1
|
Hernandez JL, Chien ST, Doan MA, Suydam IT, Woodrow KA. Antiretroviral (ARV) Properties Dictate Long-Acting Release and Tissue Partitioning Behaviors in Multidrug Subcutaneous Implants. ACS Biomater Sci Eng 2024; 10:6363-6376. [PMID: 39231268 DOI: 10.1021/acsbiomaterials.4c01290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Subcutaneous implants can provide patients with long-acting, compliance-independent drug dosing. For this reason, subcutaneous implants have shown emerging interest in human immunodeficiency virus (HIV) prevention. However, any successful long-acting HIV-prevention device will require multidrug dosing, which poses a challenge for formulation considering the physicochemically diverse selection of antiretroviral (ARV) candidates. As a method that has shown the capacity of efficient multidrug delivery, we assessed electrospun fiber implants composed of three synergistically potent ARVs and a biodegradable polymer selected by in vitro release studies. In mice, subcutaneous electrospun fiber implants exhibit burst release of the more hydrophilic drugs maraviroc (MVC) and raltegravir (RAL), which could be reduced via simple prewash treatments of the implants. Over an extended 120 day time frame, fiber implants show drug-specific differences in release time frames and magnitudes in blood serum. However, end-point drug tissue concentrations show that the most hydrophobic drug etravirine (ETR) remains in high concentrations within the implant and in local skin tissue biopsies. Furthermore, ETR is found to be capable of significant partitioning into lymph nodes, the lower female reproductive tract, and the rectum. Topologically smooth film implants also exhibit the same drug-dependent trends. Therefore, we illustrate that drug release and drug tissue partitioning are largely dictated by drug properties. Further, we find that the properties of ETR enable significant drug quantities within the tissues most relevant to HIV protection. Evidence from this work emphasizes the need for a greater focus on drug properties and prodrug strategies to enable relevant, extended, and targeted drug release.
Collapse
Affiliation(s)
- Jamie L Hernandez
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195, United States
| | - Shin-Tian Chien
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195, United States
| | - My-Anh Doan
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195, United States
| | - Ian T Suydam
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195, United States
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195, United States
| |
Collapse
|
2
|
Asl FD, Mousazadeh M, Taji S, Bahmani A, Khashayar P, Azimzadeh M, Mostafavi E. Nano drug-delivery systems for management of AIDS: liposomes, dendrimers, gold and silver nanoparticles. Nanomedicine (Lond) 2023; 18:279-302. [PMID: 37125616 PMCID: PMC10242436 DOI: 10.2217/nnm-2022-0248] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/08/2023] [Indexed: 05/02/2023] Open
Abstract
AIDS causes increasing mortality every year. With advancements in nanomedicine, different nanomaterials (NMs) have been applied to treat AIDS and overcome its limitations. Among different NMs, nanoparticles (NPs) can act as nanocarriers due to their enhanced solubility, sustained release, targeting abilities and facilitation of drug-dose reductions. This review discusses recent advancements in therapeutics for AIDS/HIV using various NMs, mainly focused on three classifications: polymeric, liposomal and inorganic NMs. Polymeric dendrimers, polyethylenimine-NPs, poly(lactic-co-glycolic acid)-NPs, chitosan and the use of liposomal-based delivery systems and inorganic NPs, including gold and silver NPs, are explored. Recent advances, current challenges and future perspectives on the use of these NMs for better management of HIV/AIDS are also discussed.
Collapse
Affiliation(s)
- Fateme Davarani Asl
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, 88138-33435, Iran
| | - Marziyeh Mousazadeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran
| | - Shirinsadat Taji
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran
- Institute for Genetics, University of Cologne, Cologne, D-50674, Germany
| | - Abbas Bahmani
- Institute for Nanoscience & Nanotechnology (INST), Sharif University of Technology, Tehran, 14588-89694, Iran
| | - Patricia Khashayar
- Center for Microsystems Technology, Imec & Ghent University, Ghent, 9050, Belgium
| | - Mostafa Azimzadeh
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, 89195-999, Iran
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Aldarondo D, Wayne E. Monocytes as a convergent nanoparticle therapeutic target for cardiovascular diseases. Adv Drug Deliv Rev 2022; 182:114116. [PMID: 35085623 PMCID: PMC9359644 DOI: 10.1016/j.addr.2022.114116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 12/17/2022]
Abstract
Due to the increasing population of individuals with cardiovascular diseases and related comorbidities, there is an increasing need for development of synergistic therapeutics. Monocytes are implicated in a broad spectrum of diseases and can serve as a focal point for therapeutic targeting. This review discusses the role of monocytes in cardiovascular diseases and highlights trends in monocyte targets nanoparticles in three cardiovascular-related diseases: Diabetes, Atherosclerosis, and HIV. Finally, the review offers perspectives on how to develop nanoparticle monocyte targeting strategies that can be beneficial for treating co-morbidities.
Collapse
Affiliation(s)
- Dasia Aldarondo
- Department of Chemical Engineering and Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Elizabeth Wayne
- Department of Chemical Engineering and Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
4
|
Shin S, Kwon S, Yeo Y. Meta-Analysis of Drug Delivery Approaches for Treating Intracellular Infections. Pharm Res 2022; 39:1085-1114. [PMID: 35146592 PMCID: PMC8830998 DOI: 10.1007/s11095-022-03188-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/01/2022] [Indexed: 12/20/2022]
Abstract
This meta-analysis aims to evaluate the trend, methodological quality and completeness of studies on intracellular delivery of antimicrobial agents. PubMed, Embase, and reference lists of related reviews were searched to identify original articles that evaluated carrier-mediated intracellular delivery and pharmacodynamics (PD) of antimicrobial therapeutics against intracellular pathogens in vitro and/or in vivo. A total of 99 studies were included in the analysis. The most commonly targeted intracellular pathogens were bacteria (62.6%), followed by viruses (16.2%) and parasites (15.2%). Twenty-one out of 99 (21.2%) studies performed neither microscopic imaging nor flow cytometric analysis to verify that the carrier particles are present in the infected cells. Only 31.3% of studies provided comparative inhibitory concentrations against a free drug control. Approximately 8% of studies, albeit claimed for intracellular delivery of antimicrobial therapeutics, did not provide any experimental data such as microscopic imaging, flow cytometry, and in vitro PD. Future research on intracellular delivery of antimicrobial agents needs to improve the methodological quality and completeness of supporting data in order to facilitate clinical translation of intracellular delivery platforms for antimicrobial therapeutics.
Collapse
Affiliation(s)
- Sooyoung Shin
- College of Pharmacy, Ajou University, Suwon, Gyeonggi-do, 16499, Republic of Korea. .,Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Gyeonggi-do, 16499, Republic of Korea.
| | - Soonbum Kwon
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Dr., West Lafayette, IN, 47906, USA
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Dr., West Lafayette, IN, 47906, USA. .,Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr., West Lafayette, IN, 47907, USA.
| |
Collapse
|
5
|
Beloor J, Kudalkar SN, Buzzelli G, Yang F, Mandl HK, Rajashekar JK, Spasov KA, Jorgensen WL, Saltzman WM, Anderson KS, Kumar P. Long-acting and extended-release implant and nanoformulations with a synergistic antiretroviral two-drug combination controls HIV-1 infection in a humanized mouse model. Bioeng Transl Med 2022; 7:e10237. [PMID: 35079625 PMCID: PMC8780078 DOI: 10.1002/btm2.10237] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/23/2021] [Accepted: 06/04/2021] [Indexed: 11/21/2022] Open
Abstract
The HIV pandemic has affected over 38 million people worldwide with close to 26 million currently accessing antiretroviral therapy (ART). A major challenge in the long-term treatment of HIV-1 infection is nonadherence to ART. Long-acting antiretroviral (LA-ARV) formulations, that reduce dosing frequency to less than once a day, are an urgent need that could tackle the adherence issue. Here, we have developed two LA-ART interventions, one an injectable nanoformulation, and the other, a removable implant, for the delivery of a synergistic two-drug ARV combination comprising a pre-clinical nonnucleoside reverse transcriptase inhibitor (NNRTI), Compound I, and the nucleoside reverse transcriptase inhibitor (NRTI), 4'-ethynyl-2-fluoro-2'-deoxyadenosine. The nanoformulation is poly(lactide-co-glycolide)-based and the implant is a copolymer of ω-pentadecalactone and p-dioxanone, poly(PDL-co-DO), a novel class of biocompatible, biodegradable materials. Both the interventions, packaged independently with each ARV, released sustained levels of the drugs, maintaining plasma therapeutic indices for over a month, and suppressed viremia in HIV-1-infected humanized mice for up to 42 days with maintenance of CD4+ T cells. These data suggest promise in the use of these new drugs as LA-ART formulations in subdermal implant and injectable mode.
Collapse
Affiliation(s)
- Jagadish Beloor
- Department of Internal Medicine, Section of Infectious DiseasesYale University School of MedicineNew HavenConnecticutUSA
| | - Shalley N. Kudalkar
- Department of PharmacologyYale University School of MedicineNew HavenConnecticutUSA
- Department of Molecular Biophysics and BiochemistryYale University School of MedicineNew HavenConnecticutUSA
| | - Gina Buzzelli
- Department of Biomedical EngineeringYale UniversityNew HavenConnecticutUSA
| | - Fan Yang
- Department of Biomedical EngineeringYale UniversityNew HavenConnecticutUSA
| | - Hanna K. Mandl
- Department of Biomedical EngineeringYale UniversityNew HavenConnecticutUSA
| | - Jyothi K. Rajashekar
- Department of Internal Medicine, Section of Infectious DiseasesYale University School of MedicineNew HavenConnecticutUSA
| | - Krasimir A. Spasov
- Department of PharmacologyYale University School of MedicineNew HavenConnecticutUSA
- Department of Molecular Biophysics and BiochemistryYale University School of MedicineNew HavenConnecticutUSA
| | | | - W. Mark Saltzman
- Department of Biomedical EngineeringYale UniversityNew HavenConnecticutUSA
| | - Karen S. Anderson
- Department of PharmacologyYale University School of MedicineNew HavenConnecticutUSA
- Department of Molecular Biophysics and BiochemistryYale University School of MedicineNew HavenConnecticutUSA
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious DiseasesYale University School of MedicineNew HavenConnecticutUSA
| |
Collapse
|
6
|
Nanotechnology-based approaches for emerging and re-emerging viruses: Special emphasis on COVID-19. Microb Pathog 2021; 156:104908. [PMID: 33932543 PMCID: PMC8079947 DOI: 10.1016/j.micpath.2021.104908] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/17/2022]
Abstract
In recent decades, the major concern of emerging and re-emerging viral diseases has become an increasingly important area of public health concern, and it is of significance to anticipate future pandemic that would inevitably threaten human lives. The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a newly emerged virus that causes mild to severe pneumonia. Coronavirus disease (COVID-19) became a very much concerned issue worldwide after its super-spread across the globe and emerging viral diseases have not got specific and reliable diagnostic and treatments. As the COVID-19 pandemic brings about a massive life-loss across the globe, there is an unmet need to discover a promising and typically effective diagnosis and treatment to prevent super-spreading and mortality from being decreased or even eliminated. This study was carried out to overview nanotechnology-based diagnostic and treatment approaches for emerging and re-emerging viruses with the current treatment of the disease and shed light on nanotechnology's remarkable potential to provide more effective treatment and prevention to a special focus on recently emerged coronavirus.
Collapse
|
7
|
Minooei F, Fried JR, Fuqua JL, Palmer KE, Steinbach-Rankins JM. In vitro Study on Synergistic Interactions Between Free and Encapsulated Q-Griffithsin and Antiretrovirals Against HIV-1 Infection. Int J Nanomedicine 2021; 16:1189-1206. [PMID: 33623382 PMCID: PMC7894819 DOI: 10.2147/ijn.s287310] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/19/2020] [Indexed: 12/31/2022] Open
Abstract
Introduction Human immunodeficiency virus (HIV) remains a persistent global challenge, impacting 38 million people worldwide. Antiretrovirals (ARVs) including tenofovir (TFV), raltegravir (RAL), and dapivirine (DAP) have been developed to prevent and treat HIV-1 via different mechanisms of action. In parallel, a promising biological candidate, griffithsin (GRFT), has demonstrated outstanding preclinical safety and potency against HIV-1. While ARV co-administration has been shown to enhance virus inhibition, synergistic interactions between ARVs and the oxidation-resistant variant of GRFT (Q-GRFT) have not yet been explored. Here, we co-administered Q-GRFT with TFV, RAL, and DAP, in free and encapsulated forms, to identify unique protein-drug synergies. Methods Nanoparticles (NPs) were synthesized using a single or double-emulsion technique and release from each formulation was assessed in simulated vaginal fluid. Next, each ARV, in free and encapsulated forms, was co-administered with Q-GRFT or Q-GRFT NPs to evaluate the impact of co-administration in HIV-1 pseudovirus assays, and the combination indices were calculated to identify synergistic interactions. Using the most synergistic formulations, we investigated the effect of agent incorporation in NP-fiber composites on release properties. Finally, NP safety was assessed in vitro using MTT assay. Results All active agents were encapsulated in NPs with desirable encapsulation efficiency (15–100%), providing ~20% release over 2 weeks. The co-administration of free Q-GRFT with each free ARV resulted in strong synergistic interactions, relative to each agent alone. Similarly, Q-GRFT NP and ARV NP co-administration resulted in synergy across all formulations, with the most potent interactions between encapsulated Q-GRFT and DAP. Furthermore, the incorporation of Q-GRFT and DAP in NP-fiber composites resulted in burst release of DAP and Q-GRFT with a second phase of Q-GRFT release. Finally, all NP formulations exhibited safety in vitro. Conclusions This work suggests that Q-GRFT and ARV co-administration in free or encapsulated forms may improve efficacy in achieving prophylaxis.
Collapse
Affiliation(s)
- Farnaz Minooei
- Department of Chemical Engineering, University of Louisville Speed School of Engineering, Louisville, KY, USA
| | - Joel R Fried
- Department of Chemical Engineering, University of Louisville Speed School of Engineering, Louisville, KY, USA
| | - Joshua L Fuqua
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY, USA.,Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.,Center for Predictive Medicine, University of Louisville, Louisville, KY, USA
| | - Kenneth E Palmer
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.,Center for Predictive Medicine, University of Louisville, Louisville, KY, USA.,Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Jill M Steinbach-Rankins
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY, USA.,Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.,Center for Predictive Medicine, University of Louisville, Louisville, KY, USA.,Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
8
|
Muheem A, Baboota S, Ali J. An in-depth analysis of novel combinatorial drug therapy via nanocarriers against HIV/AIDS infection and their clinical perspectives: a systematic review. Expert Opin Drug Deliv 2021; 18:1025-1046. [PMID: 33460332 DOI: 10.1080/17425247.2021.1876660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Conventional antiretroviral therapy against HIV infections is threatening to become outdated due to the low chemical, physical, biological, and pharmacokinetic characteristics of therapeutic molecules, followed by the high chance of emergence of drug resistance. Considering the co-encapsulation of multi-infection agents in a single nanocarrier is emerging to offer various benefits such as synergistic action, improved therapeutic efficacy, reduced drug resistance development, patient compliance, and economical therapy.Areas covered: A systematic review of nano-based combinatorial drug therapy was performed using various databases including Scopus, PubMed, Google Scholar, and Science Direct between 2000 and 2020. The search set was screened as per the inclusion and exclusion criteria, followed by 46 scientific articles and seven clinical studies selected for in-depth analysis.Expert opinion: There has been an immense effort to analyze the mechanism of HIV infection to develop a promising therapeutic approach, although the aim of complete prevention has not been succeeded yet. The key finding is to overcome the challenges associated with conventional therapy by the combinatorial drug in a single nanoformulation, which holds great potential for impact in the management of HIV infection.
Collapse
Affiliation(s)
- Abdul Muheem
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi India
| |
Collapse
|
9
|
Aguilera-Correa JJ, Esteban J, Vallet-Regí M. Inorganic and Polymeric Nanoparticles for Human Viral and Bacterial Infections Prevention and Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:E137. [PMID: 33435597 PMCID: PMC7826792 DOI: 10.3390/nano11010137] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
Infectious diseases hold third place in the top 10 causes of death worldwide and were responsible for more than 6.7 million deaths in 2016. Nanomedicine is a multidisciplinary field which is based on the application of nanotechnology for medical purposes and can be defined as the use of nanomaterials for diagnosis, monitoring, control, prevention, and treatment of diseases, including infectious diseases. One of the most used nanomaterials in nanomedicine are nanoparticles, particles with a nano-scale size that show highly tunable physical and optical properties, and the capacity to a wide library of compounds. This manuscript is intended to be a comprehensive review of the available recent literature on nanoparticles used for the prevention and treatment of human infectious diseases caused by different viruses, and bacteria from a clinical point of view by basing on original articles which talk about what has been made to date and excluding commercial products, but also by highlighting what has not been still made and some clinical concepts that must be considered for futures nanoparticles-based technologies applications.
Collapse
Affiliation(s)
- John Jairo Aguilera-Correa
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Research Institute Hospital 12 de Octubre (i+12), Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Jaime Esteban
- Clinical Microbiology Department, Jiménez Díaz Foundation Health Research Institute, Autonomous University of Madrid, Av. Reyes Católicos 2, 28040 Madrid, Spain;
| | - María Vallet-Regí
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Research Institute Hospital 12 de Octubre (i+12), Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
10
|
Liang L, Ahamed A, Ge L, Fu X, Lisak G. Advances in Antiviral Material Development. Chempluschem 2020; 85:2105-2128. [PMID: 32881384 PMCID: PMC7461489 DOI: 10.1002/cplu.202000460] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
Abstract
The rise in human pandemics demands prudent approaches in antiviral material development for disease prevention and treatment via effective protective equipment and therapeutic strategy. However, the current state of the antiviral materials research is predominantly aligned towards drug development and its related areas, catering to the field of pharmaceutical technology. This review distinguishes the research advances in terms of innovative materials exhibiting antiviral activities that take advantage of fast-developing nanotechnology and biopolymer technology. Essential concepts of antiviral principles and underlying mechanisms are illustrated, followed with detailed descriptions of novel antiviral materials including inorganic nanomaterials, organic nanomaterials and biopolymers. The biomedical applications of the antiviral materials are also elaborated based on the specific categorization. Challenges and future prospects are discussed to facilitate the research and development of protective solutions and curative treatments.
Collapse
Affiliation(s)
- Lili Liang
- School of Civil and Environmental EngineeringNanyang Technological University50 Nanyang Ave, N1 01a–29Singapore639798Singapore
- Interdisciplinary Graduate ProgramNanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
| | - Ashiq Ahamed
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
- Laboratory of Molecular Science and EngineeringJohan Gadolin Process Chemistry Centre Åbo Akademi UniversityFI-20500Turku/ÅboFinland
| | - Liya Ge
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
| | - Xiaoxu Fu
- School of Civil and Environmental EngineeringNanyang Technological University50 Nanyang Ave, N1 01a–29Singapore639798Singapore
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
| | - Grzegorz Lisak
- School of Civil and Environmental EngineeringNanyang Technological University50 Nanyang Ave, N1 01a–29Singapore639798Singapore
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
| |
Collapse
|
11
|
Figueira TN, Domingues MM, Illien F, Cadima-Couto I, Todorovski T, Andreu D, Sagan S, Castanho MARB, Walrant A, Veiga AS. Enfuvirtide-Protoporphyrin IX Dual-Loaded Liposomes: In Vitro Evidence of Synergy against HIV-1 Entry into Cells. ACS Infect Dis 2020; 6:224-236. [PMID: 31855415 DOI: 10.1021/acsinfecdis.9b00285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We have developed a nanocarrier consisting of large unilamellar vesicles (LUVs) for combined delivery of two human immunodeficiency virus type 1 (HIV-1) entry inhibitors, enfuvirtide (ENF) and protoporphyrin IX (PPIX). The intrinsic lipophilicity of ENF and PPIX, a fusion inhibitor and an attachment inhibitor, respectively, leads to their spontaneous incorporation into the lipid bilayer of the LUVs nanocarrier. Both entry inhibitors partition significantly toward LUVs composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and a 9:1 mixture of POPC:1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DPPE-PEG2000), representative of conventional and immune-evasive drug delivery formulations, respectively. These colocalize in the core of lipid membranes. Dual-loaded nanocarriers are monodispersed and retain the size distribution, thermotropic behavior, and surface charge of the unloaded form. Combination of the two entry inhibitors in the nanocarrier resulted in improved synergy against HIV-1 entry compared to combination in free form, strongly when immune-evasive formulations are used. We propose that the improved action of the entry inhibitors when loaded into the nanocarriers results from their slow release at the site of viral entry. Overall, liposomes remain largely unexplored platforms for combination of viral entry inhibitors, with potential for improvement of current antiretroviral therapy drug safety and application. Our work calls for a reappraisal of the potential of entry inhibitor combinations and delivery for clinical use in antiretroviral therapy.
Collapse
Affiliation(s)
- Tiago N. Figueira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Marco M. Domingues
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Françoise Illien
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Iris Cadima-Couto
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Toni Todorovski
- Department of Experimental and Health Science, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - David Andreu
- Department of Experimental and Health Science, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Sandrine Sagan
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Miguel A. R. B. Castanho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Astrid Walrant
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Ana Salomé Veiga
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| |
Collapse
|
12
|
Latinovic OS, Neal LM, Tagaya Y, Heredia A, Medina-Moreno S, Zapata JC, Reitz M, Bryant J, Redfield RR. Suppression of Active HIV-1 Infection in CD34 + Hematopoietic Humanized NSG Mice by a Combination of Combined Antiretroviral Therapy and CCR5 Targeting Drugs. AIDS Res Hum Retroviruses 2019; 35:718-728. [PMID: 31099257 DOI: 10.1089/aid.2018.0305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Significant progress has been made in the diagnostics and treatment of AIDS since the discovery of the human immunodeficiency virus type 1 (HIV-1) in 1983. The remarkable effectiveness of combined antiretroviral therapy (cART) is evidenced by mortality reduction, control of peripheral blood viral load, and in a nearly normal quality of HIV patients' lives. Remaining obstacles in treatment and cure are drug toxicities and side effects, viral resistance, persistence of HIV-1 reservoirs on termination of cART treatment, the cost of lifelong antiretroviral therapy, and the stigma associated with taking antiretroviral drugs. As determined by plasma viral RNA and peripheral blood mononuclear cells (PBMC) proviral DNA, we show improved suppression of productive HIV infection in human CD34+ hematopoietic stem cell-engrafted NOD (nonobese diabetic)-SCID (severe combined immunodeficiency)-il2rg-/- (NSG) mice by combined treatment with cART and CCR5 targeting drugs, compared with cART alone, as well as an increased preservation of human CD4+ T cells (defined as CD45+ CD3+ CD4+ cells) and CD4+/CD8+ cell ratios in infected mice. The data also suggest a possible reduction in viral reservoirs. Our data confirm that this animal model is suitable for detection of productive HIV infection, replication, and establishment of viral reservoirs. The data also provide proof of principle for the utility of combining CCR5 targeting drugs, maraviroc and rapamycin, with traditional cART to improve control of viremia and reduce viral reservoirs. This study thus serves as a model for future HIV-1 studies that could lead to the clinical development of new generations of antiretroviral drugs.
Collapse
Affiliation(s)
- Olga S. Latinovic
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Lauren M. Neal
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Yutaka Tagaya
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
- School of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Alonso Heredia
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
- School of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Sandra Medina-Moreno
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Juan C. Zapata
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Marvin Reitz
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Joseph Bryant
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Robert R. Redfield
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
- School of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
13
|
Gong Y, Chowdhury P, Nagesh PKB, Cory TJ, Dezfuli C, Kodidela S, Singh A, Yallapu MM, Kumar S. Nanotechnology approaches for delivery of cytochrome P450 substrates in HIV treatment. Expert Opin Drug Deliv 2019; 16:869-882. [PMID: 31328582 DOI: 10.1080/17425247.2019.1646725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Introduction: Antiretroviral therapy (ART) has led to a significant reduction in HIV-1 morbidity and mortality. Many antiretroviral drugs (ARVs) are metabolized by cytochrome P450 (CYP) pathway, and the majority of these drugs are also either CYP inhibitors or inducers and few possess both activities. These CYP substrates, when used for HIV treatment in the conventional dosage form, have limitations such as low systemic bioavailability, potential drug-drug interactions, and short half-lives. Thus, an alternative mode of delivery is needed in contrast to conventional ARVs. Areas covered: In this review, we summarized the limitations of conventional ARVs in HIV treatment, especially for ARVs which are CYP substrates. We also discussed the preclinical and clinical studies using the nanotechnology strategy to overcome the limitations of these CYP substrates. The preclinical studies and clinical studies published from 2000 to February 2019 were discussed. Expert opinion: Since preclinical and clinical studies for prevention and treatment of HIV using nanotechnology approaches have shown considerable promise in recent years, nanotechnology could become an alternative strategy for daily oral therapy as a future treatment.
Collapse
Affiliation(s)
- Yuqing Gong
- a Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Pallabita Chowdhury
- a Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Prashanth K B Nagesh
- a Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Theodore J Cory
- b Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Chelsea Dezfuli
- b Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Sunitha Kodidela
- a Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Ajay Singh
- a Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Murali M Yallapu
- a Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Santosh Kumar
- a Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| |
Collapse
|
14
|
Fulcher JA, Tamshen K, Wollenberg AL, Kickhoefer VA, Mrazek J, Elliott J, Ibarrondo FJ, Anton PA, Rome LH, Maynard HD, Deming T, Yang OO. Human Vault Nanoparticle Targeted Delivery of Antiretroviral Drugs to Inhibit Human Immunodeficiency Virus Type 1 Infection. Bioconjug Chem 2019; 30:2216-2227. [PMID: 31265254 DOI: 10.1021/acs.bioconjchem.9b00451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
"Vaults" are ubiquitously expressed endogenous ribonucleoprotein nanoparticles with potential utility for targeted drug delivery. Here, we show that recombinant human vault nanoparticles are readily engulfed by certain key human peripheral blood mononuclear cells (PBMC), predominately dendritic cells, monocytes/macrophages, and activated T cells. As these cell types are the primary targets for human immunodeficiency virus type 1 (HIV-1) infection, we examined the utility of recombinant human vaults for targeted delivery of antiretroviral drugs. We chemically modified three different antiretroviral drugs, zidovudine, tenofovir, and elvitegravir, for direct conjugation to vaults. Tested in infection assays, drug-conjugated vaults inhibited HIV-1 infection of PBMC with equivalent activity to free drugs, indicating vault delivery and drug release in the cytoplasm of HIV-1-susceptible cells. The ability to deliver functional drugs via vault nanoparticle conjugates suggests their potential utility for targeted drug delivery against HIV-1.
Collapse
Affiliation(s)
- Jennifer A Fulcher
- Division of Infectious Diseases, Department of Medicine , David Geffen School of Medicine at UCLA , Los Angeles , California , United States
| | - Kyle Tamshen
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California , United States
| | - Alexander L Wollenberg
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California , United States
| | - Valerie A Kickhoefer
- Department of Biological Chemistry , David Geffen School of Medicine at UCLA , Los Angeles , California , United States
| | - Jan Mrazek
- Division of Infectious Diseases, Department of Medicine , David Geffen School of Medicine at UCLA , Los Angeles , California , United States
| | - Julie Elliott
- Vatche and Tamar Manoukian Division of Digestive Diseases , David Geffen School of Medicine at UCLA , Los Angeles , California , United States
| | - F Javier Ibarrondo
- Division of Infectious Diseases, Department of Medicine , David Geffen School of Medicine at UCLA , Los Angeles , California , United States
| | - Peter A Anton
- Vatche and Tamar Manoukian Division of Digestive Diseases , David Geffen School of Medicine at UCLA , Los Angeles , California , United States.,AIDS Healthcare Foundation , Los Angeles , California , United States
| | - Leonard H Rome
- Department of Biological Chemistry , David Geffen School of Medicine at UCLA , Los Angeles , California , United States.,California NanoSystems Institute , University of California , Los Angeles , California , United States
| | - Heather D Maynard
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California , United States.,California NanoSystems Institute , University of California , Los Angeles , California , United States.,Department of Bioengineering , University of California , Los Angeles , California , United States
| | - Timothy Deming
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California , United States.,California NanoSystems Institute , University of California , Los Angeles , California , United States.,Department of Bioengineering , University of California , Los Angeles , California , United States
| | - Otto O Yang
- Division of Infectious Diseases, Department of Medicine , David Geffen School of Medicine at UCLA , Los Angeles , California , United States.,AIDS Healthcare Foundation , Los Angeles , California , United States
| |
Collapse
|
15
|
Creighton RL, Suydam IT, Ebner ME, Afunugo WE, Bever AM, Cao S, Jiang Y, Woodrow KA. Sustained Intracellular Raltegravir Depots Generated with Prodrugs Designed for Nanoparticle Delivery. ACS Biomater Sci Eng 2019; 5:4013-4022. [PMID: 33117884 DOI: 10.1021/acsbiomaterials.9b00658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Polymeric nanocarriers have been extensively used to improve the delivery of hydrophobic drugs, but often provide low encapsulation efficiency and percent loading for hydrophilic compounds. In particular, insufficient loading of hydrophilic antiretroviral drugs such as the integrase inhibitor raltegravir (RAL) has limited the development of sustained-release therapeutics or prevention strategies against HIV. To address this, we developed a generalizable prodrug strategy using RAL as a model where loading, release and subsequent hydrolysis can be tuned by promoiety selection. Prodrugs with large partition coefficients increased the encapsulation efficiency up to 25-fold relative to RAL, leading to significant dose reductions in antiviral activity assays. The differential hydrolysis rates of these prodrugs led to distinct patterns of RAL availability and observed antiviral activity. We also developed a method to monitor the temporal distribution of both prodrug and RAL in cells treated with free prodrug or prodrug-NPs. Results of these studies indicated that prodrug-NPs create an intracellular drug reservoir capable of sustained intracellular drug release. Overall, our results suggest that the design of prodrugs for specific polymeric nanocarrier systems could provide a more generalized strategy to formulate physicochemically diverse hydrophilic drugs with a number of biomedical applications.
Collapse
Affiliation(s)
- Rachel L Creighton
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195-5061, United States
| | - Ian T Suydam
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195-5061, United States.,Department of Chemistry, Seattle University, 901 12th Ave, Seattle, Washington 98122, United States
| | - Mikaela E Ebner
- Department of Chemistry, Seattle University, 901 12th Ave, Seattle, Washington 98122, United States
| | - Wilma E Afunugo
- Department of Chemistry, Seattle University, 901 12th Ave, Seattle, Washington 98122, United States
| | - Alaina M Bever
- Department of Chemistry, Seattle University, 901 12th Ave, Seattle, Washington 98122, United States
| | - Shijie Cao
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195-5061, United States
| | - Yonghou Jiang
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195-5061, United States
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195-5061, United States
| |
Collapse
|
16
|
Kudalkar SN, Ullah I, Bertoletti N, Mandl HK, Cisneros JA, Beloor J, Chan AH, Quijano E, Saltzman WM, Jorgensen WL, Kumar P, Anderson KS. Structural and pharmacological evaluation of a novel non-nucleoside reverse transcriptase inhibitor as a promising long acting nanoformulation for treating HIV. Antiviral Res 2019; 167:110-116. [PMID: 31034849 PMCID: PMC6554724 DOI: 10.1016/j.antiviral.2019.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/23/2019] [Indexed: 11/24/2022]
Abstract
Combination antiretroviral therapy (cART) has been proven effective in inhibiting human immunodeficiency virus type 1 (HIV-1) infection and has significantly improved the health outcomes in acquired immune deficiency syndrome (AIDS) patients. The therapeutic benefits of cART have been challenged because of the toxicity and emergence of drug-resistant HIV-1 strains along with lifelong patient compliance resulting in non-adherence. These issues also hinder the clinical benefits of non-nucleoside reverse transcriptase inhibitors (NNRTIs), which are one of the vital components of cART for the treatment of HIV-1 infection. In this study, using a computational and structural based drug design approach, we have discovered an effective HIV -1 NNRTI, compound I (Cmpd I) that is very potent in biochemical assays and which targets key residues in the allosteric binding pocket of wild-type (WT)-RT as revealed by structural studies. Furthermore, Cmpd I exhibited very potent antiviral activity in HIV-1 infected T cells, lacked cytotoxicity (therapeutic index >100,000), and no significant off-target effects were noted in pharmacological assays. To address the issue of non-adherence, we developed a long-acting nanoformulation of Cmpd I (Cmpd I-NP) using poly (lactide-coglycolide) (PLGA) particles. The pharmacokinetic studies of free and nanoformulated Cmpd I were carried out in BALB/c mice. Intraperitoneal administration of Cmpd I and Cmpd I-NP in BALB/c mice revealed prolonged serum residence time of 48 h and 30 days, respectively. The observed serum concentrations of Cmpd I in both cases were sufficient to provide >97% inhibition in HIV-1 infected T-cells. The significant antiviral activity along with favorable pharmacological and pharmacokinetic profile of Cmpd I, provide compelling and critical support for its further development as an anti-HIV therapeutic agent.
Collapse
Affiliation(s)
- Shalley N Kudalkar
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA; Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | - Irfan Ullah
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Nicole Bertoletti
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA; Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | - Hanna K Mandl
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - José A Cisneros
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | - Jagadish Beloor
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Albert H Chan
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA; Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | - Elias Quijano
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | | | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Karen S Anderson
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA; Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520-8066, USA.
| |
Collapse
|
17
|
Cao S, Woodrow KA. Nanotechnology approaches to eradicating HIV reservoirs. Eur J Pharm Biopharm 2019; 138:48-63. [PMID: 29879528 PMCID: PMC6279622 DOI: 10.1016/j.ejpb.2018.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/29/2018] [Accepted: 06/02/2018] [Indexed: 02/06/2023]
Abstract
The advent of combination antiretroviral therapy (cART) has transformed HIV-1 infection into a controllable chronic disease, but these therapies are incapable of eradicating the virus to bring about an HIV cure. Multiple strategies have been proposed and investigated to eradicate latent viral reservoirs from various biological sanctuaries. However, due to the complexity of HIV infection and latency maintenance, a single drug is unlikely to eliminate all HIV reservoirs and novel strategies may be needed to achieve better efficacy while limiting systemic toxicity. In this review, we describe HIV latency in cellular and anatomical reservoirs, and present an overview of current strategies for HIV cure with a focus on their challenges for clinical translation. Then we provide a summary of nanotechnology solutions that have been used to address challenges in HIV cure by delivering physicochemically diverse agents for combination therapy or targeting HIV reservoir sites. We also review nanocarrier-based gene delivery and immunotherapy used in cancer treatment but may have potential applications in HIV cure.
Collapse
Affiliation(s)
- Shijie Cao
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
18
|
Grande F, Ioele G, Occhiuzzi MA, De Luca M, Mazzotta E, Ragno G, Garofalo A, Muzzalupo R. Reverse Transcriptase Inhibitors Nanosystems Designed for Drug Stability and Controlled Delivery. Pharmaceutics 2019; 11:E197. [PMID: 31035595 PMCID: PMC6572254 DOI: 10.3390/pharmaceutics11050197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/12/2019] [Accepted: 04/22/2019] [Indexed: 12/15/2022] Open
Abstract
An in-depth analysis of nanotechnology applications for the improvement of solubility, distribution, bioavailability and stability of reverse transcriptase inhibitors is reported. Current clinically used nucleoside and non-nucleoside agents, included in combination therapies, were examined in the present survey, as drugs belonging to these classes are the major component of highly active antiretroviral treatments. The inclusion of such agents into supramolecular vesicular systems, such as liposomes, niosomes and lipid solid NPs, overcomes several drawbacks related to the action of these drugs, including drug instability and unfavorable pharmacokinetics. Overall results reported in the literature show that the performances of these drugs could be significantly improved by inclusion into nanosystems.
Collapse
Affiliation(s)
- Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Giuseppina Ioele
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Maria Antonietta Occhiuzzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Michele De Luca
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Elisabetta Mazzotta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Gaetano Ragno
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Antonio Garofalo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Rita Muzzalupo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| |
Collapse
|
19
|
Solórzano R, Tort O, García-Pardo J, Escribà T, Lorenzo J, Arnedo M, Ruiz-Molina D, Alibés R, Busqué F, Novio F. Versatile iron-catechol-based nanoscale coordination polymers with antiretroviral ligand functionalization and their use as efficient carriers in HIV/AIDS therapy. Biomater Sci 2019; 7:178-186. [PMID: 30507990 DOI: 10.1039/c8bm01221k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A novel chemical approach integrating the benefits of nanoparticles with versatility of coordination chemistry is reported herein to increase the effectiveness of well-known HIV antiretroviral drugs. The novelty of our approach is illustrated using a catechol ligand tethered to the known antiretroviral azidothymidine (AZT) as a constitutive building block of the nanoparticles. The resulting nanoscale coordination polymers (NCPs) ensure good encapsulation yields and equivalent antiretroviral activity while significantly diminishing its cytotoxicity. Moreover, this novel family of nanoparticles also offers (i) long-lasting drug release that is dissimilar inside and outside the cells depending on pH, (ii) triggered release in the presence of esterases, activating the antiviral activity in an on-off manner due to a proper chemical design of the ligand and (iii) improved colloidal stabilities and cellular uptakes (up to 50-fold increase). The presence of iron nodes also adds multifunctionality as possible contrast agents. The present study demonstrates the suitability of NCPs bearing pharmacologically active ligands as an alternative to conventional antiretroviral treatments.
Collapse
Affiliation(s)
- Rubén Solórzano
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Leporati A, Gupta S, Bolotin E, Castillo G, Alfaro J, Gottikh MB, Bogdanov AA. Antiretroviral Hydrophobic Core Graft-Copolymer Nanoparticles: The Effectiveness against Mutant HIV-1 Strains and in Vivo Distribution after Topical Application. Pharm Res 2019; 36:73. [PMID: 30919089 DOI: 10.1007/s11095-019-2604-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/05/2019] [Indexed: 11/25/2022]
Abstract
PURPOSE Developing and testing of microbicides for pre-exposure prophylaxis and post-exposure protection from HIV are on the list of major HIV/AIDS research priorities. To improve solubility and bioavailability of highly potent anti-retroviral drugs, we explored the use of a nanoparticle (NP) for formulating a combination of two water-insoluble HIV inhibitors. METHODS The combination of a non-nucleoside HIV reverse transcriptase inhibitor (NNRTI), Efavirenz (EFV), and an inhibitor of HIV integrase, Elvitegravir (ELV) was stabilized with a graft copolymer of methoxypolyethylene glycol-polylysine with a hydrophobic core (HC) composed of fatty acids (HC-PGC). Formulations were tested in TZM-bl cells infected either with wild-type HIV-1IIIB, or drug-resistant HIV-1 strains. In vivo testing of double-labeled NP formulations was performed in female rats after a topical intravaginal administration using SPECT/CT imaging and fluorescence microscopy. RESULTS We observed a formation of stable 23-30 nm NP with very low cytotoxicity when EFV and ELV were combined with HC-PGC at a 1:10 weight ratio. For NP containing ELV and EFV (at 1:1 by weight) we observed a remarkable improvement of EC50 of EFV by 20 times in the case of A17 strain. In vivo imaging and biodistribution showed in vivo presence of NP components at 24 and 48 h after administration, respectively. CONCLUSIONS insoluble orthogonal inhibitors of HIV-1 life cycle may be formulated into the non-aggregating ultrasmall NP which are highly efficient against NNRTI-resistant HIV-1 variant.
Collapse
Affiliation(s)
- Anita Leporati
- Laboratory of Molecular Imaging Probes, Department of Radiology, University of Massachusetts Medical School, S6-434, 55 Lake Ave North, Worcester, MA, 01655, USA
| | - Suresh Gupta
- Laboratory of Molecular Imaging Probes, Department of Radiology, University of Massachusetts Medical School, S6-434, 55 Lake Ave North, Worcester, MA, 01655, USA
| | - Elijah Bolotin
- PharmaIn Corp, 11812 North Creek Parkway N. Suite 10, Bothell, Washington, USA
| | - Gerardo Castillo
- PharmaIn Corp, 11812 North Creek Parkway N. Suite 10, Bothell, Washington, USA
| | - Joshua Alfaro
- PharmaIn Corp, 11812 North Creek Parkway N. Suite 10, Bothell, Washington, USA
| | - Marina B Gottikh
- A.N. Belozersky Institute of Physico-Chemical Biology and Department of Chemistry, Moscow State University, Moscow, Russia
| | - Alexei A Bogdanov
- Laboratory of Molecular Imaging Probes, Department of Radiology, University of Massachusetts Medical School, S6-434, 55 Lake Ave North, Worcester, MA, 01655, USA. .,Department of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia. .,Laboratory of Molecular Imaging, A. N. Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Laboratory of Molecular Imaging, Moscow, Russia.
| |
Collapse
|
21
|
Nabi B, Rehman S, Baboota S, Ali J. Insights on Oral Drug Delivery of Lipid Nanocarriers: a Win-Win Solution for Augmenting Bioavailability of Antiretroviral Drugs. AAPS PharmSciTech 2019; 20:60. [PMID: 30623263 DOI: 10.1208/s12249-018-1284-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 12/18/2018] [Indexed: 02/06/2023] Open
Abstract
The therapeutic functionality of innumerable antiretroviral drugs is supposedly obscured owing to their low metabolic stability in the gastrointestinal tract and poor solubilization property leading to poor oral bioavailability. Dictated by such needs, lipid-based formulations could be tailored using nanotechnology which would be instrumental in ameliorating the attributes of such drugs. The stupendous advantages which lipid nanocarriers offer including improved drug stability and peroral bioavailability coupled with sustained drug release profile and feasibility to incorporate wide array of drugs makes it a potential candidate for pharmaceutical formulations. Furthermore, they also impart targeted drug delivery thereby widening their arena for use. Therefore, the review will encompass the details pertaining to numerous lipid nanocarriers such as nanoemulsion, solid lipid nanoparticle, nanostructured lipid carriers, and so on. These nanocarriers bear the prospective of improving the mucosal adhesion property of the drugs which ultimately upgrades its pharmacokinetic profile. The biodegradable and physiological nature of the lipid excipients used in the formulation is the key parameter and advocates for their safe use. Nevertheless, these lipid-based nanocarriers are amenable to alterations which could be rightly achieved by changing the excipients used or by modifying the process parameters. Thus, the review will systematically envisage the impending benefits and future perspectives of different lipid nanocarriers used in oral delivery of antiretroviral drugs.
Collapse
|
22
|
Rai M, Jamil B. Nanoformulations: A Valuable Tool in the Therapy of Viral Diseases Attacking Humans and Animals. Nanotheranostics 2019. [PMCID: PMC7121811 DOI: 10.1007/978-3-030-29768-8_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Various viruses can be considered as one of the most frequent causes of human diseases, from mild illnesses to really serious sicknesses that end fatally. Numerous viruses are also pathogenic to animals and plants, and many of them, mutating, become pathogenic also to humans. Several cases of affecting humans by originally animal viruses have been confirmed. Viral infections cause significant morbidity and mortality in humans, the increase of which is caused by general immunosuppression of the world population, changes in climate, and overall globalization. In spite of the fact that the pharmaceutical industry pays great attention to human viral infections, many of clinically used antivirals demonstrate also increased toxicity against human cells, limited bioavailability, and thus, not entirely suitable therapeutic profile. In addition, due to resistance, a combination of antivirals is needed for life-threatening infections. Thus, the development of new antiviral agents is of great importance for the control of virus spread. On the other hand, the discovery and development of structurally new antivirals represent risks. Therefore, another strategy is being developed, namely the reformulation of existing antivirals into nanoformulations and investigation of various metal and metalloid nanoparticles with respect to their diagnostic, prophylactic, and therapeutic antiviral applications. This chapter is focused on nanoscale materials/formulations with the potential to be used for the treatment or inhibition of the spread of viral diseases caused by human immunodeficiency virus, influenza A viruses (subtypes H3N2 and H1N1), avian influenza and swine influenza viruses, respiratory syncytial virus, herpes simplex virus, hepatitis B and C viruses, Ebola and Marburg viruses, Newcastle disease virus, dengue and Zika viruses, and pseudorabies virus. Effective antiviral long-lasting and target-selective nanoformulations developed for oral, intravenous, intramuscular, intranasal, intrarectal, intravaginal, and intradermal applications are discussed. Benefits of nanoparticle-based vaccination formulations with the potential to secure cross protection against divergent viruses are outlined as well.
Collapse
Affiliation(s)
- Mahendra Rai
- Department of Biotechnology, Nanobiotechnology Laboratory, Amravati, Maharashtra, India, Department of Chemistry, Federal University of Piauí, Teresina, Piauí Brazil
| | - Bushra Jamil
- Department of DMLS, University of Lahore, Islamabad, Pakistan
| |
Collapse
|
23
|
Golan-Paz S, Frizzell H, Woodrow KA. Cross-Platform Comparison of Therapeutic Delivery from Multilamellar Lipid-Coated Polymer Nanoparticles. Macromol Biosci 2018; 19:e1800362. [PMID: 30589222 DOI: 10.1002/mabi.201800362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/25/2018] [Indexed: 12/20/2022]
Abstract
Significant efforts have been invested in finding a delivery system that can encapsulate and deliver therapeutics. Core-shell polymer-lipid hybrid nanoparticles have been studied as a promising platform because of their mechanical stability, narrow size distribution, biocompatibility, and ability to co-deliver diverse drugs. Here, novel core-shell nanoparticles based on a poly(lactic-co-glycolic acid) (PLGA) core and multilamellar lipid shell are designed, where the lipid bilayers are crosslinked between the two adjacent bilayers (PLGA-ICMVs). The cross-platform performance of the nanoparticles to other polymer-lipid hybrid platforms is examined, including physicochemical characteristics, ability to encapsulate a variety of therapeutics, biocompatibility, and functionality as a vaccine delivery platform. Differential abilities of nanoparticle systems to encapsulate distinct pharmaceutics are observed, which suggest careful consideration of the platform chosen depending on the therapeutic agent and desired function. The novel PLGA-ICMV platform herein demonstrates great potential in stably encapsulating water-soluble agents and therefore is an attractive platform for therapeutic delivery.
Collapse
Affiliation(s)
- Sharon Golan-Paz
- Department of Bioengineering, University of Washington, Foege Hall, 3720 15th Ave NE, Seattle, WA 98195-5061, USA
| | - Hannah Frizzell
- Department of Bioengineering, University of Washington, Foege Hall, 3720 15th Ave NE, Seattle, WA 98195-5061, USA
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, Foege Hall, 3720 15th Ave NE, Seattle, WA 98195-5061, USA
| |
Collapse
|
24
|
Monroe M, Flexner C, Cui H. Harnessing nanostructured systems for improved treatment and prevention of HIV disease. Bioeng Transl Med 2018; 3:102-123. [PMID: 30065966 PMCID: PMC6063869 DOI: 10.1002/btm2.10096] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022] Open
Abstract
Combination antiretroviral therapy effectively controls human immunodeficiency virus (HIV) viral replication, delaying the progression to acquired immune deficiency syndrome and improving and extending quality of life of patients. However, the inability of antiretroviral therapeutics to target latent virus and their poor penetration of viral reserve tissues result in the need for continued treatment for the life of the patient. Side effects from long-term antiretroviral use and the development of drug resistance due to patient noncompliance are also continuing problems. Nanostructured systems of antiretroviral therapeutics have the potential to improve targeted delivery to viral reservoirs, reduce drug toxicity, and increase dosing intervals, thereby improving treatment outcomes and enhancing patient adherence. Despite these advantages, very few nanostructured antiretroviral delivery systems have made it to clinical trials due to challenges in preclinical and clinical development. In this context, we review the current challenges in HIV disease management, and the recent progress in leveraging the unique performance of nanostructured systems in therapeutic delivery for improved treatment and prevention of this incurable human disease.
Collapse
Affiliation(s)
- Maya Monroe
- Dept. of Chemical and Biomolecular Engineering The Johns Hopkins University, 3400 N Charles Street Baltimore MD 21218.,Institute for NanoBioTechnology The Johns Hopkins University, 3400 N Charles Street Baltimore MD 21218
| | - Charles Flexner
- Div. of Clinical Pharmacology and Infectious Diseases Johns Hopkins University School of Medicine and Bloomberg School of Public Health Baltimore MD 21205
| | - Honggang Cui
- Dept. of Chemical and Biomolecular Engineering The Johns Hopkins University, 3400 N Charles Street Baltimore MD 21218.,Institute for NanoBioTechnology The Johns Hopkins University, 3400 N Charles Street Baltimore MD 21218.,Dept. of Oncology, Sidney Kimmel Comprehensive Cancer Center The Johns Hopkins University School of Medicine Baltimore MD 21205.,Center for Nanomedicine The Wilmer Eye Institute, The Johns Hopkins University School of Medicine Baltimore MD 21231
| |
Collapse
|
25
|
Cao S, Jiang Y, Zhang H, Kondza N, Woodrow KA. Core-shell nanoparticles for targeted and combination antiretroviral activity in gut-homing T cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:2143-2153. [PMID: 29964219 DOI: 10.1016/j.nano.2018.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/06/2018] [Accepted: 06/12/2018] [Indexed: 02/06/2023]
Abstract
A major sanctuary site for HIV infection is the gut-associated lymphoid tissue (GALT). The α4β7 integrin gut homing receptor is a promising therapeutic target for the virus reservoir because it leads to migration of infected cells to the GALT and facilitates HIV infection. Here, we developed a core-shell nanoparticle incorporating the α4β7 monoclonal antibody (mAb) as a dual-functional ligand for selectively targeting a protease inhibitor (PI) to gut-homing T cells in the GALT while simultaneously blocking HIV infection. Our nanoparticles significantly reduced cytotoxicity of the PI and enhanced its in vitro antiviral activity in combination with α4β7 mAb. We demonstrate targeting function of our nanocarriers in a human T cell line and primary cells isolated from macaque ileum, and observed higher in vivo biodistribution to the murine small intestines where they accumulate in α4β7+ cells. Our LCNP shows the potential to co-deliver ARVs and mAbs for eradicating HIV reservoirs.
Collapse
Affiliation(s)
- Shijie Cao
- Department of Bioengineering, University of Washington, Seattle, USA
| | - Yonghou Jiang
- Department of Bioengineering, University of Washington, Seattle, USA
| | - Hangyu Zhang
- Department of Bioengineering, University of Washington, Seattle, USA; Department of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology 116023, Dalian, China; Research Center for the Control Engineering of Translational Precision Medicine, Dalian University of Technology 116023, Dalian, China
| | - Nina Kondza
- Department of Bioengineering, University of Washington, Seattle, USA
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, Seattle, USA.
| |
Collapse
|
26
|
Mandal S, Kang G, Prathipati PK, Fan W, Li Q, Destache CJ. Long-acting parenteral combination antiretroviral loaded nano-drug delivery system to treat chronic HIV-1 infection: A humanized mouse model study. Antiviral Res 2018; 156:85-91. [PMID: 29885378 DOI: 10.1016/j.antiviral.2018.06.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/02/2018] [Accepted: 06/05/2018] [Indexed: 12/14/2022]
Abstract
Human immunodeficiency virus (HIV) patients are often diagnosed in the chronic stage of HIV/AIDS. Combination antiretroviral therapy (cART) has improved quality of life for HIV-infected patients. Present study describes a novel long-acting parenteral formulation of combination antiretroviral (cARV) loaded nano-drugs for treating chronic HIV-1 (cHIV) in a humanized-BLT (hu-BLT) mice model. The cARV (elvitegravir+tenofovir alafenamide+emtricitabine; EVG+TAF+FTC) drugs (mimicking marketed Genvoya® one-pill for HIV-treatment) were encapsulated in poly (lactic-co-glycolic acid) nanoparticles (NPs). To establish cHIV, hu-BLT mice were intravaginally challenged with HIV-1 and maintained for 15 weeks. Plasma viral load (pVL) was monitored by RT-PCR to confirm cHIV. Baseline pVL (week 15) was comparable between treated (n = 10) and control (n = 5) mice groups. Subsequently, treatment hu-BLT mice received 3 subcutaneous doses of cARV NPs (417 mg/kg per dose; n = 10), biweekly, and a fourth/terminal dose a week later. Prior to each treatment and on sacrifice (week 24), pVL was determined. Within three subcutaneous doses of cARV NPs, a non-detectable pVL was established (week 19) and continued until week 22. After the establishment of a non-detectable pVL (week 19-22), 4 treated-mice were sacrificed for tissue drug concentration determination by LC-MS/MS analysis. A considerable amount of cARV was detected at the HIV-infection target and reservoir organs. Subsequently, pVL rebounded comparable to control group by week 24, (7 weeks post-terminal dosage). The present study demonstrated cARV NPs augments sustained ARV efficacy in the cHIV humanized-mouse model. Therefore, cARV NPs could be a novel delivery system to treat cHIV patients, by overcoming drawbacks of conventional cART.
Collapse
Affiliation(s)
- Subhra Mandal
- School of Pharmacy & Health Professions, Creighton University, Omaha, NE 68178, USA.
| | - Guobin Kang
- Center for Virology, University of Nebraska-Lincoln, 4240 Fair St, Lincoln, NE 68583, USA
| | | | - Wenjin Fan
- Center for Virology, University of Nebraska-Lincoln, 4240 Fair St, Lincoln, NE 68583, USA
| | - Qingsheng Li
- Center for Virology, University of Nebraska-Lincoln, 4240 Fair St, Lincoln, NE 68583, USA
| | - Christopher J Destache
- School of Pharmacy & Health Professions, Creighton University, Omaha, NE 68178, USA; School of Medicine, Division of Infectious Diseases, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
27
|
Gao Y, Kraft JC, Yu D, Ho RJY. Recent developments of nanotherapeutics for targeted and long-acting, combination HIV chemotherapy. Eur J Pharm Biopharm 2018; 138:75-91. [PMID: 29678735 DOI: 10.1016/j.ejpb.2018.04.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 01/20/2023]
Abstract
Combination antiretroviral therapy (cART) given orally has transformed HIV from a terminal illness to a manageable chronic disease. Yet despite the recent development of newer and more potent drugs for cART and suppression of virus in blood to undetectable levels, residual virus remains in tissues. Upon stopping cART, virus rebounds and progresses to AIDS. Current oral cART regimens have several drawbacks including (1) challenges in patient adherence due to pill fatigue or side-effects, (2) the requirement of life-long daily drug intake, and (3) limited penetration and retention in cells within lymph nodes. Appropriately designed injectable nano-drug combinations that are long-acting and retained in HIV susceptible cells within lymph nodes may address these challenges. While a number of nanomaterials have been investigated for delivery of HIV drugs and drug combinations, key challenges involve developing and scaling delivery systems that provide a drug combination targeted to HIV host cells and tissues where residual virus persists. With validation of the drug-insufficiency hypothesis in lymph nodes, progress has been made in the development of drug combination nanoparticles that are long-acting and targeted to lymph nodes and cells. Unique drug combination nanoparticles (DcNPs) composed of three HIV drugs-lopinavir, ritonavir, and tenofovir-have been shown to provide enhanced drug levels in lymph nodes; and elevated drug-combination levels in HIV-host cells in the blood and plasma for two weeks. This review summarizes the progress in the development of nanoparticle-based drug delivery systems for HIV therapy. It discusses how injectable nanocarriers may be designed to enable delivery of drug combinations that are long-lasting and target-selective in physiological contexts (in vivo) to provide safe and effective use. Consistent drug combination exposure in the sites of residual HIV in tissues and cells may overcome drug insufficiency observed in patients on oral cART.
Collapse
Affiliation(s)
- Yu Gao
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China; Department of Pharmaceutics, University of Washington, Seattle, WA 98195, United States
| | - John C Kraft
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, United States
| | - Danni Yu
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, United States
| | - Rodney J Y Ho
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, United States; Department of Bioengineering, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
28
|
From in silico hit to long-acting late-stage preclinical candidate to combat HIV-1 infection. Proc Natl Acad Sci U S A 2017; 115:E802-E811. [PMID: 29279368 DOI: 10.1073/pnas.1717932115] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The HIV-1 pandemic affecting over 37 million people worldwide continues, with nearly one-half of the infected population on highly active antiretroviral therapy (HAART). Major therapeutic challenges remain because of the emergence of drug-resistant HIV-1 strains, limitations because of safety and toxicity with current HIV-1 drugs, and patient compliance for lifelong, daily treatment regimens. Nonnucleoside reverse transcriptase inhibitors (NNRTIs) that target the viral polymerase have been a key component of the current HIV-1 combination drug regimens; however, these issues hamper them. Thus, the development of novel more effective NNRTIs as anti-HIV-1 agents with fewer long-term liabilities, efficacy on new drug-resistant HIV-1 strains, and less frequent dosing is crucial. Using a computational and structure-based design strategy to guide lead optimization, a 5 µM virtual screening hit was transformed to a series of very potent nanomolar to picomolar catechol diethers. One representative, compound I, was shown to have nanomolar activity in HIV-1-infected T cells, potency on clinically relevant HIV-1 drug-resistant strains, lack of cytotoxicity and off-target effects, and excellent in vivo pharmacokinetic behavior. In this report, we show the feasibility of compound I as a late-stage preclinical candidate by establishing synergistic antiviral activity with existing HIV-1 drugs and clinical candidates and efficacy in HIV-1-infected humanized [human peripheral blood lymphocyte (Hu-PBL)] mice by completely suppressing viral loads and preventing human CD4+ T-cell loss. Moreover, a long-acting nanoformulation of compound I [compound I nanoparticle (compound I-NP)] in poly(lactide-coglycolide) (PLGA) was developed that shows sustained maintenance of plasma drug concentrations and drug efficacy for almost 3 weeks after a single dose.
Collapse
|
29
|
Khandalavala K, Mandal S, Pham R, Destache CJ, Shibata A. Nanoparticle Encapsulation for Antiretroviral Pre-Exposure Prophylaxis. JOURNAL OF NANOTECHNOLOGY AND MATERIALS SCIENCE 2017; 4:53-61. [PMID: 29881781 PMCID: PMC5987555 DOI: 10.15436/2377-1372.17.1583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
HIV continues to be one of the greatest challenges facing the global health community. More than 36 million people currently live with HIV and, in 2015 2.1 million new infections were reported globally. Pre-Exposure Prophylaxis (PrEP) prevents HIV infection by inhibiting viral entry, replication, or integration at the primary site of pathogenic contraction. Failures of large antiretroviral drug (ARV) PrEP clinical trials indicate the current insufficiencies of PrEP for women in high-risk areas, such as sub-Saharan Africa. A combination of social, adherence, and drug barriers create these insufficiencies and limit the efficacy of ARV. Nanotechnology offers the promise of extended drug release and enhances bioavailability of ARVs when encapsulated in polymeric nano-particles. Nanoparticle encapsulation has been evaluated in vitro in comparative studies to drug solutions and exhibit higher efficacy and lower cytotoxicity profiles. Delivery systems for nanoparticle PrEP facilitate administration of nano-encapsulated ARVs to high-risk tissues. In this mini-review, we summarize the comparative nanoparticle and drug solution studies and the potential of two delivery methods: thermosensitive gels and polymeric nanoparticle films for direct prophylactic applications.
Collapse
Affiliation(s)
| | - Subhra Mandal
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE, 68178, USA
| | - Rachel Pham
- Department of Biology, Creighton University, Omaha, NE, 68178, USA
| | | | | |
Collapse
|
30
|
Singh L, Kruger HG, Maguire GE, Govender T, Parboosing R. The role of nanotechnology in the treatment of viral infections. Ther Adv Infect Dis 2017; 4:105-131. [PMID: 28748089 PMCID: PMC5507392 DOI: 10.1177/2049936117713593] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Infectious diseases are the leading cause of mortality worldwide, with viruses in particular making global impact on healthcare and socioeconomic development. In addition, the rapid development of drug resistance to currently available therapies and adverse side effects due to prolonged use is a serious public health concern. The development of novel treatment strategies is therefore required. The interaction of nanostructures with microorganisms is fast-revolutionizing the biomedical field by offering advantages in both diagnostic and therapeutic applications. Nanoparticles offer unique physical properties that have associated benefits for drug delivery. These are predominantly due to the particle size (which affects bioavailability and circulation time), large surface area to volume ratio (enhanced solubility compared to larger particles), tunable surface charge of the particle with the possibility of encapsulation, and large drug payloads that can be accommodated. These properties, which are unlike bulk materials of the same compositions, make nanoparticulate drug delivery systems ideal candidates to explore in order to achieve and/or improve therapeutic effects. This review presents a broad overview of the application of nanosized materials for the treatment of common viral infections.
Collapse
Affiliation(s)
- Lavanya Singh
- Department of Virology, National Health Laboratory Service, University of KwaZulu-Natal, Durban, South Africa
| | - Hendrik G. Kruger
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
| | - Glenn E.M. Maguire
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
| | - Thavendran Govender
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
| | - Raveen Parboosing
- Department of Virology, National Health Laboratory Service, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
31
|
Machado A, Cunha-Reis C, Araújo F, Nunes R, Seabra V, Ferreira D, das Neves J, Sarmento B. Development and in vivo safety assessment of tenofovir-loaded nanoparticles-in-film as a novel vaginal microbicide delivery system. Acta Biomater 2016; 44:332-40. [PMID: 27544812 DOI: 10.1016/j.actbio.2016.08.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/18/2016] [Accepted: 08/16/2016] [Indexed: 02/04/2023]
Abstract
UNLABELLED Topical pre-exposure prophylaxis (PrEP) with antiretroviral drugs holds promise in preventing vaginal transmission of HIV. However, significant biomedical and social issues found in multiple past clinical trials still need to be addressed in order to optimize protection and users' adherence. One approach may be the development of improved microbicide products. A novel delivery platform comprising drug-loaded nanoparticles (NPs) incorporated into a thin polymeric film base (NPs-in-film) was developed in order to allow the vaginal administration of the microbicide drug candidate tenofovir. The system was optimized for relevant physicochemical features and characterized for biological properties, namely cytotoxicity and safety in a mouse model. Tenofovir-loaded poly(lactic-co-glycolic acid) (PLGA)/stearylamine (SA) composite NPs with mean diameter of 127nm were obtained with drug association efficiency above 50%, and further incorporated into an approximately 115μm thick, hydroxypropyl methylcellulose/poly(vinyl alcohol)-based film. The system was shown to possess suitable mechanical properties for vaginal administration and to quickly disintegrate in approximately 9min upon contact with a simulated vaginal fluid (SVF). The original osmolarity and pH of SVF was not affected by the film. Tenofovir was also released in a biphasic fashion (around 30% of the drug in 15min, followed by sustained release up to 24h). The incorporation of NPs further improved the adhesive potential of the film to ex vivo pig vaginal mucosa. Cytotoxicity of NPs and film was significantly increased by the incorporation of SA, but remained at levels considered tolerable for vaginal delivery of tenofovir. Moreover, histological analysis of genital tissues and cytokine/chemokine levels in vaginal lavages upon 14days of daily vaginal administration to mice confirmed that tenofovir-loaded NPs-in-film was safe and did not induce any apparent histological changes or pro-inflammatory response. Overall, obtained data support that the proposed delivery system combining the use of polymeric NPs and a film base may constitute an exciting alternative for the vaginal administration of microbicide drugs in the context of topical PrEP. STATEMENT OF SIGNIFICANCE The development of nanotechnology-based microbicides is a recent but promising research field seeking for new strategies to circumvent HIV sexual transmission. Different reports detail on the multiple potential advantages of using drug nanocarriers for such purpose. However, one important issue being frequently neglected regards the development of vehicles for the administration of microbicide nanosystems. In this study, we propose and detail on the development of a nanoparticle-in-film system for the vaginal delivery of the microbicide drug candidate tenofovir. This is an innovative approach that, to our best knowledge, had never been tested for tenofovir. Results, including those from in vivo testing, sustain that the proposed system is safe and holds potential for further development as a vaginal microbicide product.
Collapse
|
32
|
Prathipati PK, Mandal S, Destache CJ. Simultaneous quantification of tenofovir, emtricitabine, rilpivirine, elvitegravir and dolutegravir in mouse biological matrices by LC-MS/MS and its application to a pharmacokinetic study. J Pharm Biomed Anal 2016; 129:473-481. [PMID: 27497648 PMCID: PMC5003708 DOI: 10.1016/j.jpba.2016.07.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/20/2016] [Accepted: 07/26/2016] [Indexed: 11/17/2022]
Abstract
Combination antiretroviral (cARV) treatment is more common in human immunodeficiency virus (HIV) infection. In many instances, treatment regimen includes two or more combination of drugs from six different classes. Some of the antiretroviral combination medications are under study at preclinical and clinical stages. A precise method is required to quantify the drug concentration in biological matrices to study pharmacokinetic behavior and tissue distribution profile in animals and/or humans. We have developed and validated a sensitive and precise liquid chromatography-tandem mass spectrometry method for simultaneous quantification of selected antiretroviral drugs, tenofovir (TNF), emtricitabine (FTC), rilpivirine (RPV), dolutegravir (DTG) and elvitegravir (EVG) in mouse biological matrices. This method involves a solid phase extraction, simple isocratic chromatographic separation using Restek Pinnacle DB BiPh column (50mm×2.1mm, 5μm) and mass spectrometric detection by an API 3200 Q Trap instrument. The total run time for each sample was 6min. The method was validated in the concentration range of 5-2000ng/mL for FTC, RPV, DTG, EVG and 10-4000ng/mL for TNF respectively with correlation coefficients (r(2)) higher than 0.9976. The results of intra and inter-run assay precision and accuracy were within acceptance limits for all the five analytes. This method was used to support the study of pharmacokinetics and tissue distribution profile of nanoformulated antiretroviral drugs in mice.
Collapse
Affiliation(s)
- Pavan Kumar Prathipati
- Pharmacy Practice Department, Creighton University School of Pharmacy & Health Professions, Omaha, NE, United States.
| | - Subhra Mandal
- Pharmacy Practice Department, Creighton University School of Pharmacy & Health Professions, Omaha, NE, United States
| | - Christopher J Destache
- Pharmacy Practice Department, Creighton University School of Pharmacy & Health Professions, Omaha, NE, United States
| |
Collapse
|
33
|
Development and validation of a liquid chromatographic-tandem mass spectrometric method for the multiplexed quantification of etravirine, maraviroc, raltegravir, and rilpivirine in human plasma and tissue. J Pharm Biomed Anal 2016; 131:333-344. [PMID: 27632783 DOI: 10.1016/j.jpba.2016.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/21/2016] [Accepted: 08/24/2016] [Indexed: 01/04/2023]
Abstract
BACKGROUND Analytical methodologies for antiretroviral (ARV) quantification are important in determining both systemic and localized drug concentrations. The CCR5-antagonist maraviroc (MVC), the non-nucleoside reverse transcriptase inhibitors (NNRTIs) etravirine (ETV) and rilpivirine (RPV), as well as the integrase strand transfer inhibitor (INSTI) raltegravir (RAL), have all been evaluated using both oral and non-oral dosing regimens, demonstrating a need for dynamic and sensitive bioanalytical tools for drug quantification in plasma and tissue. METHODS K2EDTA plasma or blank luminal tissue lysate were spiked with ETV, MVC, RAL, and RPV. Following the addition of isotopically-labeled internal standards and sample extraction via protein precipitation or solid phase extraction, respectively, samples were subjected to liquid chromatographic-tandem mass spectrometric (LC-MS/MS) analysis. Chromatographic separation was performed using a Waters BEH C8, 50×2.1mm, 1.7μm particle size column, and detected on an API 5000 mass analyzer operated in selective reaction monitoring mode. The method was validated according to FDA Bioanalytical Method Validation guidelines. RESULTS Analytical methods were optimized for the multiplexed monitoring of ETV, MVC, RAL, and RPV in plasma and homogenized tissue lysate. The lower limits of quantification (LLOQs) for ETV, RAL, and RPV were 1ng/mL and the LLOQ for MVC was 0.1ng/mL in plasma; the LLOQs for all ARVs in homogenized tissue lysate was 0.05ng/sample. Standard curves were generated via weighted quadratic (plasma) or linear (tissue) regression of calibrators. Intra- and inter-assay precision and accuracy studies demonstrated %CVs≤15.93% and %DEVs ≤±13.52%, respectively. Stability and matrix effects studies, as well as external proficiency testing assessment, were also performed. All results were acceptable and in accordance with the guidelines recommended by the FDA, Guidance for Industry: Bioanalytical Method Validation document. CONCLUSIONS LC-MS/MS assays that are sensitive, specific, and dynamic have been developed and validated for the multiplexed quantification of ETV, MVC, RAL, and RPV in plasma and homogenized tissue lysate. The described methods meet sufficient throughput criteria to support large research trials.
Collapse
|
34
|
Clinical challenges in HIV/AIDS: Hints for advancing prevention and patient management strategies. Adv Drug Deliv Rev 2016; 103:5-19. [PMID: 27117711 DOI: 10.1016/j.addr.2016.04.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/08/2016] [Accepted: 04/16/2016] [Indexed: 01/01/2023]
Abstract
Acquired immune deficiency syndrome has been one of the most devastating epidemics of the last century. The current estimate for people living with the HIV is 36.9 million. Today, despite availability of potent and safe drugs for effective treatment, lifelong therapy is required for preventing HIV re-emergence from a pool of latently infected cells. However, recent evidence show the importance to expand HIV testing, to offer antiretroviral treatment to all infected individuals, and to ensure retention through all the cascade of care. In addition, circumcision, pre-exposure prophylaxis, and other biomedical tools are now available for included in a comprehensive preventive package. Use of all the available tools might allow cutting the HIV transmission in 2030. In this article, we review the status of the epidemic, the latest advances in prevention and treatment, the concept of treatment as prevention and the challenges and opportunities for the HIV cure agenda.
Collapse
|
35
|
das Neves J, Nunes R, Rodrigues F, Sarmento B. Nanomedicine in the development of anti-HIV microbicides. Adv Drug Deliv Rev 2016; 103:57-75. [PMID: 26829288 DOI: 10.1016/j.addr.2016.01.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/21/2016] [Accepted: 01/21/2016] [Indexed: 12/20/2022]
Abstract
Prevention plays an invaluable role in the fight against HIV/AIDS. The use of microbicides is considered an interesting potential approach for topical pre-exposure prophylaxis of HIV sexual transmission. The prospects of having an effective product available are expected to be fulfilled in the near future as driven by recent and forthcoming results of clinical trials. Different dosage forms and delivery strategies have been proposed and tested for multiple microbicide drug candidates presently at different stages of the development pipeline. One particularly interesting approach comprises the application of nanomedicine principles to the development of novel anti-HIV microbicides, but its implications to efficacy and safety are not yet fully understood. Nanotechnology-based systems, either presenting inherent anti-HIV activity or acting as drug nanocarriers, may significantly influence features such as drug solubility, stability of active payloads, drug release, interactions between active moieties and virus/cells, intracellular drug delivery, drug targeting, safety, antiviral activity, mucoadhesive behavior, drug distribution and tissue penetration, and pharmacokinetics. The present manuscript provides a comprehensive and holistic overview of these topics as relevant to the development of vaginal and rectal microbicides. In particular, recent advances pertaining inherently active microbicide nanosystems and microbicide drug nanocarriers are discussed.
Collapse
Affiliation(s)
- José das Neves
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde, Gandra, Portugal.
| | - Rute Nunes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Francisca Rodrigues
- REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Bruno Sarmento
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde, Gandra, Portugal.
| |
Collapse
|
36
|
Danial M, Telwatte S, Tyssen D, Cosson S, Tachedjian G, Moad G, Postma A. Combination anti-HIV therapy via tandem release of prodrugs from macromolecular carriers. Polym Chem 2016. [DOI: 10.1039/c6py01882c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reversible addition-fragmentation chain transfer (RAFT) polymerisation has been used to create a library of copolymers outfitted with a combination of self-immolative reverse transcriptase inhibitor prodrug pendents comprising zidovudine (AZT) and lamivudine (3TC).
Collapse
Affiliation(s)
| | - Sushama Telwatte
- Centre for Biomedical Research
- Burnet Institute
- Melbourne
- Australia
| | - David Tyssen
- Centre for Biomedical Research
- Burnet Institute
- Melbourne
- Australia
| | - Steffen Cosson
- CSIRO Manufacturing
- Clayton VIC 3168
- Australia
- Australian Institute for Bioengineering & Nanotechnology
- University of Queensland
| | - Gilda Tachedjian
- Centre for Biomedical Research
- Burnet Institute
- Melbourne
- Australia
- Monash University
| | - Graeme Moad
- CSIRO Manufacturing
- Clayton VIC 3168
- Australia
| | | |
Collapse
|