1
|
Chapeau D, Beekman S, Piet A, Li L, de Ridder C, Stuurman D, Seimbille Y. eSOMA-DM1, a Maytansinoid-Based Theranostic Small-Molecule Drug Conjugate for Neuroendocrine Tumors. Bioconjug Chem 2024. [PMID: 39395152 DOI: 10.1021/acs.bioconjchem.4c00413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Background: The main challenges of conventional chemotherapy lie in its lack of selectivity and specificity, leading to significant side effects. Using a small-molecule drug conjugate (SMDC) ensures specific delivery of a cytotoxic drug to the tumor site by coupling it to a targeting vector. This promising strategy can be applied to neuroendocrine tumors (NETs) by choosing a targeting vector that binds specifically to somatostatin receptor subtype 2 (SSTR2). Additionally, incorporation of a bifunctional chelate into the molecule enables complexation of both diagnostic and therapeutic radionuclides. Thus, it facilitates monitoring of the distribution of the SMDC in the body and allows for the implementation of combination therapy. In our study, we designed eSOMA-DM1, a SMDC combining the SSTR2-targeted octreotate peptide and the cytotoxic agent DM1 via a chelate-bridged linker (N3-Py-DOTAGA). This approach warrants conjugation of the targeting vector and the drug at opposite sites to avoid undesired steric hindrance effects. Methods: Synthesis of the DM1 moiety (4) involved a three-step synthetic route, followed by the conjugation to the cyclic peptide, N3-Py-DOTAGA-d-Phe-cyclo[Cys-Tyr-d-Trp-Lys-Thr-Cys]-Thr-OH, through a copper-free click reaction, resulting in eSOMA-DM1. Subsequent labeling with [111In]InCl3 gave a high radiochemical yield and purity. In vitro assessments of eSOMA-DM1 binding, uptake, and internalization were conducted in SSTR2-transfected U2OS cells. Ex vivo biodistribution and fluorescence imaging were performed in H69-tumor bearing mice. Results: eSOMA-DM1 exhibited an IC50 value for SSTR2 similar to the gold standard DOTA-TATE. The uptake of [111In]In-eSOMA-DM1 in U2OS.SSTR2 cells was 1.2-fold lower than that of [111In]In-DOTA-TATE. Tumor uptake in H69-xenografted mice was higher for [111In]In-eSOMA-DM1 at all-time points compared to [111In]In-DOTA-TATE. Prolonged blood circulation led to increased accumulation of [111In]In-eSOMA-DM1 in highly vascularized tissues, such as the lungs, skin, and heart. Excretion through the kidneys, liver, and spleen was also observed. Conclusion: eSOMA-DM1 is a SMDC developed for NET showing promising characteristics in vitro. However, the in vivo results obtained with [111In]In-eSOMA-DM1 suggest the need for adjustments to optimize its distribution.
Collapse
Affiliation(s)
- Dylan Chapeau
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, the Netherlands
- Erasmus MC Cancer Institute, Rotterdam 3015 GD, the Netherlands
| | - Savanne Beekman
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, the Netherlands
- Erasmus MC Cancer Institute, Rotterdam 3015 GD, the Netherlands
| | - Amber Piet
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, the Netherlands
- Erasmus MC Cancer Institute, Rotterdam 3015 GD, the Netherlands
| | - Le Li
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, the Netherlands
- Erasmus MC Cancer Institute, Rotterdam 3015 GD, the Netherlands
| | - Corrina de Ridder
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, the Netherlands
- Erasmus MC Cancer Institute, Rotterdam 3015 GD, the Netherlands
| | - Debra Stuurman
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, the Netherlands
- Erasmus MC Cancer Institute, Rotterdam 3015 GD, the Netherlands
| | - Yann Seimbille
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, the Netherlands
- Erasmus MC Cancer Institute, Rotterdam 3015 GD, the Netherlands
| |
Collapse
|
2
|
Jäck N, Hemming A, Hartmann L. Synthesis of Dual-Responsive Amphiphilic Glycomacromolecules: Controlled Release of Glycan Ligands via pH and UV Stimuli. Macromol Rapid Commun 2024; 45:e2400439. [PMID: 39037337 DOI: 10.1002/marc.202400439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/25/2024] [Indexed: 07/23/2024]
Abstract
This work presents a versatile strategy for the synthesis of dual stimuli-responsive amphiphilic glycomacromolecules with tailored release properties. Amphiphilic precision glycomacromolecules (APGs) derived from tailor-made building blocks using solid phase polymer synthesis form glycofunctionalized micelles, a versatile class of materials with applications in drug delivery, as antiinfection agents as well as simple cell mimetics. In this work, this concept is extended by integrating cleavable building blocks into APGs now allowing stimuli-responsive release of glycan ligands or destruction of the micelles. This study incorporates a newly designed acid-labile building block, 4-(4-(((((9H-fluoren-9-yl)methoxy)carbonyl)amino)methyl)-1,3-dioxolan-2-yl)benzoic acid (DBA), suitable also for other types of solid phase or amide chemistry, and an established UV-cleavable 2-nitrobenzyl linker (PL). The results demonstrate that both linkers can be cleaved independently and thus allow dual stimuli-responsive release from the APG micelles. By choosing the APG design e.g., placing the cleavable linkers between glycomacromolecular blocks presenting different types of carbohydrates, they can tune APG and micellar stability as well as the interaction and cluster formation with a carbohydrate-recognizing lectin. Such dual-responsive glycofunctionalized micelles have wide potential for use in drug delivery applications or for the development as anti-adhesion agents in antiviral and antibacterial treatments.
Collapse
Affiliation(s)
- Nicholas Jäck
- Institute of Macromolecular Chemistry, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Str. 31, 79104, Freiburg, Germany
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, D-79110, Freiburg, Germany
| | - Arne Hemming
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Laura Hartmann
- Institute of Macromolecular Chemistry, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Str. 31, 79104, Freiburg, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, D-79110, Freiburg, Germany
| |
Collapse
|
3
|
Huynh M, Vinck R, Gibert B, Gasser G. Strategies for the Nuclear Delivery of Metal Complexes to Cancer Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311437. [PMID: 38174785 DOI: 10.1002/adma.202311437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/20/2023] [Indexed: 01/05/2024]
Abstract
The nucleus is an essential organelle for the function of cells. It holds most of the genetic material and plays a crucial role in the regulation of cell growth and proliferation. Since many antitumoral therapies target nucleic acids to induce cell death, tumor-specific nuclear drug delivery could potentiate therapeutic effects and prevent potential off-target side effects on healthy tissue. Due to their great structural variety, good biocompatibility, and unique physico-chemical properties, organometallic complexes and other metal-based compounds have sparked great interest as promising anticancer agents. In this review, strategies for specific nuclear delivery of metal complexes are summarized and discussed to highlight crucial parameters to consider for the design of new metal complexes as anticancer drug candidates. Moreover, the existing opportunities and challenges of tumor-specific, nucleus-targeting metal complexes are emphasized to outline some new perspectives and help in the design of new cancer treatments.
Collapse
Affiliation(s)
- Marie Huynh
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry of Life and Health Sciences, Laboratory for Inorganic Chemistry, Paris, F-75005, France
- Gastroenterology and technologies for Health, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS5286, Université Lyon 1, Lyon, 69008, France
| | - Robin Vinck
- Orano, 125 avenue de Paris, Châtillon, 92320, France
| | - Benjamin Gibert
- Gastroenterology and technologies for Health, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS5286, Université Lyon 1, Lyon, 69008, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry of Life and Health Sciences, Laboratory for Inorganic Chemistry, Paris, F-75005, France
| |
Collapse
|
4
|
Fan M, Huang Y, Zhu X, Zheng J, Du M. Octreotide and Octreotide-derived delivery systems. J Drug Target 2023; 31:569-584. [PMID: 37211679 DOI: 10.1080/1061186x.2023.2216895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/01/2023] [Accepted: 04/29/2023] [Indexed: 05/23/2023]
Abstract
Pharmaceutical peptide Octreotide is a somatostatin analog with targeting and therapeutic abilities. Over the last decades, Octreotide has been developed and approved to treat acromegaly and neuroendocrine tumours, and Octreotide-based radioactive conjugates have been leveraged clinically to detect small neuroendocrine tumour sites. Meanwhile, variety of Octreotide-derived delivery strategies have been proposed and explored for tumour targeted therapeutics or diagnostics in preclinical or clinical settings. In this review, we especially focus on the preclinical development and applications of Octreotide-derived drug delivery systems, diagnostic nanosystems, therapeutic nanosystems and multifunctional nanosystems, we also briefly discuss challenges and prospects of these Octreotide-derived delivery systems.
Collapse
Affiliation(s)
- Mingliang Fan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yue Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xinlin Zhu
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jiayu Zheng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Mingwei Du
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai, China
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| |
Collapse
|
5
|
Vadevoo SMP, Gurung S, Lee HS, Gunassekaran GR, Lee SM, Yoon JW, Lee YK, Lee B. Peptides as multifunctional players in cancer therapy. Exp Mol Med 2023; 55:1099-1109. [PMID: 37258584 PMCID: PMC10318096 DOI: 10.1038/s12276-023-01016-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 06/02/2023] Open
Abstract
Peptides exhibit lower affinity and a shorter half-life in the body than antibodies. Conversely, peptides demonstrate higher efficiency in tissue penetration and cell internalization than antibodies. Regardless of the pros and cons of peptides, they have been used as tumor-homing ligands for delivering carriers (such as nanoparticles, extracellular vesicles, and cells) and cargoes (such as cytotoxic peptides and radioisotopes) to tumors. Additionally, tumor-homing peptides have been conjugated with cargoes such as small-molecule or chemotherapeutic drugs via linkers to synthesize peptide-drug conjugates. In addition, peptides selectively bind to cell surface receptors and proteins, such as immune checkpoints, receptor kinases, and hormone receptors, subsequently blocking their biological activity or serving as hormone analogs. Furthermore, peptides internalized into cells bind to intracellular proteins and interfere with protein-protein interactions. Thus, peptides demonstrate great application potential as multifunctional players in cancer therapy.
Collapse
Affiliation(s)
- Sri Murugan Poongkavithai Vadevoo
- Department of Biochemistry and Cell Biology, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Smriti Gurung
- Department of Biochemistry and Cell Biology, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Hyun-Su Lee
- Department of Physiology, Daegu Catholic University School of Medicine, 33 Duryugongwon-ro 17-gil, Nam-gu, Daegu, 42472, Republic of Korea
| | - Gowri Rangaswamy Gunassekaran
- Department of Biochemistry and Cell Biology, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Seok-Min Lee
- Department of Biochemistry and Cell Biology, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Jae-Won Yoon
- Department of Biochemistry and Cell Biology, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Yun-Ki Lee
- Department of Biochemistry and Cell Biology, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Byungheon Lee
- Department of Biochemistry and Cell Biology, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea.
- Department of Biomedical Science, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea.
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea.
| |
Collapse
|
6
|
Khalily MP, Soydan M. Peptide-based diagnostic and therapeutic agents: Where we are and where we are heading? Chem Biol Drug Des 2023; 101:772-793. [PMID: 36366980 DOI: 10.1111/cbdd.14180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Peptides are increasingly present in all branches of medicine as innovative drugs, imaging agents, theragnostic, and constituent moieties of other sophisticated drugs such as peptide-drug conjugates. Due to new developments in chemical synthesis strategies, computational biology, recombinant technology, and chemical biology, peptide drug development has made a great progress in the last decade. Numerous natural peptides and peptide mimics have been obtained and studied, covering multiple therapeutic areas. Even though peptides have been investigated across the wide therapeutic spectrum, oncology, metabolism, and endocrinology are the most frequent medical indications of them. This review summarizes the current use of and the emerging new opportunities of peptides for diagnosis and treatment of various diseases.
Collapse
Affiliation(s)
- Melek P Khalily
- Department of Basic Science and Health, Cannabis Research Institute, Yozgat Bozok University, Yozgat, Turkey
| | - Medine Soydan
- Department of Chemistry, Faculty of Arts and Science, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
7
|
Sayyadikord Abadi R, Shojaei AF, Tatafei FE, Alizadeh O. Theoretical Study of Octreotide Derivatives as Anti-Cancer Drugs using QSAR, Monte Carlo Method and formation of Complexes. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2022. [DOI: 10.1134/s199079312201002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Alam Khan S, Jawaid Akhtar M. Structural modification and strategies for the enhanced doxorubicin drug delivery. Bioorg Chem 2022; 120:105599. [DOI: 10.1016/j.bioorg.2022.105599] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 12/29/2022]
|
9
|
Abstract
A growing theme in chemistry is the joining of multiple organic molecular building blocks to create functional molecules. Diverse derivatizable structures—here termed “scaffolds” comprised of “hubs”—provide the foundation for systematic covalent organization of a rich variety of building blocks. This review encompasses 30 tri- or tetra-armed molecular hubs (e.g., triazine, lysine, arenes, dyes) that are used directly or in combination to give linear, cyclic, or branched scaffolds. Each scaffold is categorized by graph theory into one of 31 trees to express the molecular connectivity and overall architecture. Rational chemistry with exacting numbers of derivatizable sites is emphasized. The incorporation of water-solubilization motifs, robust or self-immolative linkers, enzymatically cleavable groups and functional appendages affords immense (and often late-stage) diversification of the scaffolds. Altogether, 107 target molecules are reviewed along with 19 syntheses to illustrate the distinctive chemistries for creating and derivatizing scaffolds. The review covers the history of the field up through 2020, briefly touching on statistically derivatized carriers employed in immunology as counterpoints to the rationally assembled and derivatized scaffolds here, although most citations are from the past two decades. The scaffolds are used widely in fields ranging from pure chemistry to artificial photosynthesis and biomedical sciences.
Collapse
|
10
|
Xue Y, Bai H, Peng B, Fang B, Baell J, Li L, Huang W, Voelcker NH. Stimulus-cleavable chemistry in the field of controlled drug delivery. Chem Soc Rev 2021; 50:4872-4931. [DOI: 10.1039/d0cs01061h] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review comprehensively summarises stimulus-cleavable linkers from various research areas and their cleavage mechanisms, thus provides an insightful guideline to extend their potential applications to controlled drug release from nanomaterials.
Collapse
Affiliation(s)
- Yufei Xue
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| | - Bin Fang
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| | - Jonathan Baell
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton
- Victoria 3168
- Australia
| | - Lin Li
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| | - Nicolas Hans Voelcker
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| |
Collapse
|
11
|
Chen L, Chen G, Yang Z, Wang H, Liu N, Liu Y, Fang K, Song Y, Guan X. Enhanced cancer treatment by an acid-sensitive cytotoxic peptide-doxorubicin conjugate. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Shelar SB, Gawali SL, Barick KC, Kunwar A, Mohan A, Priyadarsini IK, Hassan PA. Electrostatically bound lanreotide peptide - gold nanoparticle conjugates for enhanced uptake in SSTR2-positive cancer cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111272. [PMID: 32919636 DOI: 10.1016/j.msec.2020.111272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/30/2020] [Accepted: 07/04/2020] [Indexed: 12/12/2022]
Abstract
Lanreotide peptide (LP) has high affinity to somatostatin receptors like SSTR2 and is commonly used in the treatment of neuro-endocrine tumors. The main objective of this study is to target gold nanoparticles (AuNPs) towards SSTR2-positive cancer cells using lanreotide peptide (LP) as the targeting agent for enhanced tumor uptake and antitumor activity. pH mediated changes in the surface potential of LP and AuNP is used to prepare electrostatically bound AuNP-LP complexes. AuNP-LP complex formation was demonstrated by UV-Visible spectroscopy, surface potential, dynamic light scattering (DLS), small angle X-ray scattering and HR-TEM. Confocal microscopy and flow cytometric studies show that AuNP-LP complex has higher cellular uptake in SSTR2 expressed cancer cells (MCF-7 and AR42J) than in CHO cells. The enhanced cellular uptake of LP coated AuNPs lead to ~1.5 to 2-fold GSH depletion and enhanced ROS generation in MCF-7 cells. The preferential cytotoxicity of the AuNP-LP complex towards MCF-7 and AR42J cells, as revealed by MTT assay, is consistent with the increased cellular uptake. Our studies demonstrate that LP coated AuNP can be used as an effective platform to selectively target SSTR2 positive cancer cells for combination therapy approaches involving gold nanoparticles.
Collapse
Affiliation(s)
- Sandeep B Shelar
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Santosh L Gawali
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Kanhu C Barick
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Amit Kunwar
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Arivozhi Mohan
- Sun Pharmaceutical Industries Ltd, Vadodara 390 020, India
| | | | - Puthusserickal A Hassan
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
13
|
AlMalki MH, Ahmad MM, Brema I, AlDahmani KM, Pervez N, Al-Dandan S, AlObaid A, Beshyah SA. Contemporary Management of Clinically Non-functioning Pituitary Adenomas: A Clinical Review. CLINICAL MEDICINE INSIGHTS-ENDOCRINOLOGY AND DIABETES 2020; 13:1179551420932921. [PMID: 32636692 PMCID: PMC7318824 DOI: 10.1177/1179551420932921] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 12/25/2022]
Abstract
Non-functioning pituitary adenomas (NFPAs) are benign pituitary tumours that constitute about one-third of all pituitary adenomas. They typically present with symptoms of mass effects resulting in hypopituitarism, visual symptoms, or headache. Most NFPAs are macroadenomas (>1 cm in diameter) at diagnosis that can occasionally grow quite large and invade the cavernous sinus causing acute nerve compression and some patients may develop acute haemorrhage due to pituitary apoplexy. The progression from benign to malignant pituitary tumours is not fully understood; however, genetic and epigenetic abnormalities may be involved. Non-functioning pituitary carcinoma is extremely rare accounting for only 0.1% to 0.5 % of all pituitary tumours and presents with cerebrospinal, meningeal, or distant metastasis along with the absence of features of hormonal hypersecretion. Pituitary surgery through trans-sphenoidal approach has been the treatment of choice for symptomatic NFPAs; however, total resection of large macroadenomas is not always possible. Recurrence of tumours is frequent and occurs in 51.5% during 10 years of follow-up and negatively affects the overall prognosis. Adjuvant radiotherapy can decrease and prevent tumour growth but at the cost of significant side effects. The presence of somatostatin receptor types 2 and 3 (SSTR3 and SSTR2) and D2-specific dopaminergic receptors (D2R) within NFPAs has opened a new perspective of medical treatment for such tumours. The effect of dopamine agonist from pooled results on patients with NFPAs has emerged as a very promising treatment modality as it has resulted in reduction of tumour size in 30% of patients and stabilization of the disease in about 58%. Despite the lack of long-term studies on the mortality, the available limited evidence indicates that patients with NFPA have higher standardized mortality ratios (SMR) than the general population, with women particularly having higher SMR than men. Older age at diagnosis and higher doses of glucocorticoid replacement therapy are the only known predictors for increased mortality.
Collapse
Affiliation(s)
- Mussa H AlMalki
- Obesity, Endocrine and Metabolism Centre, King Fahad Medical City, Riyadh, Saudi Arabia.,Faculty of Medicine, King Saud Bin Abdulaziz University of Health Sciences, Riyadh, Saudi Arabia
| | - Maswood M Ahmad
- Obesity, Endocrine and Metabolism Centre, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Imad Brema
- Obesity, Endocrine and Metabolism Centre, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Khaled M AlDahmani
- Department of Endocrinology, Tawam Hospital in Affiliation with Johns Hopkins Medicine, Al Ain, United Arab Emirates.,College of Medicine and Health Sciences (CMHS), UAE University, Al Ain, United Arab Emirates
| | - Nadeem Pervez
- Department of Radiation Oncology, Tawam Hospital in affiliation with Johns Hopkins Medicine, Al Ain, United Arab Emirates
| | - Sadeq Al-Dandan
- Department of Histopathology, Maternity and Children Hospital, Al-Hasa, Saudi Arabia
| | - Abdullah AlObaid
- Department of Neurosurgery, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Salem A Beshyah
- Department of Medicine, Dubai Medical College, Dubai, United Arab Emirates.,Department of Endocrinology, Mediclinic Airport, Abu Dhabi, United Arab Emirates
| |
Collapse
|
14
|
Abdellatif AAH, Ibrahim MA, Amin MA, Maswadeh H, Alwehaibi MN, Al-Harbi SN, Alharbi ZA, Mohammed HA, Mehany ABM, Saleem I. Cetuximab Conjugated with Octreotide and Entrapped Calcium Alginate-beads for Targeting Somatostatin Receptors. Sci Rep 2020; 10:4736. [PMID: 32170176 PMCID: PMC7069942 DOI: 10.1038/s41598-020-61605-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/29/2020] [Indexed: 12/25/2022] Open
Abstract
There is a need to formulate oral cetuximab (CTX) for targeting colorectal cancer, which is reported to express somatostatin receptors (SSTRs). Therefore, coating CTX with a somatostatin analogue such as octreotide (OCT) is beneficial. Alginate was used to coat CTX to facilitate delivery to the gastrointestinal tract (GIT). This study aimed to deliver CTX conjugated with OCT in the form of microparticles as a GIT-targeted SSTR therapy. Both CTX and OCT were conjugated using a solvent evaporation method and the conjugated CTX-OCT was then loaded onto Ca-alginate-beads (CTX-OCT-Alg), which were characterized for drug interactions using differential scanning calorimetry (DSC), and Fourier transform infrared spectra (FTIR). Moreover, the morphology of formulated beads was examined using a scanning electron microscope (SEM). The drug content and release profile were studied using UV spectroscopy. Finally, in vitro cytotoxicity of all compounds was evaluated. The results showed homogenous conjugated CTX-OCT with a diameter of 0.4 mm. DSC showed a delay in the OCT peak that appeared after 200 °C due to small polymer interaction that shifted the OCT peak. Moreover, FTIR showed no prominent interaction. SEM showed clear empty cavities in the plain Ca-alginate-beads, while CTX-OCT-Alg showed occupied beads without cavities. CTX-OCT-Alg had a negligible release in 0.1 N HCl, while the CTX-OCT was completely released after 300 min in phosphate buffer pH 7.4. All formulations showed good antiproliferative activity compared with free drugs. The formulated CTX-OCT-Alg are a promising platform for targeting colorectal cancer through GIT.
Collapse
Affiliation(s)
- Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, 51452, Kingdom of Saudi Arabia.
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt.
| | - Mohamed A Ibrahim
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed A Amin
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, 51452, Kingdom of Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt
| | - Hamzah Maswadeh
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, 51452, Kingdom of Saudi Arabia
| | - Muhammed N Alwehaibi
- Pharm. D. Student, College of Pharmacy, Qassim University, Buraydah, 51452, Kingdom of Saudi Arabia
| | - Sultan N Al-Harbi
- Pharm. D. Student, College of Pharmacy, Qassim University, Buraydah, 51452, Kingdom of Saudi Arabia
| | - Zayed A Alharbi
- Pharm. D. Student, College of Pharmacy, Qassim University, Buraydah, 51452, Kingdom of Saudi Arabia
| | - Hamdoon A Mohammed
- Department of Medicnal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, 51452, Kingdom of Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ahmed B M Mehany
- Department of Zoology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Imran Saleem
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University James Parsons Building, Liverpool, UK
| |
Collapse
|
15
|
He R, Pan J, Mayer JP, Liu F. The Chemical Methods of Disulfide Bond Formation and Their Applications to Drug Conjugates. CURR ORG CHEM 2020. [DOI: 10.2174/1385272823666191202111723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
The disulfide bond possesses unique chemical and biophysical properties which
distinguish it as one of the key structural elements of bioactive proteins and peptides, important
drugs and other materials. The chemo-selective synthesis of these structures and
the exploration of their function have been of longstanding interest to the chemistry community.
The past decades have witnessed significant progress in both areas. This review
will summarize the historically established and recently developed chemical methods in
disulfide bond formation. The discussion will also be extended to the use of the disulfide
linkers in small molecules, and peptide- and protein-drug conjugates. It is hoped that the
combined overview of the fundamental chemistries and applications to drug discovery
will inspire creative thinking and stimulate future novel uses of these versatile chemistries.
Collapse
Affiliation(s)
- Rongjun He
- Novo Nordisk Research Center Indianapolis, 5225 Exploration Drive, Indianapolis, IN 46241, United States
| | - Jia Pan
- Novo Nordisk Research Centre China, 20 Life Science Road, Beijing, China
| | - John P. Mayer
- Department of Molecular, Developmental & Cell Biology, University of Colorado, Boulder, CO 80309, United States
| | - Fa Liu
- Novo Nordisk Research Center, 530 Fairview Avenue North, Seattle, WA 98109, United States
| |
Collapse
|
16
|
Transferrin Receptor Targeted Cellular Delivery of Doxorubicin Via a Reduction-Responsive Peptide-Drug Conjugate. Pharm Res 2019; 36:168. [DOI: 10.1007/s11095-019-2688-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/15/2019] [Indexed: 12/11/2022]
|
17
|
Śmiłowicz D, Slootweg JC, Metzler-Nolte N. Bioconjugation of Cyclometalated Gold(III) Lipoic Acid Fragments to Linear and Cyclic Breast Cancer Targeting Peptides. Mol Pharm 2019; 16:4572-4581. [PMID: 31596097 DOI: 10.1021/acs.molpharmaceut.9b00695] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cell-targeting peptides (CTPs) are increasingly used in the field of cancer research due to their high affinity and specificity to cell or tissue targets. In the search for novel metal-based drug candidates, our research group is particularly focused on bioconjugates by utilizing peptides to increase the selectivity of cytotoxic organometallic compounds. Motivated by the relatively high cytotoxic activity of gold complexes, such as Auranofin (approved to treat rheumatoid arthritis), for the treatment of various diseases, we anticipated that gold peptide bioconjugates would present interesting candidates for novel breast cancer therapies. For this, we investigate the use of the natural compound lipoic acid (Lpa) as a bioconjugation handle to link Au complexes in the oxidation state +III to peptides using the dithiol moiety. Using this strategy, we have synthesized Au(III) complex bioconjugates linked to the linear LTVSPWY peptide and two cyclic DfKRG and KTTHWGFTLG tumor-targeting peptides. Solid-phase peptide synthesis (SPPS) was used to prepare the peptides, with lipoic acid introduced N-terminally as a conjugation handle. After peptide cleavage, the metal complex was introduced in solution by first reducing the internal disulfide bond, followed by reaction with Au(ppy)Cl2 (1, ppy: 2-phenyl-pyridine), to yield the Au(III)-Lpa-peptide bioconjugates. The new bioconjugates were successfully synthesized, purified by semi-preparative HPLC, and characterized by ESI-MS. Au(III)-peptide bioconjugates were tested as cytotoxic agents against two different human breast cancer cell lines (MCF-7 and MDA-MB-231) and normal human fibroblasts cells (GM5657T) and compared to cisplatin, the parent Au(III) dichloride complex, and metal-free peptides. These in vitro data show that the Au(III)-peptide bioconjugate 5, possessing the cyclic integrin-targeting RGD-derived peptide sequence in the structure, exhibits improved activity compared to the parent gold(III) compound Au(ppy)Cl2 (1) as well as to cisplatin or the metal-free peptide. Moreover, the excellent targeting properties of 5 are supported by the fact that a Au(III)-peptide conjugate with the exact same peptide sequence, but a linear rather than the cyclic form of 5 exhibits 10 times lower cytotoxic activity.
Collapse
Affiliation(s)
- Dariusz Śmiłowicz
- Inorganic Chemistry I-Bioinorganic Chemistry , Ruhr-University Bochum , Universitätsstraße 150 , Bochum 44801 , Germany
| | - Jack C Slootweg
- Inorganic Chemistry I-Bioinorganic Chemistry , Ruhr-University Bochum , Universitätsstraße 150 , Bochum 44801 , Germany
| | - Nils Metzler-Nolte
- Inorganic Chemistry I-Bioinorganic Chemistry , Ruhr-University Bochum , Universitätsstraße 150 , Bochum 44801 , Germany
| |
Collapse
|
18
|
Overcharging Effect in Electrospray Ionization Mass Spectra of Daunomycin-Tuftsin Bioconjugates. Molecules 2019; 24:molecules24162981. [PMID: 31426442 PMCID: PMC6720970 DOI: 10.3390/molecules24162981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022] Open
Abstract
Peptide-based small molecule drug conjugates for targeted tumor therapy are currently in the focus of intensive research. Anthracyclines, like daunomycin, are commonly used anticancer drug molecules and are also often applied in peptide-drug conjugates. However, lability of the O-glycosidic bond during electrospray ionization mass spectrometric analysis hinders the analytical characterization of the constructs. “Overprotonation” can occur if daunomycin is linked to positively charged peptide carriers, like tuftsin derivatives. In these molecules, the high number of positive charges enhances the in-source fragmentation significantly, leading to complex mass spectra composed of mainly fragment ions. Therefore, we investigated different novel tuftsin-daunomycin conjugates to find an appropriate condition for mass spectrometric detection. Our results showed that shifting the charge states to lower charges helped to keep ions intact. In this way, a clear spectrum could be obtained containing intact protonated molecules only. Shifting of the protonation states to lower charges could be achieved with the use of appropriate neutral volatile buffers and with tuning the ion source parameters.
Collapse
|
19
|
Corrigan AM, Karlsson J, Wildenhain J, Knerr L, Ölwegård-Halvarsson M, Karlsson M, Lünse S, Wang Y. IA-Lab: A MATLAB framework for efficient microscopy image analysis development, applied to quantifying intracellular transport of internalized peptide-drug conjugate. PLoS One 2019; 14:e0220627. [PMID: 31369634 PMCID: PMC6675096 DOI: 10.1371/journal.pone.0220627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/19/2019] [Indexed: 11/30/2022] Open
Abstract
This work presents a MATLAB-based software package for high-throughput microscopy image analysis development, making such development more accessible for a large user community. The toolbox provides a GUI and a number of analysis workflows, and can serve as a general framework designed to allow for easy extension. For a new application, only a minor part of the object-oriented code needs to be replaced by new components, making development efficient. This makes it possible to quickly develop solutions for analysis not available in existing tools. We show its use in making a tool for quantifying intracellular transport of internalized peptide-drug conjugates. The code is freely available as open source on GitHub (https://github.com/amcorrigan/ia-lab)
Collapse
Affiliation(s)
- Adam M. Corrigan
- Discovery Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
- * E-mail:
| | - Johan Karlsson
- Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Jan Wildenhain
- Discovery Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Laurent Knerr
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Maria Ölwegård-Halvarsson
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Maria Karlsson
- Research and Early Development, Respiratory, Inflammation and Autoimmune, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Svenja Lünse
- Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Yinhai Wang
- Discovery Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
20
|
Klahn P, Fetz V, Ritter A, Collisi W, Hinkelmann B, Arnold T, Tegge W, Rox K, Hüttel S, Mohr KI, Wink J, Stadler M, Wissing J, Jänsch L, Brönstrup M. The nuclear export inhibitor aminoratjadone is a potent effector in extracellular-targeted drug conjugates. Chem Sci 2019; 10:5197-5210. [PMID: 31191875 PMCID: PMC6540907 DOI: 10.1039/c8sc05542d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/15/2019] [Indexed: 12/04/2022] Open
Abstract
The concept of targeted drug conjugates has been successfully translated to clinical practice in oncology. Whereas the majority of cytotoxic effectors in drug conjugates are directed against either DNA or tubulin, our study aimed to validate nuclear export inhibition as a novel effector principle in drug conjugates. For this purpose, a semisynthetic route starting from the natural product ratjadone A, a potent nuclear export inhibitor, has been developed. The biological evaluation of ratjadones functionalized at the 16-position revealed that oxo- and amino-analogues had very high potencies against cancer cell lines (e.g. 16R-aminoratjadone 16 with IC50 = 260 pM against MCF-7 cells, or 19-oxoratjadone 14 with IC50 = 100 pM against A-549 cells). Mechanistically, the conjugates retained a nuclear export inhibitory activity through binding CRM1. To demonstrate a proof-of-principle for cellular targeting, folate- and luteinizing hormone releasing hormone (LHRH)-based carrier molecules were synthesized and coupled to aminoratjadones as well as fluorescein for cellular efficacy and imaging studies, respectively. The Trojan-Horse conjugates selectively addressed receptor-positive cell lines and were highly potent inhibitors of their proliferation. For example, the folate conjugate FA-7-Val-Cit-pABA-16R-aminoratjadone had an IC50 of 34.3 nM, and the LHRH conjugate d-Orn-Gose-Val-Cit-pABA-16R-aminoratjadone had an IC50 of 12.8 nM. The results demonstrate that nuclear export inhibition is a promising mode-of-action for extracellular-targeted drug conjugate payloads.
Collapse
Affiliation(s)
- Philipp Klahn
- Department of Chemical Biology , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany .
- Institute of Organic Chemistry , Technische Universität Braunschweig , Hagenring 30 , 38106 Braunschweig , Germany .
| | - Verena Fetz
- Department of Chemical Biology , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany .
| | - Antje Ritter
- Department of Chemical Biology , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany .
| | - Wera Collisi
- Department of Chemical Biology , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany .
- Department of Microbial Drugs , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany
| | - Bettina Hinkelmann
- Department of Chemical Biology , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany .
| | - Tatjana Arnold
- Department of Chemical Biology , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany .
| | - Werner Tegge
- Department of Chemical Biology , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany .
| | - Katharina Rox
- Department of Chemical Biology , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany .
- German Centre of Infection Research (DZIF) , Partner Site Hannover-Braunschweig , Germany
| | - Stephan Hüttel
- Department of Microbial Drugs , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany
| | - Kathrin I Mohr
- Department of Microbial Drugs , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany
| | - Joachim Wink
- Department of Microbial Drugs , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany
| | - Marc Stadler
- Department of Microbial Drugs , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany
| | - Josef Wissing
- Department of Structure and Function of Proteins , Research Group Cellular Proteomic , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany
| | - Lothar Jänsch
- Department of Structure and Function of Proteins , Research Group Cellular Proteomic , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany
| | - Mark Brönstrup
- Department of Chemical Biology , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany .
- Biomolecular Drug Research Center (BMWZ) , Schneiderberg 38 , 30167 Hannover , Germany
- German Centre of Infection Research (DZIF) , Partner Site Hannover-Braunschweig , Germany
| |
Collapse
|
21
|
Octreotide Conjugates for Tumor Targeting and Imaging. Pharmaceutics 2019; 11:pharmaceutics11050220. [PMID: 31067748 PMCID: PMC6571972 DOI: 10.3390/pharmaceutics11050220] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 12/11/2022] Open
Abstract
Tumor targeting has emerged as an advantageous approach to improving the efficacy and safety of cytotoxic agents or radiolabeled ligands that do not preferentially accumulate in the tumor tissue. The somatostatin receptors (SSTRs) belong to the G-protein-coupled receptor superfamily and they are overexpressed in many neuroendocrine tumors (NETs). SSTRs can be efficiently targeted with octreotide, a cyclic octapeptide that is derived from native somatostatin. The conjugation of cargoes to octreotide represents an attractive approach for effective tumor targeting. In this study, we conjugated octreotide to cryptophycin, which is a highly cytotoxic depsipeptide, through the protease cleavable Val-Cit dipeptide linker using two different self-immolative moieties. The biological activity was investigated in vitro and the self-immolative part largely influenced the stability of the conjugates. Replacement of cryptophycin by the infrared cyanine dye Cy5.5 was exploited to elucidate the tumor targeting properties of the conjugates in vitro and in vivo. The compound efficiently and selectively internalized in cells overexpressing SSTR2 and accumulated in xenografts for a prolonged time. Our results on the in vivo properties indicate that octreotide may serve as an efficient delivery vehicle for tumor targeting.
Collapse
|
22
|
Sobolev AS. Modular Nanotransporters for Nuclear-Targeted Delivery of Auger Electron Emitters. Front Pharmacol 2018; 9:952. [PMID: 30210340 PMCID: PMC6119715 DOI: 10.3389/fphar.2018.00952] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022] Open
Abstract
This review describes artificial modular nanotransporters (MNTs) delivering their cargos into target cells and then into the nuclei – the most vulnerable cell compartment for most anticancer agents and especially for radionuclides emitting short-range particles. The MNT strategy uses natural subcellular transport processes inherent in practically all cells including cancer cells. The MNTs use these processes just as a passenger who purchased tickets for a multiple-transfer trip making use of different kinds of public transport to reach the desired destination. The MNTs are fusion polypeptides consisting of several parts, replaceable modules, accomplishing binding to a specific receptor on the cell and subsequent internalization, endosomal escape and transport into the cell nucleus. Radionuclides emitting short-range particles, like Auger electron emitters, acquire cell specificity and significantly higher cytotoxicity both in vitro and in vivo when delivered by the MNTs into the nuclei of cancer cells. MNT modules are interchangeable, allowing replacement of receptor recognition modules, which permits their use for different types of cancer cells and, as a cocktail of several MNTs, for targeting several tumor-specific molecules for personalized medicine.
Collapse
Affiliation(s)
- Alexander S Sobolev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
23
|
Juriga D, Laszlo I, Ludanyi K, Klebovich I, Chae CH, Zrinyi M. Kinetics of dopamine release from poly(aspartamide)-based prodrugs. Acta Biomater 2018; 76:225-238. [PMID: 29940369 DOI: 10.1016/j.actbio.2018.06.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/06/2018] [Accepted: 06/21/2018] [Indexed: 01/22/2023]
Abstract
Preparation of novel biocompatible and biodegradable polymer-based prodrugs that can be applied in complex drug delivery systems is one of the most researched fields in pharmaceutics. The kinetics of the drug release strongly depends on the physicochemical parameters of prodrugs as well as environmental properties, therefore precise kinetical description is crucial to design the appropriate polymer prodrug formula. The aim of the present study was to investigate the dopamine release from different poly(aspartamide) based dopamine drug conjugates in different environments and to work out a kinetic description which can be extended to describe drug release in similar systems. Poly(aspartamide) was conjugated with different amounts of dopamine. In order to alter the solubility of the conjugates, 2-aminoethanol was also grafted to the main chain. Chemical structure as well as physical properties such as solubility, lipophilicity measurements and thermogravimetric analysis has been carried out. Kinetics of dopamine release from the macromolecular prodrugs which has good water solubility has been studied and compared in different environments (phosphate buffer, Bromelain and α-Chymotrypsin). It was found that the kinetics of release in those solutions can be satisfactorily described by first order reaction rate. For poorly-soluble conjugates, the release of dopamine was considered as a result of coupling of diffusion and chemical reaction. Besides the time dependence of dopamine cleavage, a practical quantity, the half-life of the release of loading capacity has been introduced and evaluated. It was found, that dopamine containing macromolecular prodrugs exhibit prolonged release kinetics and the quantitative description of the kinetics, including the most important physical parameters provides a solid base for future pharmaceutical and medical studies. STATEMENT OF SIGNIFICANCE Poly(aspartamide) based polymer-drug conjugates are promising for controlled and prolonged drug delivery due to their biocompatibility and biodegradability. In this study different poly(aspartamide) based dopamine conjugates were synthesized which can protect dopamine from deactivation in the human body. Since there is no satisfying kinetics description for drug release from covalent polymer-drug conjugates in the literature, dopamine release was investigated in different environments and a complete kinetical description was worked out. This study demonstrates that poly(aspartamide) is able to protect conjugated dopamine from deactivation and provide prolonged release in alkaline pH as well as in the presence of different enzymes. Furthermore, detailed kinetical descriptions were demonstrated which can be used in case of other covalent polymer-drug conjugates.
Collapse
|
24
|
Abstract
There is a growing interest for the discovery of new cancer-targeted delivery systems for drug delivery and diagnosis. A synopsis of the bibliographic data will be presented on bombesin, neurotensin, octreotide, Arg-Gly-Asp, luteinizing hormone-releasing hormone and other peptides. Many of them have reached the clinics for therapeutic or diagnostic purposes, and have been utilized as carriers of known cytotoxic agents such as doxorubicin, paclitaxel, cisplatin, methotrexate or dyes and radioisotopes. In our article, recent advances in the development of peptides as carriers of cytotoxic drugs or radiometals will be analyzed.
Collapse
|
25
|
Ragozin E, Hesin A, Bazylevich A, Tuchinsky H, Bovina A, Shekhter Zahavi T, Oron-Herman M, Kostenich G, Firer M, Rubinek T, Wolf I, Luboshits G, Sherman M, Gellerman G. New somatostatin-drug conjugates for effective targeting pancreatic cancer. Bioorg Med Chem 2018; 26:3825-3836. [DOI: 10.1016/j.bmc.2018.06.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/14/2018] [Accepted: 06/24/2018] [Indexed: 12/15/2022]
|
26
|
Insel PA, Sriram K, Wiley SZ, Wilderman A, Katakia T, McCann T, Yokouchi H, Zhang L, Corriden R, Liu D, Feigin ME, French RP, Lowy AM, Murray F. GPCRomics: GPCR Expression in Cancer Cells and Tumors Identifies New, Potential Biomarkers and Therapeutic Targets. Front Pharmacol 2018; 9:431. [PMID: 29872392 PMCID: PMC5972277 DOI: 10.3389/fphar.2018.00431] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/12/2018] [Indexed: 12/16/2022] Open
Abstract
G protein-coupled receptors (GPCRs), the largest family of targets for approved drugs, are rarely targeted for cancer treatment, except for certain endocrine and hormone-responsive tumors. Limited knowledge regarding GPCR expression in cancer cells likely has contributed to this lack of use of GPCR-targeted drugs as cancer therapeutics. We thus undertook GPCRomic studies to define the expression of endoGPCRs (which respond to endogenous molecules such as hormones, neurotransmitters and metabolites) in multiple types of cancer cells. Using TaqMan qPCR arrays to quantify the mRNA expression of ∼340 such GPCRs, we found that human chronic lymphocytic leukemia (CLL) cells/stromal cells associated with CLL, breast cancer cell lines, colon cancer cell lines, pancreatic ductal adenocarcinoma (PDAC) cells, cancer associated fibroblasts (CAFs), and PDAC tumors express 50 to >100 GPCRs, including many orphan GPCRs (which lack known physiologic agonists). Limited prior data exist regarding the expression or function of most of the highly expressed GPCRs in these cancer cells and tumors. Independent results from public cancer gene expression databases confirm the expression of such GPCRs. We propose that highly expressed GPCRs in cancer cells (for example, GPRC5A in PDAC and colon cancer cells and GPR68 in PDAC CAFs) may contribute to the malignant phenotype, serve as biomarkers and/or may be novel therapeutic targets for the treatment of cancer.
Collapse
Affiliation(s)
- Paul A. Insel
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Krishna Sriram
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| | - Shu Z. Wiley
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| | - Andrea Wilderman
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| | - Trishna Katakia
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| | - Thalia McCann
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| | - Hiroshi Yokouchi
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| | - Lingzhi Zhang
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| | - Ross Corriden
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| | - Dongling Liu
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| | - Michael E. Feigin
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Randall P. French
- Department of Surgery, University of California, San Diego, San Diego, CA, United States
- Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Andrew M. Lowy
- Department of Surgery, University of California, San Diego, San Diego, CA, United States
- Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Fiona Murray
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
27
|
Vrettos EI, Mező G, Tzakos AG. On the design principles of peptide-drug conjugates for targeted drug delivery to the malignant tumor site. Beilstein J Org Chem 2018; 14:930-954. [PMID: 29765474 PMCID: PMC5942387 DOI: 10.3762/bjoc.14.80] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/04/2018] [Indexed: 12/30/2022] Open
Abstract
Cancer is the second leading cause of death affecting nearly one in two people, and the appearance of new cases is projected to rise by >70% by 2030. To effectively combat the menace of cancer, a variety of strategies have been exploited. Among them, the development of peptide–drug conjugates (PDCs) is considered as an inextricable part of this armamentarium and is continuously explored as a viable approach to target malignant tumors. The general architecture of PDCs consists of three building blocks: the tumor-homing peptide, the cytotoxic agent and the biodegradable connecting linker. The aim of the current review is to provide a spherical perspective on the basic principles governing PDCs, as also the methodology to construct them. We aim to offer basic and integral knowledge on the rational design towards the construction of PDCs through analyzing each building block, as also to highlight the overall progress of this rapidly growing field. Therefore, we focus on several intriguing examples from the recent literature, including important PDCs that have progressed to phase III clinical trials. Last, we address possible difficulties that may emerge during the synthesis of PDCs, as also report ways to overcome them.
Collapse
Affiliation(s)
- Eirinaios I Vrettos
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, Ioannina, GR-45110, Greece
| | - Gábor Mező
- Eötvös Loránd University, Faculty of Science, Institute of Chemistry, Pázmány P. stny. 1/A, H-1117 Budapest, Hungary.,MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, Pázmány P. stny. 1/A, H-1117 Budapest, Hungary
| | - Andreas G Tzakos
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, Ioannina, GR-45110, Greece
| |
Collapse
|
28
|
Greenman Y. MANAGEMENT OF ENDOCRINE DISEASE: Present and future perspectives for medical therapy of nonfunctioning pituitary adenomas. Eur J Endocrinol 2017; 177:R113-R124. [PMID: 28468768 DOI: 10.1530/eje-17-0216] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/25/2017] [Accepted: 05/03/2017] [Indexed: 12/24/2022]
Abstract
In contrast to the clear indication for surgical treatment in symptomatic patients with clinically nonfunctioning pituitary adenomas (NFPA), there are no randomized controlled studies comparing therapeutic strategies such as watchful waiting, irradiation or medical therapy for the management of NFPA after surgery. Further, no medical therapy is currently approved for the treatment of NFPA. In this review, we summarize accumulating data on medications currently approved for secreting pituitary adenomas, used off-label in patients with NFPA. Perspectives on overall treatment optimization and potential future therapies are also detailed.
Collapse
Affiliation(s)
- Yona Greenman
- Institute of Endocrinology, Metabolism and Hypertension, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
29
|
Li J, Zhang B, Yue C, Wu J, Zhao L, Sun D, Wang R. Strategies to release doxorubicin from doxorubicin delivery vehicles. J Drug Target 2017; 26:9-26. [PMID: 28805085 DOI: 10.1080/1061186x.2017.1363209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Juan Li
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan, PR China
| | - Bin Zhang
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan, PR China
| | - Chunwen Yue
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan, PR China
| | - Jing Wu
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan, PR China
| | - Lanxia Zhao
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan, PR China
| | - Deqing Sun
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan, PR China
| | - Rongmei Wang
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan, PR China
| |
Collapse
|
30
|
Lelle M, Freidel C, Kaloyanova S, Müllen K, Peneva K. Multivalency: Key Feature in Overcoming Drug Resistance with a Cleavable Cell-Penetrating Peptide-Doxorubicin Conjugate. Int J Pept Res Ther 2017. [DOI: 10.1007/s10989-017-9622-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Octreotide-conjugated fluorescent PEGylated polymeric nanogel for theranostic applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:490-500. [DOI: 10.1016/j.msec.2017.03.125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 10/19/2022]
|
32
|
Ji Y, Qiao H, He J, Li W, Chen R, Wang J, Wu L, Hu R, Duan J, Chen Z. Functional oligopeptide as a novel strategy for drug delivery. J Drug Target 2017; 25:597-607. [DOI: 10.1080/1061186x.2017.1309044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yujie Ji
- Department of Pharmacy, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Hongzhi Qiao
- Department of Pharmacy, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Jiayu He
- Department of Pharmacy, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Weidong Li
- Department of Pharmacy, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Rui Chen
- Department of Pharmacy, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Jingjing Wang
- Department of Pharmacy, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Li Wu
- Department of Pharmacy, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Rongfeng Hu
- Department of Pharmacy, Anhui University of Chinese Medicine, Anhui, PR China
| | - Jinao Duan
- Department of Pharmacy, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Zhipeng Chen
- Department of Pharmacy, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, PR China
| |
Collapse
|
33
|
Clinical studies in humans targeting the various components of the IGF system show lack of efficacy in the treatment of cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 772:105-122. [PMID: 28528684 DOI: 10.1016/j.mrrev.2016.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 01/28/2023]
Abstract
The insulin-like growth factors (IGFs) system regulates cell growth, differentiation and energy metabolism and plays crucial role in the regulation of key aspects of tumor biology, such as cancer cell growth, survival, transformation and invasion. The current focus for cancer therapeutic approaches have shifted from the conventional treatments towards the targeted therapies and the IGF system has gained a great interest as anti-cancer therapy. The proliferative, anti-apoptotic and transformation effects of IGFs are mainly triggered by the ligation of the type I IGF receptor (IGF-IR). Thus, aiming at developing novel and effective cancer therapies, different strategies have been employed to target IGF system in human malignancies, including but not limited to ligand or receptor neutralizing antibodies and IGF-IR signaling inhibitors. In this review, we have focused on the clinical studies that have been conducted targeting the various components of the IGF system for the treatment of different types of cancer, providing a description and the challenges of each targeting strategy and the degree of success.
Collapse
|
34
|
Kim I, Han EH, Ryu J, Min JY, Ahn H, Chung YH, Lee E. One-Dimensional Supramolecular Nanoplatforms for Theranostics Based on Co-Assembly of Peptide Amphiphiles. Biomacromolecules 2016; 17:3234-3243. [PMID: 27589588 DOI: 10.1021/acs.biomac.6b00966] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a simple and facile strategy for the preparation of multifunctional nanoparticles with programmable properties using self-assembly of precisely designed block amphiphiles in an aqueous solution-state. Versatile, supramolecular nanoplatform for personalized needs, particularly-theranostics, was fabricated by coassembly of peptide amphiphiles (PAs) in aqueous solution, replacing time-consuming and inaccessible chemical synthesis. Fibrils, driven by the assembly of hydrophobic β-sheet-forming peptide block, were utilized as a nanotemplate for drug loading within their robust core. PAs were tagged with octreotide [somatostatin (SST) analogue] for tumor-targeting or were conjugated with paramagnetic metal ion (Gd3+)-chelating 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) for magnetic resonance (MR) imaging. The two PA types were coassembled to integrate each PA function into original fibrillar nanotemplates. The adoption of a bulky target-specific cyclic octreotide and β-sheet-forming peptide with enhanced hydrophobicity led to a morphological transition from conventional fibrils to helical fibrils. The resulting one-dimensional nanoaggregates allowed the successful intracellular delivery of doxorubicin (DOX) to MCF-7 cancer cells overexpressing SST receptor (SSTR) and MR imaging by enabling high longitudinal (T1) relaxivity of water protons. Correlation between the structural nature of fibrils formed by PA coassembly and contrast efficacy was elucidated. The coassembly of PAs with desirable functions may thus be a useful strategy for the generation of tailor-made biocompatible nanomaterials.
Collapse
Affiliation(s)
- Inhye Kim
- Graduate School of Analytical Science and Technology, Chungnam National University , Daejeon 305-764, Republic of Korea
| | - Eun Hee Han
- Division of Life Science, Korea Basic Science Institute , Daejeon 305-806, Republic of Korea
| | - Jooyeon Ryu
- Graduate School of Analytical Science and Technology, Chungnam National University , Daejeon 305-764, Republic of Korea
| | - Jin-Young Min
- Graduate School of Analytical Science and Technology, Chungnam National University , Daejeon 305-764, Republic of Korea.,Division of Life Science, Korea Basic Science Institute , Daejeon 305-806, Republic of Korea
| | - Hyungju Ahn
- Department of Life Science & Chemical Materials, Pohang Accelerator Laboratory, POSTECH , Pohang 790-834, Republic of Korea
| | - Young-Ho Chung
- Division of Life Science, Korea Basic Science Institute , Daejeon 305-806, Republic of Korea
| | - Eunji Lee
- Graduate School of Analytical Science and Technology, Chungnam National University , Daejeon 305-764, Republic of Korea
| |
Collapse
|
35
|
Gunnoo SB, Madder A. Bioconjugation – using selective chemistry to enhance the properties of proteins and peptides as therapeutics and carriers. Org Biomol Chem 2016; 14:8002-13. [DOI: 10.1039/c6ob00808a] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Both peptide and protein therapeutics are becoming increasingly important for treating a wide range of diseases. Functionalisation of theseviasite-selective chemical modification leads to enhancement of their therapeutic properties.
Collapse
Affiliation(s)
- Smita B. Gunnoo
- Organic and Biomimetic Chemistry Research Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- Ghent
- Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- Ghent
- Belgium
| |
Collapse
|
36
|
Gao B, Cui L, Pan Y, Zhang G, Zhou Y, Zhang C, Shuang S, Dong C. A highly selective ratiometric fluorescent probe for biothiol and imaging in live cells. RSC Adv 2016. [DOI: 10.1039/c6ra04564b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A new N-butyl-4-amino-1,8-naphthalimide-based colorimetric and ratiometric fluorescent probe for the detection of biothiols (cysteine, homocysteine, and glutathione) was designed and synthesized.
Collapse
Affiliation(s)
- Baozhen Gao
- Department of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Lixia Cui
- Department of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Yong Pan
- State Key Laboratory of NBC Protection for Civilian
- Research Institute of Chemical Defense
- Beijing
- China
| | - Guomei Zhang
- Department of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Ying Zhou
- Department of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Caihong Zhang
- Department of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Shaomin Shuang
- Department of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Chuan Dong
- Department of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| |
Collapse
|