacy, Fudan University, China
| | - Guangbo Ge
- Shanghai University of Traditional Chinese Medicine, China
| | | | - Guo Ma
- School of Pharmacy, Fudan University, China
| |
Collapse
|
12
|
Patel KK, Sehgal VS, Kashfi K. Molecular targets of statins and their potential side effects: Not all the glitter is gold. Eur J Pharmacol 2022; 922:174906. [PMID: 35321818 PMCID: PMC9007885 DOI: 10.1016/j.ejphar.2022.174906] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/12/2022] [Accepted: 03/17/2022] [Indexed: 12/11/2022]
Abstract
Statins are a class of drugs widely used worldwide to manage hypercholesterolemia and the prevention of secondary heart attacks. Currently, available statins vary in terms of their pharmacokinetic and pharmacodynamic profiles. Although the primary target of statins is the inhibition of HMG-CoA reductase (HMGR), the rate-limiting enzyme in cholesterol biosynthesis, statins exhibit many pleiotropic effects downstream of the mevalonate pathway. These pleiotropic effects include the ability to reduce myocardial fibrosis, pathologic cardiac disease states, hypertension, promote bone differentiation, anti-inflammatory, and antitumor effects through multiple mechanisms. Although these pleiotropic effects of statins may be a cause for enthusiasm, there are many adverse effects that, for the most part, are unappreciated and need to be highlighted. These adverse effects include myopathy, new-onset type 2 diabetes, renal and hepatic dysfunction. Although these adverse effects may be relatively uncommon, considering the number of people worldwide who use statins daily, the actual number of people affected becomes quite large. Also, co-administration of statins with several other medications, herbal agents, and foods, which interact through common enzymatic pathways, can have untoward clinical consequences. In this review, we address these concerns.
Collapse
Affiliation(s)
- Kush K Patel
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
| | - Viren S Sehgal
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, USA.
| |
Collapse
|
13
|
Clinical evaluation of [18F]pitavastatin for quantitative analysis of hepatobiliary transporter activity. Drug Metab Pharmacokinet 2022; 44:100449. [DOI: 10.1016/j.dmpk.2022.100449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/21/2021] [Accepted: 01/25/2022] [Indexed: 11/23/2022]
|
14
|
Vinci P, Panizon E, Tosoni LM, Cerrato C, Pellicori F, Mearelli F, Biasinutto C, Fiotti N, Di Girolamo FG, Biolo G. Statin-Associated Myopathy: Emphasis on Mechanisms and Targeted Therapy. Int J Mol Sci 2021; 22:11687. [PMID: 34769118 PMCID: PMC8583847 DOI: 10.3390/ijms222111687] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 12/25/2022] Open
Abstract
Hyperlipidemia is a major risk factor for cardiovascular morbidity and mortality. Statins are the first-choice therapy for dyslipidemias and are considered the cornerstone of atherosclerotic cardiovascular disease (ASCVD) in both primary and secondary prevention. Despite the statin-therapy-mediated positive effects on cardiovascular events, patient compliance is often poor. Statin-associated muscle symptoms (SAMS) are the most common side effect associated with treatment discontinuation. SAMS, which range from mild-to-moderate muscle pain, weakness, or fatigue to potentially life-threatening rhabdomyolysis, are reported by 10% to 25% of patients receiving statin therapy. There are many risk factors associated with patient features and hypolipidemic agents that seem to increase the risk of developing SAMS. Due to the lack of a "gold standard", the diagnostic test for SAMS is based on a clinical criteria score, which is independent of creatine kinase (CK) elevation. Mechanisms that underlie the pathogenesis of SAMS remain almost unclear, though a high number of risk factors may increase the probability of myotoxicity induced by statin therapy. Some of these, related to pharmacokinetic properties of statins and to concomitant therapies or patient characteristics, may affect statin bioavailability and increase vulnerability to high-dose statins.
Collapse
Affiliation(s)
- Pierandrea Vinci
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical ad Health Science, University of Trieste, 34149 Trieste, Italy; (E.P.); (L.M.T.); (C.C.); (F.P.); (F.M.); (N.F.); (F.G.D.G.); (G.B.)
| | - Emiliano Panizon
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical ad Health Science, University of Trieste, 34149 Trieste, Italy; (E.P.); (L.M.T.); (C.C.); (F.P.); (F.M.); (N.F.); (F.G.D.G.); (G.B.)
| | - Letizia Maria Tosoni
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical ad Health Science, University of Trieste, 34149 Trieste, Italy; (E.P.); (L.M.T.); (C.C.); (F.P.); (F.M.); (N.F.); (F.G.D.G.); (G.B.)
| | - Carla Cerrato
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical ad Health Science, University of Trieste, 34149 Trieste, Italy; (E.P.); (L.M.T.); (C.C.); (F.P.); (F.M.); (N.F.); (F.G.D.G.); (G.B.)
| | - Federica Pellicori
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical ad Health Science, University of Trieste, 34149 Trieste, Italy; (E.P.); (L.M.T.); (C.C.); (F.P.); (F.M.); (N.F.); (F.G.D.G.); (G.B.)
| | - Filippo Mearelli
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical ad Health Science, University of Trieste, 34149 Trieste, Italy; (E.P.); (L.M.T.); (C.C.); (F.P.); (F.M.); (N.F.); (F.G.D.G.); (G.B.)
| | - Chiara Biasinutto
- SC Assistenza Farmaceutica, Cattinara Hospital, Azienda Sanitaria Universitaria Integrata di Trieste, 34149 Trieste, Italy;
| | - Nicola Fiotti
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical ad Health Science, University of Trieste, 34149 Trieste, Italy; (E.P.); (L.M.T.); (C.C.); (F.P.); (F.M.); (N.F.); (F.G.D.G.); (G.B.)
| | - Filippo Giorgio Di Girolamo
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical ad Health Science, University of Trieste, 34149 Trieste, Italy; (E.P.); (L.M.T.); (C.C.); (F.P.); (F.M.); (N.F.); (F.G.D.G.); (G.B.)
- SC Assistenza Farmaceutica, Cattinara Hospital, Azienda Sanitaria Universitaria Integrata di Trieste, 34149 Trieste, Italy;
| | - Gianni Biolo
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical ad Health Science, University of Trieste, 34149 Trieste, Italy; (E.P.); (L.M.T.); (C.C.); (F.P.); (F.M.); (N.F.); (F.G.D.G.); (G.B.)
| |
Collapse
|
15
|
Lynch KD, Montonye ML, Tian DD, Arman T, Oyanna VO, Bechtold BJ, Graf TN, Oberlies NH, Paine MF, Clarke JD. Hepatic organic anion transporting polypeptides mediate disposition of milk thistle flavonolignans and pharmacokinetic silymarin-drug interactions. Phytother Res 2021; 35:3286-3297. [PMID: 33587330 PMCID: PMC8217340 DOI: 10.1002/ptr.7049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/23/2020] [Accepted: 01/21/2021] [Indexed: 01/17/2023]
Abstract
Silybum marianum (L.) Gaertn. (Asteraceae), commonly known as milk thistle, is a botanical natural product used to self-treat multiple diseases such as Type 2 diabetes mellitus and nonalcoholic steatohepatitis (NASH). An extract from milk thistle seeds (achenes), termed silymarin, is comprised primarily of several flavonolignans. Systemic concentrations of these flavonolignans can influence the potential biologic effects of silymarin and the risk for pharmacokinetic silymarin-drug interactions. The aims of this research were to determine the roles of organic anion transporting polypeptides (OATPs/Oatps) in silymarin flavonolignan disposition and in pharmacokinetic silymarin-drug interactions. The seven major flavonolignans from silymarin were determined to be substrates for OATP1B1, OATP1B3, and OATP2B1. Sprague Dawley rats were fed either a control diet or a NASH-inducing diet and administered pitavastatin (OATP/Oatp probe substrate), followed by silymarin via oral gavage. Decreased protein expression of Oatp1b2 and Oatp1a4 in NASH animals increased flavonolignan area under the plasma concentration-time curve (AUC) and maximum plasma concentration. The combination of silymarin inhibition of Oatps and NASH-associated decrease in Oatp expression caused an additive increase in plasma pitavastatin AUC in the animals. These data indicate that OATPs/Oatps contribute to flavonolignan cellular uptake and mediate the interaction between silymarin and NASH on pitavastatin systemic exposure.
Collapse
Affiliation(s)
- Katherine D. Lynch
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Michelle L. Montonye
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Dan-Dan Tian
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Tarana Arman
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Victoria O. Oyanna
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Baron J. Bechtold
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Tyler N. Graf
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina
| | - Mary F. Paine
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - John D. Clarke
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| |
Collapse
|
16
|
Current Evidence, Challenges, and Opportunities of Physiologically Based Pharmacokinetic Models of Atorvastatin for Decision Making. Pharmaceutics 2021; 13:pharmaceutics13050709. [PMID: 34068030 PMCID: PMC8152487 DOI: 10.3390/pharmaceutics13050709] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 01/22/2023] Open
Abstract
Atorvastatin (ATS) is the gold-standard treatment worldwide for the management of hypercholesterolemia and prevention of cardiovascular diseases associated with dyslipidemia. Physiologically based pharmacokinetic (PBPK) models have been positioned as a valuable tool for the characterization of complex pharmacokinetic (PK) processes and its extrapolation in special sub-groups of the population, leading to regulatory recognition. Several PBPK models of ATS have been published in the recent years, addressing different aspects of the PK properties of ATS. Therefore, the aims of this review are (i) to summarize the physicochemical and pharmacokinetic characteristics involved in the time-course of ATS, and (ii) to evaluate the major highlights and limitations of the PBPK models of ATS published so far. The PBPK models incorporate common elements related to the physicochemical aspects of ATS. However, there are important differences in relation to the analyte evaluated, the type and effect of transporters and metabolic enzymes, and the permeability value used. Additionally, this review identifies major processes (lactonization, P-gp contribution, ATS-Ca solubility, simultaneous management of multiple analytes, and experimental evidence in the target population), which would enhance the PBPK model prediction to serve as a valid tool for ATS dose optimization.
Collapse
|
17
|
Lei HP, Qin M, Cai LY, Wu H, Tang L, Liu JE, Deng CY, Liu YB, Zhu Q, Li HP, Hu W, Yang M, Zhu YZ, Zhong SL. UGT1A1 rs4148323 A Allele is Associated With Increased 2-Hydroxy Atorvastatin Formation and Higher Death Risk in Chinese Patients With Coronary Artery Disease. Front Pharmacol 2021; 12:586973. [PMID: 33762934 PMCID: PMC7982952 DOI: 10.3389/fphar.2021.586973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/21/2021] [Indexed: 12/17/2022] Open
Abstract
It is widely accepted that genetic polymorphisms impact atorvastatin (ATV) metabolism, clinical efficacy, and adverse events. The objectives of this study were to identify novel genetic variants influencing ATV metabolism and outcomes in Chinese patients with coronary artery disease (CAD). A total of 1079 CAD patients were enrolled and followed for 5 years. DNA from the blood and human liver tissue samples were genotyped using either Global Screening Array-24 v1.0 BeadChip or HumanOmniZhongHua-8 BeadChip. Concentrations of ATV and its metabolites in plasma and liver samples were determined using a verified ultra-performance liquid chromatography mass spectrometry (UPLC-MS/MS) method. The patients carrying A allele for the rs4148323 polymorphism (UGT1A1) showed an increase in 2-hydroxy ATV/ATV ratio (p = 1.69E−07, false discovery rate [FDR] = 8.66E−03) relative to the value in individuals without the variant allele. The result was further validated by an independent cohort comprising an additional 222 CAD patients (p = 1.08E−07). Moreover, the rs4148323 A allele was associated with an increased risk of death (hazard ratio [HR] 1.774; 95% confidence interval [CI], 1.031–3.052; p = 0.0198). In conclusion, our results suggested that the UGT1A1 rs4148323 A allele was associated with increased 2-hydroxy ATV formation and was a significant death risk factor in Chinese patients with CAD.
Collapse
Affiliation(s)
- He-Ping Lei
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangzhou, China.,School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Min Qin
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Li-Yun Cai
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangzhou, China.,School of Pharmacy, Southern Medical University, Guangzhou, China
| | - Hong Wu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lan Tang
- School of Pharmacy, Southern Medical University, Guangzhou, China
| | - Ju-E Liu
- Department of Pharmacy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chun-Yu Deng
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangzhou, China
| | - Yi-Bin Liu
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangzhou, China
| | - Qian Zhu
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangzhou, China
| | - Han-Ping Li
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangzhou, China
| | - Wei Hu
- School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Min Yang
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangzhou, China
| | - Yi-Zhun Zhu
- School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Shi-Long Zhong
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China.,Department of Pharmacy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
18
|
Bowman CM, Ma F, Mao J, Chen Y. Examination of Physiologically-Based Pharmacokinetic Models of Rosuvastatin. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2020; 10:5-17. [PMID: 33220025 PMCID: PMC7825190 DOI: 10.1002/psp4.12571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022]
Abstract
Physiologically‐based pharmacokinetic (PBPK) modeling is increasingly used to predict drug disposition and drug–drug interactions (DDIs). However, accurately predicting the pharmacokinetics of transporter substrates and transporter‐mediated DDIs (tDDIs) is still challenging. Rosuvastatin is a commonly used substrate probe in DDI risk assessment for new molecular entities (NMEs) that are potential organic anion transporting polypeptide 1B or breast cancer resistance protein transporter inhibitors, and as such, several rosuvastatin PBPK models have been developed to try to predict the clinical DDI and support NME drug labeling. In this review, we examine five representative PBPK rosuvastatin models, discuss common challenges that the models have come across, and note remaining gaps. These shared learnings will help with the continuing efforts of rosuvastatin model validation, provide more information to understand transporter‐mediated drug disposition, and increase confidence in tDDI prediction.
Collapse
Affiliation(s)
- Christine M Bowman
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California, USA
| | - Fang Ma
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California, USA
| | - Jialin Mao
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California, USA
| | - Yuan Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California, USA
| |
Collapse
|
19
|
Wang X, Wang Z, Wang Z, Chen X, Yin H, Jiang L, Cao J, Liu Y. Inhibition of human UDP-glucuronosyltransferase enzyme by belinostat: Implications for drug-drug interactions. Toxicol Lett 2020; 338:51-57. [PMID: 33290829 DOI: 10.1016/j.toxlet.2020.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/08/2020] [Accepted: 12/03/2020] [Indexed: 12/31/2022]
Abstract
Belinostat is a pan-histone deacetylase (HDAC) inhibitor which recently approved for the treatment of relapsed/refractory Peripheral T-cell lymphomas (PTCL). To assess drug-drug interactions (DDIs) potential of belinostat via inhibition of UDP-glucuronosyltransferases (UGTs), the effects of belinostat on UGTs activities were investigated using the non-selective probe substrate 4-methylumbelliferone (4-MU) and trifluoperazine (TFP) by UPLC-MS/MS. Belinostat exhibited a wide range of inhibition against UGTs activities, particularly a potent non-competitive inhibition against UGT1A3, and weak inhibition against UGT1A1, 1A7, 1A8, 2B4 and 2B7. Further, in vitro-in vivo extrapolation (IVIVE) approaches were used to predict the risk of DDI arising from inhibition of UGTs. Our data indicate that the intravenous infusion of belinostat at clinical available dose can contribute a significant increase to the AUC of co-administrated drugs primarily cleared by UGT1A3 or UGT1A1, which will result in potential DDIs. In contrast, oral administrated belinostat is unlikely to cause significant DDIs through inhibition of glucuronidation.
Collapse
Affiliation(s)
- Xiaoyu Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Zhe Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Zhen Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Xiuyuan Chen
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Hang Yin
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Lili Jiang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Jun Cao
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, 116044, China.
| | - Yong Liu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China.
| |
Collapse
|
20
|
Kee PS, Chin PKL, Kennedy MA, Maggo SDS. Pharmacogenetics of Statin-Induced Myotoxicity. Front Genet 2020; 11:575678. [PMID: 33193687 PMCID: PMC7596698 DOI: 10.3389/fgene.2020.575678] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
Statins, a class of lipid-lowering medications, have been a keystone treatment in cardiovascular health. However, adverse effects associated with statin use impact patient adherence, leading to statin discontinuation. Statin-induced myotoxicity (SIM) is one of the most common adverse effects, prevalent across all ages, genders, and ethnicities. Although certain demographic cohorts carry a higher risk, the impaired quality of life attributed to SIM is significant. The pathogenesis of SIM remains to be fully elucidated, but it is clear that SIM is multifactorial. These factors include drug-drug interactions, renal or liver dysfunction, and genetics. Genetic-inferred risk for SIM was first reported by a landmark genome-wide association study, which reported a higher risk of SIM with a polymorphism in the SLCO1B1 gene. Since then, research associating genetic factors with SIM has expanded widely and has become one of the foci in the field of pharmacogenomics. This review provides an update on the genetic risk factors associated with SIM.
Collapse
Affiliation(s)
- Ping Siu Kee
- Gene Structure and Function Laboratory, Carney Centre for Pharmacogenomics, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | | | - Martin A. Kennedy
- Gene Structure and Function Laboratory, Carney Centre for Pharmacogenomics, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Simran D. S. Maggo
- Gene Structure and Function Laboratory, Carney Centre for Pharmacogenomics, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| |
Collapse
|
21
|
Damiani I, Corsini A, Bellosta S. Potential statin drug interactions in elderly patients: a review. Expert Opin Drug Metab Toxicol 2020; 16:1133-1145. [DOI: 10.1080/17425255.2020.1822324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Isabella Damiani
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, Milan, Italy
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, Milan, Italy
- IRCCS MultiMedica, Milan, Italy
| | - Stefano Bellosta
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, Milan, Italy
| |
Collapse
|
22
|
Frambach SJCM, de Haas R, Smeitink JAM, Rongen GA, Russel FGM, Schirris TJJ. Brothers in Arms: ABCA1- and ABCG1-Mediated Cholesterol Efflux as Promising Targets in Cardiovascular Disease Treatment. Pharmacol Rev 2020; 72:152-190. [PMID: 31831519 DOI: 10.1124/pr.119.017897] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a leading cause of cardiovascular disease worldwide, and hypercholesterolemia is a major risk factor. Preventive treatments mainly focus on the effective reduction of low-density lipoprotein cholesterol, but their therapeutic value is limited by the inability to completely normalize atherosclerotic risk, probably due to the disease complexity and multifactorial pathogenesis. Consequently, high-density lipoprotein cholesterol gained much interest, as it appeared to be cardioprotective due to its major role in reverse cholesterol transport (RCT). RCT facilitates removal of cholesterol from peripheral tissues, including atherosclerotic plaques, and its subsequent hepatic clearance into bile. Therefore, RCT is expected to limit plaque formation and progression. Cellular cholesterol efflux is initiated and propagated by the ATP-binding cassette (ABC) transporters ABCA1 and ABCG1. Their expression and function are expected to be rate-limiting for cholesterol efflux, which makes them interesting targets to stimulate RCT and lower atherosclerotic risk. This systematic review discusses the molecular mechanisms relevant for RCT and ABCA1 and ABCG1 function, followed by a critical overview of potential pharmacological strategies with small molecules to enhance cellular cholesterol efflux and RCT. These strategies include regulation of ABCA1 and ABCG1 expression, degradation, and mRNA stability. Various small molecules have been demonstrated to increase RCT, but the underlying mechanisms are often not completely understood and are rather unspecific, potentially causing adverse effects. Better understanding of these mechanisms could enable the development of safer drugs to increase RCT and provide more insight into its relation with atherosclerotic risk. SIGNIFICANCE STATEMENT: Hypercholesterolemia is an important risk factor of atherosclerosis, which is a leading pathological mechanism underlying cardiovascular disease. Cholesterol is removed from atherosclerotic plaques and subsequently cleared by the liver into bile. This transport is mediated by high-density lipoprotein particles, to which cholesterol is transferred via ATP-binding cassette transporters ABCA1 and ABCG1. Small-molecule pharmacological strategies stimulating these transporters may provide promising options for cardiovascular disease treatment.
Collapse
Affiliation(s)
- Sanne J C M Frambach
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ria de Haas
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan A M Smeitink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerard A Rongen
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tom J J Schirris
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
23
|
Zamek-Gliszczynski MJ, Patel M, Yang X, Lutz JD, Chu X, Brouwer KLR, Lai Y, Lee CA, Neuhoff S, Paine MF, Sugiyama Y, Taskar KS, Galetin A. Intestinal P-gp and Putative Hepatic OATP1B Induction: International Transporter Consortium Perspective on Drug Development Implications. Clin Pharmacol Ther 2020; 109:55-64. [PMID: 32460379 DOI: 10.1002/cpt.1916] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022]
Abstract
There is an increasing interest in transporter induction (i.e., decreased systemic drug exposure due to increased efflux-limited absorption or transporter-mediated clearance) as a mechanism of drug-drug interactions (DDIs), although evidence of clinical relevance is still evolving. Intestinal P-glycoprotein (P-gp) and hepatic organic anion transporting polypeptides 1B (OATP1B) can be important determinants of drug absorption and disposition, as well as targets for DDIs. Current data indicate that intestinal P-gp protein levels can be induced up to threefold to fourfold in humans primarily with pregnane X receptor (PXR) activators, and that this induction can decrease the systemic exposure of drugs with P-gp efflux-limited absorption (e.g., ≤ 67% decrease in the exposure of total dabigatran following rifampin multiple oral dosing). Evaluation of the clinical relevance of P-gp induction as a DDI mechanism must consider the induction potential of the perpetrator drug for P-gp and attenuation of exposure of the victim drug in the context of its therapeutic window. Practical drug development recommendations are provided herein. Reports are contradictory on OATP1B induction by PXR activators in human hepatocytes and liver biopsies. Some clinical investigations demonstrated that rifampin pretreatment decreased exposure of OATP1B substrates, while other studies found no differences, and the potential involvement of other mechanisms in these observed DDIs cannot be definitively ruled out. Thus, further studies are needed to understand hepatic OATP1B induction and potential involvement of other mechanisms contributing to reduced exposure of OATP1B substrates. This review critically summarizes the state-of-the-art on intestinal P-gp and hepatic OATP1B induction, and highlights implications for drug development.
Collapse
Affiliation(s)
| | - Mitesh Patel
- Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts, USA
| | - Xinning Yang
- Office of Clinical Pharmacology, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Justin D Lutz
- Department of Clinical Pharmacology, Gilead Sciences, Inc, Foster City, California, USA
| | - Xiaoyan Chu
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & CO., Inc, Kenilworth, New Jersey, USA
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yurong Lai
- Drug Metabolism, Gilead Sciences, Inc., Foster City, California, USA
| | - Caroline A Lee
- Nonclinical Development and Clinical Pharmacology, Arena Pharmaceuticals, San Diego, California, USA
| | | | - Mary F Paine
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Baton Zone, Program, RIKEN Cluster for Science, RIKEN, Yokohama, Kanagawa, Japan
| | - Kunal S Taskar
- Drug Meabolism and Pharmacokinetics, GlaxoSmithKline, Ware, UK
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
24
|
Turner RM, Fontana V, Zhang JE, Carr D, Yin P, FitzGerald R, Morris AP, Pirmohamed M. A Genome-wide Association Study of Circulating Levels of Atorvastatin and Its Major Metabolites. Clin Pharmacol Ther 2020; 108:287-297. [PMID: 32128760 DOI: 10.1002/cpt.1820] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/28/2020] [Indexed: 01/03/2023]
Abstract
Atorvastatin (ATV) is frequently prescribed and generally well tolerated, but can lead to myotoxicity, especially at higher doses. A genome-wide association study of circulating levels of ATV, 2-hydroxy (2-OH) ATV, ATV lactone (ATV L), and 2-OH ATV L was performed in 590 patients who had been hospitalized with a non-ST elevation acute coronary syndrome 1 month earlier and were on high-dose ATV (80 mg or 40 mg daily). The UGT1A locus (lead single nucleotide polymorphism, rs887829) was strongly associated with both increased 2-OH ATV/ATV (P = 7.25 × 10-16 ) and 2-OH ATV L/ATV L (P = 3.95 × 10-15 ) metabolic ratios. Moreover, rs45446698, which tags CYP3A7*1C, was nominally associated with increased 2-OH ATV/ATV (P = 6.18 × 10-7 ), and SLCO1B1 rs4149056 with increased ATV (P = 2.21 × 10-6 ) and 2-OH ATV (P = 1.09 × 10-6 ) levels. In a subset of these patients whose levels of ATV and metabolites had also been measured at 12 months after hospitalization (n = 149), all of these associations remained, except for 2-OH ATV and rs4149056 (P = 0.057). Clinically, rs4149056 was associated with increased muscular symptoms (odds ratio (OR) 3.97; 95% confidence interval (CI) 1.29-12.27; P = 0.016) and ATV intolerance (OR 1.55; 95% CI 1.09-2.19; P = 0.014) in patients (n = 870) primarily discharged on high-dose ATV. In summary, both novel and recognized genetic associations have been identified with circulating levels of ATV and its major metabolites. Further study is warranted to determine the clinical utility of genotyping rs4149056 in patients on high-dose ATV.
Collapse
Affiliation(s)
- Richard M Turner
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Vanessa Fontana
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Jieying E Zhang
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Daniel Carr
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Peng Yin
- Department of Biostatistics, University of Liverpool, Liverpool, UK.,Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Richard FitzGerald
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Andrew P Morris
- Department of Biostatistics, University of Liverpool, Liverpool, UK.,Division of Musculoskeletal and Dermatological Sciences, University of Manchester, Manchester, UK
| | - Munir Pirmohamed
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| |
Collapse
|
25
|
Wagner JB, Abdel-Rahman S, Gaedigk A, Gaedigk R, Raghuveer G, Staggs VS, Van Haandel L, Leeder JS. Impact of SLCO1B1 Genetic Variation on Rosuvastatin Systemic Exposure in Pediatric Hypercholesterolemia. Clin Transl Sci 2020; 13:628-637. [PMID: 31981411 PMCID: PMC7214659 DOI: 10.1111/cts.12749] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/23/2019] [Indexed: 12/25/2022] Open
Abstract
This study investigated the impact of SLCO1B1 genotype on rosuvastatin systemic exposure in hypercholesterolemic children and adolescents. Participants (8–21 years) with at least one allelic variant of SLCO1B1 c.521T>C (521TC, n = 13; 521CC, n = 2) and wild type controls (521TT, n = 13) completed a single oral dose pharmacokinetic study. The variability contributed by SLCO1B1 c.521 sequence variation to rosuvastatin (RVA) systemic exposure among our pediatric cohort was comparable to previous studies in adults. RVA concentration‐time curve from 0–24 hours (AUC0–24) was 1.4‐fold and 2.2‐fold higher in participants with c.521TC and c.521CC genotype compared 521TT participants, respectively. Interindividual variability of RVA exposure within SLCO1B1 genotype groups exceeded the ~ 1.5‐fold to 2‐fold difference in mean RVA exposure observed among SLCO1B1 genotype groups, suggesting that other factors also contribute to interindividual variability in the rosuvastatin dose‐exposure relationship. A multivariate model performed confirmed SLCO1B1 c.521T>C genotype as the primary factor contributing to RVA systemic exposure in this pediatric cohort, accounting for ~ 30% of the variability RVA AUC0–24. However, of the statins investigated to date in the pediatric population, RVA has the lowest magnitude of variability in systemic exposure.
Collapse
Affiliation(s)
- Jonathan B Wagner
- Ward Family Heart Center, Children's Mercy, Kansas City, Missouri, USA.,Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Children's Mercy, Kansas City, Missouri, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Susan Abdel-Rahman
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Children's Mercy, Kansas City, Missouri, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Children's Mercy, Kansas City, Missouri, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Roger Gaedigk
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Children's Mercy, Kansas City, Missouri, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Geetha Raghuveer
- Ward Family Heart Center, Children's Mercy, Kansas City, Missouri, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Vincent S Staggs
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA.,Health Services & Outcomes Research, Children's Mercy, Kansas City, Missouri, USA
| | - Leon Van Haandel
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Children's Mercy, Kansas City, Missouri, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - J Steven Leeder
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Children's Mercy, Kansas City, Missouri, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| |
Collapse
|
26
|
Turner RM, Fontana V, FitzGerald R, Morris AP, Pirmohamed M. Investigating the clinical factors and comedications associated with circulating levels of atorvastatin and its major metabolites in secondary prevention. Br J Clin Pharmacol 2020; 86:62-74. [PMID: 31656041 PMCID: PMC6983514 DOI: 10.1111/bcp.14133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/28/2022] Open
Abstract
Aims The lipid-lowering drug, atorvastatin (ATV), is 1 of the most commonly prescribed medications worldwide. The aim of this study was to comprehensively investigate and characterise the clinical factors and comedications associated with circulating levels of ATV and its metabolites in secondary prevention clinical practice. Methods The plasma concentrations of ATV, 2-hydroxy (2-OH) ATV, ATV lactone (ATV L) and 2-OH ATV L were determined in patients 1 month after hospitalisation for a non-ST elevation acute coronary syndrome. Factors were identified using all subsets multivariable regression and model averaging with the Bayesian information criterion. Exploratory genotype-stratified analyses were conducted using ABCG2 rs2231142 (Q141K) and CYP2C19 metaboliser status to further investigate novel associations. Results A total of 571 patients were included; 534 and 37 were taking ATV 80 mg and 40 mg daily, respectively. Clinical factors associated with ATV and/or its metabolite levels included age, sex, body mass index and CYP3A inhibiting comedications. Smoking was newly associated with increased ATV lactonisation and reduced hydroxylation. Proton pump inhibitors (PPIs) and loop diuretics were newly associated with modestly increased levels of ATV (14% and 38%, respectively) and its metabolites. An interaction between PPIs and CYP2C19 metaboliser status on exposure to specific ATV analytes (e.g. interaction P = .0071 for 2-OH ATV L) was observed. Overall model R2 values were 0.14-0.24.ConclusionMultiple factors were associated with circulating ATV and metabolite levels, including novel associations with smoking and drug-drug(-gene) interactions involving PPIs and loop diuretics. Further investigations are needed to identify additional factors that influence ATV exposure.
Collapse
Affiliation(s)
- Richard M Turner
- Department of Molecular & Clinical Pharmacology, University of Liverpool, United Kingdom
| | - Vanessa Fontana
- Department of Molecular & Clinical Pharmacology, University of Liverpool, United Kingdom
| | - Richard FitzGerald
- Department of Molecular & Clinical Pharmacology, University of Liverpool, United Kingdom
| | - Andrew P Morris
- Department of Biostatistics, University of Liverpool, United Kingdom
| | - Munir Pirmohamed
- Department of Molecular & Clinical Pharmacology, University of Liverpool, United Kingdom
| |
Collapse
|
27
|
Turner RM, Pirmohamed M. Statin-Related Myotoxicity: A Comprehensive Review of Pharmacokinetic, Pharmacogenomic and Muscle Components. J Clin Med 2019; 9:jcm9010022. [PMID: 31861911 PMCID: PMC7019839 DOI: 10.3390/jcm9010022] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023] Open
Abstract
Statins are a cornerstone in the pharmacological prevention of cardiovascular disease. Although generally well tolerated, a small subset of patients experience statin-related myotoxicity (SRM). SRM is heterogeneous in presentation; phenotypes include the relatively more common myalgias, infrequent myopathies, and rare rhabdomyolysis. Very rarely, statins induce an anti-HMGCR positive immune-mediated necrotizing myopathy. Diagnosing SRM in clinical practice can be challenging, particularly for mild SRM that is frequently due to alternative aetiologies and the nocebo effect. Nevertheless, SRM can directly harm patients and lead to statin discontinuation/non-adherence, which increases the risk of cardiovascular events. Several factors increase systemic statin exposure and predispose to SRM, including advanced age, concomitant medications, and the nonsynonymous variant, rs4149056, in SLCO1B1, which encodes the hepatic sinusoidal transporter, OATP1B1. Increased exposure of skeletal muscle to statins increases the risk of mitochondrial dysfunction, calcium signalling disruption, reduced prenylation, atrogin-1 mediated atrophy and pro-apoptotic signalling. Rare variants in several metabolic myopathy genes including CACNA1S, CPT2, LPIN1, PYGM and RYR1 increase myopathy/rhabdomyolysis risk following statin exposure. The immune system is implicated in both conventional statin intolerance/myotoxicity via LILRB5 rs12975366, and a strong association exists between HLA-DRB1*11:01 and anti-HMGCR positive myopathy. Epigenetic factors (miR-499-5p, miR-145) have also been implicated in statin myotoxicity. SRM remains a challenge to the safe and effective use of statins, although consensus strategies to manage SRM have been proposed. Further research is required, including stringent phenotyping of mild SRM through N-of-1 trials coupled to systems pharmacology omics- approaches to identify novel risk factors and provide mechanistic insight.
Collapse
|
28
|
Iwaki Y, Lee W, Sugiyama Y. Comparative and quantitative assessment on statin efficacy and safety: insights into inter-statin and inter-individual variability via dose- and exposure-response relationships. Expert Opin Drug Metab Toxicol 2019; 15:897-911. [PMID: 31648563 DOI: 10.1080/17425255.2019.1681399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Introduction: Statins are prescribed widely for cholesterol-lowering therapy, but it is known that their efficacy and safety profiles vary, despite the shared pharmacophore and pharmacological target. The immense body of related clinical and preclinical data offers a unique opportunity to explore the possible factors underlying inter-statin and inter-individual variabilities.Area covered: Clinical and preclinical data from various statins were compiled with regard to the efficacy (cholesterol-lowering effect) and safety (muscle toxicity). Based on the compiled data, dose- and exposure-response relationships were explored to obtain mechanistic and quantitative insights into the variations in the efficacy and safety profiles of statins.Expert opinion: Our analyses indicated that the inter-statin variability in the cholesterol-lowering effect may be mainly attributable to variations in potency of inhibition of the pharmacological target, rather than variations in drug exposure at the site of drug action. However, the drug exposure at the sites of drug action (i.e., the liver for efficacy and the muscle for safety) may contribute to the differences in the efficacy and safety observed in individual patients.
Collapse
Affiliation(s)
- Yuki Iwaki
- Clinical Pharmacology, Janssen Pharmaceutical K.K., Tokyo, Japan
| | - Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, RIKEN, Yokohama, Kanagawa, Japan
| |
Collapse
|
29
|
Prediction of pharmacokinetic drug-drug interactions causing atorvastatin-induced rhabdomyolysis using physiologically based pharmacokinetic modelling. Biomed Pharmacother 2019; 119:109416. [PMID: 31518878 DOI: 10.1016/j.biopha.2019.109416] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022] Open
Abstract
Atorvastatin and its lactone form metabolite are reported to be associated with statin-induced myopathy (SIM) such as myalgia and life-threatening rhabdomyolysis. Though the statin-induced rhabdomyolysis is not common during statin therapy, its incidence will significantly increase due to pharmacokinetic drug-drug interactions (DDIs) with inhibitor drugs which inhibit atorvastatin's and its lactone's metabolism and hepatic uptake. Thus, the quantitative analysis of DDIs of atorvastatin and its lactone with cytochrome P450 3A4 (CYP3A4) and organic anion-transporting polypeptide (OATP) inhibitors is of great importance. This study aimed to predict pharmacokinetic DDIs possibly causing atorvastatin-induced rhabdomyolysis using Physiologically Based Pharmacokinetic (PBPK) Modelling. Firstly, we refined the PBPK models of atorvastatin and atorvastatin lactone for predicting the DDIs with CYP3A4 and OATP inhibitors. Thereafter, we predicted the exposure changes of atorvastatin and atorvastatin lactone originating from the case reports of atorvastatin-induced rhabdomyolysis using the refined models. The simulation results show that pharmacokinetic DDIs of atorvastatin and its lactone with fluconazole, palbociclib diltiazem and cyclosporine are significant. Consequently, clinicians should be aware of necessary dose adjustment of atorvastatin being used with these four inhibitor drugs.
Collapse
|
30
|
Emerging Roles of Aryl Hydrocarbon Receptors in the Altered Clearance of Drugs during Chronic Kidney Disease. Toxins (Basel) 2019; 11:toxins11040209. [PMID: 30959953 PMCID: PMC6521271 DOI: 10.3390/toxins11040209] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/12/2019] [Accepted: 04/03/2019] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD) is a major public health problem, since 300,000,000 people in the world display a glomerular filtration rate (GFR) below 60 mL/min/1.73m². Patients with CKD have high rates of complications and comorbidities. Thus, they require the prescription of numerous medications, making the management of patients very complex. The prescription of numerous drugs associated with an altered renal- and non-renal clearance makes dose adjustment challenging in these patients, with frequent drug-related adverse events. However, the mechanisms involved in this abnormal drug clearance during CKD are not still well identified. We propose here that the transcription factor, aryl hydrocarbon receptor, which is the cellular receptor for indolic uremic toxins, could worsen the metabolism and the excretion of drugs in CKD patients.
Collapse
|
31
|
Turner RM, Fontana V, Bayliss M, Whalley S, Santoyo Castelazo A, Pirmohamed M. Development, validation and application of a novel HPLC-MS/MS method for the quantification of atorvastatin, bisoprolol and clopidogrel in a large cardiovascular patient cohort. J Pharm Biomed Anal 2018; 159:272-281. [PMID: 30005242 PMCID: PMC6109775 DOI: 10.1016/j.jpba.2018.06.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/29/2018] [Indexed: 12/23/2022]
Abstract
Cardiovascular disease is a leading cause of morbidity, mortality, and healthcare expenditure worldwide. Importantly, there is interindividual variation in response to cardiovascular medications, leading to variable efficacy and adverse events. Therefore a rapid, selective, sensitive and reproducible multi-analyte HPLC-MS/MS assay for the quantification in human plasma of atorvastatin, its major metabolites 2-hydroxyatorvastatin, atorvastatin lactone and 2-hydroxyatorvastatin lactone, plus bisoprolol and clopidogrel-carboxylic acid has been developed, fully validated, and applied to a large patient study. Fifty microliter plasma samples were extracted with a simple protein precipitation procedure involving acetonitrile with acetic acid (0.1%, v/v). Chromatographic separation was via a 2.7 μm Halo C18 (50 × 2.1 mm ID, 90 Å) column and gradient elution at a flow rate of 500 μL/min consisting of a mobile phase of water (A) and acetonitrile (B), each containing 0.1% formic acid (v/v), over a 6.0 min run time. The six analytes and their corresponding six deuterated internal standards underwent positive ion electrospray ionisation and were detected with multiple reaction monitoring. The developed method was fully validated with acceptable selectivity, carryover, dilution integrity, and within-run and between-run accuracy and precision. Mean extraction recovery for the analytes was 92.7-108.5%, and internal standard-normalised matrix effects had acceptable precision (coefficients of variation 2.2-12.3%). Moreover, all analytes were stable under the tested conditions. Atorvastatin lactone to acid interconversion was assessed and recommendations for its minimisation are made. The validated assay was successfully applied to analyse 1279 samples from 1024 patients recruited to a cardiovascular secondary prevention prospective study.
Collapse
Affiliation(s)
- Richard Myles Turner
- The Wolfson Centre for Personalised Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GL, UK.
| | - Vanessa Fontana
- The Wolfson Centre for Personalised Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GL, UK.
| | - Mark Bayliss
- Department of Microbiology, Southmead Hospital, Westbury-on-Trym, Bristol, BS10 5NB, UK.
| | - Sarah Whalley
- Centre for Drug Safety Science, University of Liverpool, Liverpool, L69 3GE, UK.
| | | | - Munir Pirmohamed
- The Wolfson Centre for Personalised Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GL, UK; Centre for Drug Safety Science, University of Liverpool, Liverpool, L69 3GE, UK.
| |
Collapse
|
32
|
Vrkić Kirhmajer M, Macolić Šarinić V, Šimičević L, Ladić I, Putarek K, Banfić L, Božina N. Rosuvastatin-Induced Rhabdomyolysis - Possible Role of Ticagrelor and Patients' Pharmacogenetic Profile. Basic Clin Pharmacol Toxicol 2018; 123:509-518. [PMID: 29734517 DOI: 10.1111/bcpt.13035] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/23/2018] [Indexed: 01/24/2023]
Abstract
Up to the beginning of 2018, a total of eight cases describing rare but clinically important drug interactions between rosuvastatin and ticagrelor which resulted in rhabdomyolysis have been noted in the Global World Health Organization (WHO) adverse drug reaction (ADR) database (VigiBase) as well as in available literature. There are several possible factors which could contribute to the onset of rhabdomyolysis: old age, initially excessive rosuvastatin dose, drug-drug interactions (DDI) on metabolic enzymes (CYPs and UGTs) and drug transporter levels (ABCB1, ABCG2, OATP1B1) and pharmacogenetic predisposition. We reviewed all available cases plus the case of an 87-year-old female Croatian/Caucasian patient who developed rhabdomyolysis following concomitant treatment with rosuvastatin and ticagrelor. The results of the pharmacogenetic analysis indicated that the patient was a carrier of inactivating alleles CYP2C9*1/*3, CYP3A4*1/*22, CYP3A5*3/*3, CYP2D6*1/*4, UGT1A1*28/*28, UGT2B7 -161C/T, ABCB1 3435C/T and ABCB1 1237C/T which could have added to the interactions not only between ticagrelor and rosuvastatin but also other concomitantly prescribed medicines, such as amiodarone and proton pump inhibitors. In this case report, the possible multifactorial causes for rhabdomyolysis following concomitant use of rosuvastatin and ticagrelor such as old age, polypharmacy, renal impairment, along with pharmacogenetics will be discussed.
Collapse
Affiliation(s)
- Majda Vrkić Kirhmajer
- Department of Cardiovascular Diseases, University of Zagreb School of Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | | | - Livija Šimičević
- Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Iva Ladić
- Department of Internal Medicine, Bjelovar General Hospital, Bjelovar, Croatia
| | - Krešimir Putarek
- Department of Cardiovascular Diseases, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Ljiljana Banfić
- Department of Cardiovascular Diseases, University of Zagreb School of Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Nada Božina
- Department of Pharmacology, University of Zagreb School of Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| |
Collapse
|
33
|
Wiggins BS, Lamprecht DG, Page RL, Saseen JJ. Recommendations for Managing Drug-Drug Interactions with Statins and HIV Medications. Am J Cardiovasc Drugs 2017; 17:375-389. [PMID: 28364370 DOI: 10.1007/s40256-017-0222-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The discovery of antiretroviral therapy (ART) for the treatment of human immunodeficiency virus (HIV) has enabled individuals to live longer. As a result, HIV is now often considered a chronic condition. However, as a result of the increase in longevity or the HIV treatment modalities themselves, individuals with HIV are at high risk for the development of atherosclerotic cardiovascular disease. Therefore, these patients should be optimized with pharmacologic therapy to lower their cardiovascular risk through the addition of statin therapy to their regimen. Unfortunately, many medications utilized to treat HIV interact with this class of agents, making prescribing of statin therapy in these patients challenging. While several classes of ARTs do not pose an increased risk of drug-drug interactions with statins, HIV treatment often requires several combinations of medications, enhancing the complexity and drug-drug interaction risk. Clinicians should be aware of interactions with statins and ART and carefully review the degree and clinical significance of each particular medication. With this understanding, the appropriate statin as well as statin dose can be selected in order to optimize the treatment of this patient population, while minimizing the potential risk of adverse effects.
Collapse
Affiliation(s)
- Barbara S Wiggins
- Department of Pharmacy Services, Medical University of South Carolina, Charleston, SC, USA.
- South Carolina College of Pharmacy, 25 Courtenay Drive, MSC 584, Charleston, SC, 29425, USA.
| | - Donald G Lamprecht
- Kaiser Permanente of Colorado, Denver, CO, USA
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Robert L Page
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joseph J Saseen
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
34
|
Comparison of the Predictability of Human Hepatic Clearance for Organic Anion Transporting Polypeptide Substrate Drugs Between Different In Vitro–In Vivo Extrapolation Approaches. J Pharm Sci 2017; 106:2678-2687. [DOI: 10.1016/j.xphs.2017.02.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 11/18/2022]
|
35
|
Yoshikado T, Toshimoto K, Nakada T, Ikejiri K, Kusuhara H, Maeda K, Sugiyama Y. Comparison of Methods for Estimating Unbound Intracellular-to-Medium Concentration Ratios in Rat and Human Hepatocytes Using Statins. Drug Metab Dispos 2017; 45:779-789. [DOI: 10.1124/dmd.116.074823] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
36
|
Wu BJ, Wu SYS, Chen CH, Hsiao YF, Huang CS, Liu WS. Effect of Genetic Polymorphisms in Detoxification Proteins on Treatment Outcome of Atorvastatin. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2017.198.204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
Fujiwara R, Yokoi T, Nakajima M. Structure and Protein-Protein Interactions of Human UDP-Glucuronosyltransferases. Front Pharmacol 2016; 7:388. [PMID: 27822186 PMCID: PMC5075577 DOI: 10.3389/fphar.2016.00388] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/05/2016] [Indexed: 12/11/2022] Open
Abstract
Mammalian UDP-glucuronosyltransferases (UGTs) catalyze the transfer of glucuronic acid from UDP-glucuronic acid to various xenobiotics and endobiotics. Since UGTs comprise rate-limiting enzymes for metabolism of various compounds, co-administration of UGT-inhibiting drugs and genetic deficiency of UGT genes can cause an increased blood concentration of these compounds. During the last few decades, extensive efforts have been made to advance the understanding of gene structure, function, substrate specificity, and inhibition/induction properties of UGTs. However, molecular mechanisms and physiological importance of the oligomerization and protein–protein interactions of UGTs are still largely unknown. While three-dimensional structures of human UGTs can be useful to reveal the details of oligomerization and protein–protein interactions of UGTs, little is known about the protein structures of human UGTs due to the difficulty in solving crystal structures of membrane-bound proteins. Meanwhile, soluble forms of plant and bacterial UGTs as well as a partial domain of human UGT2B7 have been crystallized and enabled us to predict three-dimensional structures of human UGTs using a homology-modeling technique. The homology-modeled structures of human UGTs do not only provide the detailed information about substrate binding or substrate specificity in human UGTs, but also contribute with unique knowledge on oligomerization and protein–protein interactions of UGTs. Furthermore, various in vitro approaches indicate that UGT-mediated glucuronidation is involved in cell death, apoptosis, and oxidative stress as well. In the present review article, recent understandings of UGT protein structures as well as physiological importance of the oligomerization and protein–protein interactions of human UGTs are discussed.
Collapse
Affiliation(s)
- Ryoichi Fujiwara
- Department of Pharmaceutics, School of Pharmacy, Kitasato University Tokyo, Japan
| | - Tsuyoshi Yokoi
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine Nagoya, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University Kanazawa, Japan
| |
Collapse
|
38
|
Muntean DM, Thompson PD, Catapano AL, Stasiolek M, Fabis J, Muntner P, Serban MC, Banach M. Statin-associated myopathy and the quest for biomarkers: can we effectively predict statin-associated muscle symptoms? Drug Discov Today 2016; 22:85-96. [PMID: 27634340 DOI: 10.1016/j.drudis.2016.09.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/28/2016] [Accepted: 09/05/2016] [Indexed: 12/21/2022]
Abstract
Over the past three decades, statins have become the cornerstone of prevention and treatment of atherosclerotic cardiovascular and metabolic diseases. Albeit generally well tolerated, these drugs can elicit a variety of muscle-associated symptoms that represent the most important reason for treatment discontinuation. Statin-associated myopathy has been systematically underestimated by randomized controlled trials as compared with the incidence observed in clinical practice and obtained from patient registries. There are several reasons for this discrepancy, among which the lack of reliable diagnostic tests and a validated questionnaire to assess muscle symptoms are recognized as unmet needs. Here, we review the cellular and molecular mechanisms underlying statin-associated myopathy and discuss the experimental and clinical data on various biomarkers to diagnose and predict muscle-related complaints.
Collapse
Affiliation(s)
- Danina M Muntean
- Department of Pathophysiology Functional Sciences, Victor Babeş University of Medicine and Pharmacy of Timisoara, Timisoara, Romania; Center for Translational Research and Systems Medicine, Victor Babeş University of Medicine and Pharmacy of Timisoara, Timisoara, Romania
| | - Paul D Thompson
- Division of Cardiology, Hartford Hospital, Hartford, CT, USA
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, IRCCS Multimedica, Milan, Italy
| | - Mariusz Stasiolek
- Department of Neurology, Polish Mother's Memorial Hospital-Research Institute in Lodz, Lodz, Poland
| | - Jaroslaw Fabis
- Department of Arthroscopy, Minimally Invasive Surgery and Sports Traumatology, Medical University of Lodz, Poland
| | - Paul Muntner
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Maria-Corina Serban
- Department of Pathophysiology Functional Sciences, Victor Babeş University of Medicine and Pharmacy of Timisoara, Timisoara, Romania; Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Poland; Healthy Aging Research Centre (HARC), Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
39
|
Abstract
Lipid-lowering medications, particularly statins, have been a popular target for pharmacogenetic studies. A handful of genes have shown promise for predicting response to therapy from the perspective of lipid lowering, as well as myopathy. A number of genes have been implicated and have biological plausibility based on their involvement with the pharmacokinetics or pharmacodynamics of statins or other lipid-lowering medications. The level of confidence and replication of these findings varies, although several associations are likely true. Novel classes of lipid-lowering therapy have opened up new possibilities in the treatment of severe inherited forms of dyslipidemia, making the identification of such mutations an important pharmacogenetic predictor of failure of standard therapy, with potential response to novel therapy. Advances in next-generation sequencing technology bring the application of pharmacogenetics even closer to routine clinical practice.
Collapse
|
40
|
Liu JE, Ren B, Tang L, Tang QJ, Liu XY, Li X, Bai X, Zhong WP, Meng JX, Lin HM, Wu H, Chen JY, Zhong SL. The independent contribution of miRNAs to the missing heritability in CYP3A4/5 functionality and the metabolism of atorvastatin. Sci Rep 2016; 6:26544. [PMID: 27211076 PMCID: PMC4876377 DOI: 10.1038/srep26544] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 05/03/2016] [Indexed: 12/14/2022] Open
Abstract
To evaluate the independent contribution of miRNAs to the missing heritability in CYP3A4/5 functionality and atorvastatin metabolism, the relationships among three levels of factors, namely (1) clinical characteristics, CYP3A4/5 genotypes, and miRNAs, (2) CYP3A4 and CYP3A5 mRNAs, and (3) CYP3A activity, as well as their individual impacts on atorvastatin metabolism, were assessed in 55 human liver tissues. MiR-27b, miR-206, and CYP3A4 mRNA respectively accounted for 20.0%, 5.8%, and 9.5% of the interindividual variations in CYP3A activity. MiR-142 was an independent contributor to the expressions of CYP3A4 mRNA (partial R(2) = 0.12, P = 0.002) and CYP3A5 mRNA (partial R(2) = 0.09, P = 0.005) but not CYP3A activity or atorvastatin metabolism. CYP3A activity was a unique independent predictor of variability of atorvastatin metabolism, explaining the majority of the variance in reduction of atorvastatin (60.0%) and formation of ortho-hydroxy atorvastatin (78.8%) and para-hydroxy atorvastatin (83.9%). MiR-27b and miR-206 were found to repress CYP3A4 gene expression and CYP3A activity by directly binding to CYP3A4 3'-UTR, while miR-142 was found to indirectly repress CYP3A activity. Our study indicates that miRNAs play significant roles in bridging the gap between epigenetic effects and missing heritability in CYP3A functionality.
Collapse
Affiliation(s)
- Ju-E Liu
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Medical Research Center, Guangdong General Hospital, Guangzhou, Guangdong 510080, China
| | - Bin Ren
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Lan Tang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qian-Jie Tang
- Medical Research Center, Guangdong General Hospital, Guangzhou, Guangdong 510080, China
- Institute of Chinese medical science, Guangdong TCM key Laboratory for metabolism, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiao-Ying Liu
- Medical Research Center, Guangdong General Hospital, Guangzhou, Guangdong 510080, China
| | - Xin Li
- Medical Research Center, Guangdong General Hospital, Guangzhou, Guangdong 510080, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xue Bai
- Medical Research Center, Guangdong General Hospital, Guangzhou, Guangdong 510080, China
- School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Wan-Ping Zhong
- Medical Research Center, Guangdong General Hospital, Guangzhou, Guangdong 510080, China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jin-Xiu Meng
- Medical Research Center, Guangdong General Hospital, Guangzhou, Guangdong 510080, China
| | - Hao-Ming Lin
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Hong Wu
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Ji-Yan Chen
- Medical Research Center, Guangdong General Hospital, Guangzhou, Guangdong 510080, China
- Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Shi-Long Zhong
- Medical Research Center, Guangdong General Hospital, Guangzhou, Guangdong 510080, China
- Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| |
Collapse
|
41
|
Abstract
The final therapeutic effect of a drug candidate, which is directed to a specific molecular target strongly depends on its absorption, distribution, metabolism and excretion (ADME). The disruption of at least one element of ADME may result in serious drug resistance. In this work we described the role of one element of this resistance: phase II metabolism with UDP-glucuronosyltransferases (UGTs). UGT function is the transformation of their substrates into more polar metabolites, which are better substrates for the ABC transporters, MDR1, MRP and BCRP, than the native drug. UGT-mediated drug resistance can be associated with (i) inherent overexpression of the enzyme, named intrinsic drug resistance or (ii) induced expression of the enzyme, named acquired drug resistance observed when enzyme expression is induced by the drug or other factors, as food-derived compounds. Very often this induction occurs via ligand binding receptors including AhR (aryl hydrocarbon receptor) PXR (pregnane X receptor), or other transcription factors. The effect of UGT dependent resistance is strengthened by coordinate action and also a coordinate regulation of the expression of UGTs and ABC transporters. This coupling of UGT and multidrug resistance proteins has been intensively studied, particularly in the case of antitumor treatment, when this resistance is "improved" by differences in UGT expression between tumor and healthy tissue. Multidrug resistance coordinated with glucuronidation has also been described here for drugs used in the management of epilepsy, psychiatric diseases, HIV infections, hypertension and hypercholesterolemia. Proposals to reverse UGT-mediated drug resistance should consider the endogenous functions of UGT.
Collapse
Affiliation(s)
- Zofia Mazerska
- Gdańsk University of Technology, Chemical Faculty, Department of Pharmaceutical Technology and Biochemistry, 80-233 Gdańsk, Poland
| | - Anna Mróz
- Gdańsk University of Technology, Chemical Faculty, Department of Pharmaceutical Technology and Biochemistry, 80-233 Gdańsk, Poland
| | - Monika Pawłowska
- Gdańsk University of Technology, Chemical Faculty, Department of Pharmaceutical Technology and Biochemistry, 80-233 Gdańsk, Poland
| | - Ewa Augustin
- Gdańsk University of Technology, Chemical Faculty, Department of Pharmaceutical Technology and Biochemistry, 80-233 Gdańsk, Poland.
| |
Collapse
|