1
|
Khalid H, Shityakov S. Immunoinformatics-driven design and computational analysis of a multiepitope vaccine targeting uropathogenic Escherichia coli. In Silico Pharmacol 2024; 13:2. [PMID: 39717385 PMCID: PMC11663213 DOI: 10.1007/s40203-024-00288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/16/2024] [Indexed: 12/25/2024] Open
Abstract
Urinary tract infections (UTIs), largely caused by uropathogenic Escherichia coli (UPEC), are increasingly resistant to antibiotics and frequently recur. Using immunoinformatics, we designed a multiepitope peptide vaccine targeting UPEC virulence factors, including iron acquisition systems and adhesins. The construct features 12 cytotoxic T lymphocyte epitopes, six helper T lymphocyte epitopes, and six B-cell epitopes,and isoptimized for high antigenicity, immunogenicity, nontoxic, and low allergenic potential. Molecular docking and 0.4-µs molecular dynamics simulations revealed the molecular mechanism of theinteraction of the vaccine with Toll-like receptor 4 and a favorable binding energy of - 41.83 kcal/mol using an implicit solvation model. These promising in silico results suggest the potential efficacy of the vaccine in preventing UPEC infections and underscore immunoinformatics as a powerful tool for addressing antibiotic-resistant UTI pathogens. Graphical Abstract Supplementary information The online version contains supplementary material available at 10.1007/s40203-024-00288-z.
Collapse
Affiliation(s)
- Hina Khalid
- College Center for Microbial Lipids, Center for Functional Foods and Health, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, 255049 China
| | - Sergey Shityakov
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint Petersburg, Russian Federation
| |
Collapse
|
2
|
Elalouf A, Maoz H, Rosenfeld AY. Bioinformatics-Driven mRNA-Based Vaccine Design for Controlling Tinea Cruris Induced by Trichophyton rubrum. Pharmaceutics 2024; 16:983. [PMID: 39204328 PMCID: PMC11357599 DOI: 10.3390/pharmaceutics16080983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/26/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Tinea cruris, a dermatophyte fungal infection predominantly caused by Trichophyton rubrum and Epidermophyton floccosum, primarily affects the groin, pubic region, and adjacent thigh. Its recurrence is frequent, attributable to repeated fungal infections in susceptible individuals, especially those with onychomycosis or tinea pedis, which act as reservoirs for dermatophytes. Given the persistent nature of tinea cruris, vaccination emerges as a promising strategy for fungal infection management, offering targeted, durable protection against various fungal species. Vaccines stimulate both humoral and cell-mediated immunity and are administered prophylactically to prevent infections while minimizing the risk of antifungal resistance development. Developing fungal vaccines is challenging due to the thick fungal cell wall, similarities between fungal and human cells, antigenic variation, and evolutionary resemblance to animals, complicating non-toxic target identification and T-cell response variability. No prior research has shown an mRNA vaccine for T. rubrum. Hence, this study proposes a novel mRNA-based vaccine for tinea cruris, potentially offering long-term immunity and reducing reliance on antifungal medications. This study explores the complete proteome of T. rubrum, identifying potential protein candidates for vaccine development through reverse vaccinology. Immunogenic epitopes from these candidates were mapped and integrated into multitope vaccines and reverse translated to construct mRNA vaccines. Then, the mRNA was translated and computationally assessed for physicochemical, chemical, and immunological attributes. Notably, 1,3-beta-glucanosyltransferase, CFEM domain-containing protein, cell wall galactomannoprotein, and LysM domain-containing protein emerged as promising vaccine targets. Antigenic, immunogenic, non-toxic, and non-allergenic cytotoxic T lymphocyte, helper T lymphocyte, and B lymphocyte epitopes were selected and linked with appropriate linkers and Toll-like receptor (TLR) agonist adjuvants to formulate vaccine candidates targeting T. rubrum. The protein-based vaccines underwent reverse translation to construct the mRNA vaccines, which, after inoculation, were translated again by host ribosomes to work as potential components for triggering the immune response. After that, molecular docking, normal mode analysis, and molecular dynamic simulation confirmed strong binding affinities and stable complexes between vaccines and TLR receptors. Furthermore, immune simulations of vaccines with and without adjuvant demonstrated activation of immune responses, evidenced by elevated levels of IgG1, IgG2, IgM antibodies, cytokines, and interleukins. There was no significant change in antibody production between vaccines with and without adjuvants, but adjuvants are crucial for activating the innate immune response via TLRs. Although mRNA vaccines hold promise against fungal infections, further research is essential to assess their safety and efficacy. Experimental validation is crucial for evaluating their immunogenicity, effectiveness, and safety.
Collapse
Affiliation(s)
- Amir Elalouf
- Department of Management, Bar-Ilan University, Ramat Gan 5290002, Israel; (H.M.); (A.Y.R.)
| | | | | |
Collapse
|
3
|
Zhu X, Wang X, Liu T, Zhang D, Jin T. Design of multi-epitope vaccine against porcine rotavirus using computational biology and molecular dynamics simulation approaches. Virol J 2024; 21:160. [PMID: 39039549 PMCID: PMC11264426 DOI: 10.1186/s12985-024-02440-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024] Open
Abstract
Porcine Rotavirus (PoRV) is a significant pathogen affecting swine-rearing regions globally, presenting a substantial threat to the economic development of the livestock sector. At present, no specific pharmaceuticals are available for this disease, and treatment options remain exceedingly limited. This study seeks to design a multi-epitope peptide vaccine for PoRV employing bioinformatics approaches to robustly activate T-cell and B-cell immune responses. Two antigenic proteins, VP7 and VP8*, were selected from PoRV, and potential immunogenic T-cell and B-cell epitopes were predicted using immunoinformatic tools. These epitopes were further screened according to non-toxicity, antigenicity, non-allergenicity, and immunogenicity criteria. The selected epitopes were linked with linkers to form a novel multi-epitope vaccine construct, with the PADRE sequence (AKFVAAWTLKAAA) and RS09 peptide attached at the N-terminus of the designed peptide chain to enhance the vaccine's antigenicity. Protein-protein docking of the vaccine constructs with toll-like receptors (TLR3 and TLR4) was conducted using computational methods, with the lowest energy docking results selected as the optimal predictive model. Subsequently, molecular dynamics (MD) simulation methods were employed to assess the stability of the protein vaccine constructs and TLR3 and TLR4 receptors. The results indicated that the vaccine-TLR3 and vaccine-TLR4 docking models remained stable throughout the simulation period. Additionally, the C-IMMSIM tool was utilized to determine the immunogenic triggering capability of the vaccine protein, demonstrating that the constructed vaccine protein could induce both cell-mediated and humoral immune responses, thereby playing a role in eliciting host immune responses. In conclusion, this study successfully constructed a multi-epitope vaccine against PoRV and validated the stability and efficacy of the vaccine through computational analysis. However, as the study is purely computational, experimental evaluation is required to validate the safety and immunogenicity of the newly constructed vaccine protein.
Collapse
MESH Headings
- Animals
- Swine
- Molecular Dynamics Simulation
- Rotavirus/immunology
- Rotavirus/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/chemistry
- Computational Biology
- Epitopes, B-Lymphocyte/immunology
- Epitopes, B-Lymphocyte/genetics
- Rotavirus Vaccines/immunology
- Rotavirus Vaccines/chemistry
- Rotavirus Vaccines/genetics
- Rotavirus Infections/prevention & control
- Rotavirus Infections/immunology
- Rotavirus Infections/virology
- Vaccines, Subunit/immunology
- Vaccines, Subunit/genetics
- Vaccines, Subunit/chemistry
- Antigens, Viral/immunology
- Antigens, Viral/genetics
- Antigens, Viral/chemistry
- Molecular Docking Simulation
- Swine Diseases/prevention & control
- Swine Diseases/immunology
- Swine Diseases/virology
- Capsid Proteins/immunology
- Capsid Proteins/genetics
- Capsid Proteins/chemistry
- Vaccine Development
- Immunogenicity, Vaccine
Collapse
Affiliation(s)
- Xiaochen Zhu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China
| | - Xinyuan Wang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China
| | - Tingting Liu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China
| | - Dongchao Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China.
- Tianjin Engineering Technology Center of Livestock Pathogen Detection and Genetic Engineering Vaccine, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China.
| | - Tianming Jin
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.
- Tianjin Engineering Technology Center of Livestock Pathogen Detection and Genetic Engineering Vaccine, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China.
| |
Collapse
|
4
|
Banesh S, Gupta N, Reddy CV, Mallikarjunachari U, Patil N, Uddhavesh S, Saudagar P. A novel approach to design chimeric multi epitope vaccine against Leishmania exploiting infected host cell proteome. Heliyon 2024; 10:e31306. [PMID: 38813178 PMCID: PMC11133825 DOI: 10.1016/j.heliyon.2024.e31306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
Leishmaniasis is a major infectious disease having high mortality which could be attributed to lack of a suitable vaccine candidate. We propose a novel approach to design multiepitope vaccine to leishmaniasis exploiting specific membrane proteome from infected macrophage from host. The MHC-I, MHC-II and BC epitopes predicted for unique proteins from the infected macrophages and Leishmania and a MEV designed in various combinations (1a-1m). The epitope arrangements 1a, 1k, 1l, and 1 m showed a strong antigenicity profile and immune response. The molecular dynamics simulation indicate the 1k, 1l, and 1 m constructs have strong affinity toward TLR-2, TLR-3, and TLR-4. Overall the structural and immunogenicity profile suggests 1k is top candidate. Further, a computational model system with TLR-2, TLR-3, TLR-4, BCR, MHC-I and MHC-II was generated for 1k construct to understand the MEV interactions with immune components. Dihedral distribution and distance was enumerated to understand the movement of immune components towards 1k. The results indicate 1k has strong affinity for the immune response molecules especially TLR-3, BCR and MHC-II are coming in close contact with the MEV through the simulation. The study suggests that designed multi-epitope vaccine 1k has potential to induce proper immune response but warrants further studies.
Collapse
Affiliation(s)
- Sooram Banesh
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal, 506004, Telangana, India
| | - Neharika Gupta
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal, 506004, Telangana, India
| | - Chethireddy Vihadhar Reddy
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal, 506004, Telangana, India
| | - Uppuladinne Mallikarjunachari
- High Performance Computing - Medical and Bioinformatics Applications, Centre for Development of Advanced Computing (C-DAC), Pune, Maharastra, India
| | - Nupoor Patil
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal, 506004, Telangana, India
| | - Sonavane Uddhavesh
- High Performance Computing - Medical and Bioinformatics Applications, Centre for Development of Advanced Computing (C-DAC), Pune, Maharastra, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal, 506004, Telangana, India
| |
Collapse
|
5
|
Zhu F, Zhou Z, Ma S, Xu Y, Tan C, Yang H, Zhang P, Qin R, Luo Y, Pan P, Chen J. Design of a cryptococcus neoformans vaccine by subtractive proteomics combined with immunoinformatics. Int Immunopharmacol 2024; 135:112242. [PMID: 38772296 DOI: 10.1016/j.intimp.2024.112242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024]
Abstract
The emergence of Cryptococcus neoformans has posed an undeniable burden to many regions worldwide, with its strains mainly entering the lungs through the respiratory tract and spreading throughout the body. Limitations of drug regimens, such as high costs and limited options, have directed our attention toward the promising field of vaccine development. In this study, the subtractive proteomics approach was employed to select target proteins from databases that can accurately cover serotypes A and D of the Cryptococcus neoformans. Further, two multi-epitope vaccines consisting of T and B cell epitopes were demonstrated that they have good structural stability and could bind with immune receptor to induce desired immune responses in silico. After further evaluation, these vaccines show the potential for large-scale production and applicability to the majority of the population of the world. In summary, these two vaccines have been theoretically proven to combat Cryptococcus neoformans infections, awaiting further experimental validation of their actual protective effects.
Collapse
Affiliation(s)
- Fei Zhu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; FuRong Laboratory, Changsha 410078, Hunan, China
| | - Ziyou Zhou
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; FuRong Laboratory, Changsha 410078, Hunan, China
| | - Shiyang Ma
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; FuRong Laboratory, Changsha 410078, Hunan, China
| | - Yizhong Xu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; FuRong Laboratory, Changsha 410078, Hunan, China
| | - Caixia Tan
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hang Yang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; FuRong Laboratory, Changsha 410078, Hunan, China
| | - Peipei Zhang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; FuRong Laboratory, Changsha 410078, Hunan, China
| | - Rongliu Qin
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; FuRong Laboratory, Changsha 410078, Hunan, China
| | - Yuying Luo
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; FuRong Laboratory, Changsha 410078, Hunan, China
| | - Pinhua Pan
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; FuRong Laboratory, Changsha 410078, Hunan, China.
| | - Jie Chen
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; FuRong Laboratory, Changsha 410078, Hunan, China.
| |
Collapse
|
6
|
Do KTH, Willenzon S, Ristenpart J, Janssen A, Volz A, Sutter G, Förster R, Bošnjak B. The effect of Toll-like receptor agonists on the immunogenicity of MVA-SARS-2-S vaccine after intranasal administration in mice. Front Cell Infect Microbiol 2023; 13:1259822. [PMID: 37854858 PMCID: PMC10580083 DOI: 10.3389/fcimb.2023.1259822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023] Open
Abstract
Background and aims Modified Vaccinia virus Ankara (MVA) represents a promising vaccine vector for respiratory administration to induce protective lung immunity including tertiary lymphoid structure, the bronchus-associated lymphoid tissue (BALT). However, MVA expressing the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike protein (MVA-SARS-2-S) required prime-boost administration to induce high titers of anti-Spike antibodies in serum and bronchoalveolar lavage (BAL). As the addition of adjuvants enables efficient tailoring of the immune responses even to live vaccines, we tested whether Toll-like receptor (TLR)-agonists affect immune responses induced by a single dose of intranasally applied MVA-SARS-2-S. Methods We intranasally immunized C57BL/6 mice with MVA-SARS-2-S vaccine in the presence of either TLR3 agonist polyinosinic polycytidylic acid [poly(I:C)], TLR4 agonist bacterial lipopolysaccharide (LPS) from Escherichia coli, or TLR9 agonist CpG oligodeoxynucleotide (CpG ODN) 1826. At different time-points after immunization, we analyzed induced immune responses using flow cytometry, immunofluorescent microscopy, and ELISA. Results TLR agonists had profound effects on MVA-SARS-2-S-induced immune responses. At day 1 post intranasal application, the TLR4 agonist significantly affected MVA-induced activation of dendritic cells (DCs) within the draining bronchial lymph nodes, increasing the ratio of CD11b+CD86+ to CD103+CD86+ DCs. Nevertheless, the number of Spike-specific CD8+ T cells within the lungs at day 12 after vaccination was increased in mice that received MVA-SARS-2-S co-administered with TLR3 but not TLR4 agonists. TLR9 agonist did neither significantly affect MVA-induced DC activation nor the induction of Spike-specific CD8+ T cells but reduced both number and size of bronchus-associated lymphoid tissue. Surprisingly, the addition of all TLR agonists failed to boost the levels of Spike-specific antibodies in serum and bronchoalveolar lavage. Conclusions Our study indicates a potential role of TLR-agonists as a tool to modulate immune responses to live vector vaccines. Particularly TLR3 agonists hold a promise to potentiate MVA-induced cellular immune responses. On the other hand, additional research is necessary to identify optimal combinations of agonists that could enhance MVA-induced humoral responses.
Collapse
Affiliation(s)
- Kim Thi Hoang Do
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | | | - Anika Janssen
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Asisa Volz
- Institute for Virology, University of Veterinary Medicine Hannover, Hannover, Germany
- German Centre for Infection Research (DZIF), Munich, Germany
| | - Gerd Sutter
- German Centre for Infection Research (DZIF), Munich, Germany
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximiliam University (LMU) Munich, Munich, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Hannover, Germany
| | - Berislav Bošnjak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
7
|
Han S, Lee P, Choi HJ. Non-Invasive Vaccines: Challenges in Formulation and Vaccine Adjuvants. Pharmaceutics 2023; 15:2114. [PMID: 37631328 PMCID: PMC10458847 DOI: 10.3390/pharmaceutics15082114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Given the limitations of conventional invasive vaccines, such as the requirement for a cold chain system and trained personnel, needle-based injuries, and limited immunogenicity, non-invasive vaccines have gained significant attention. Although numerous approaches for formulating and administrating non-invasive vaccines have emerged, each of them faces its own challenges associated with vaccine bioavailability, toxicity, and other issues. To overcome such limitations, researchers have created novel supplementary materials and delivery systems. The goal of this review article is to provide vaccine formulation researchers with the most up-to-date information on vaccine formulation and the immunological mechanisms available, to identify the technical challenges associated with the commercialization of non-invasive vaccines, and to guide future research and development efforts.
Collapse
Affiliation(s)
| | | | - Hyo-Jick Choi
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada; (S.H.); (P.L.)
| |
Collapse
|
8
|
Ruaro-Moreno M, Monterrubio-López GP, Reyes-Gastellou A, Castelán-Vega JA, Jiménez-Alberto A, Aparicio-Ozores G, Delgadillo-Gutiérrez K, González-Y-Merchand JA, Ribas-Aparicio RM. Design of a Multi-Epitope Vaccine against Tuberculosis from Mycobacterium tuberculosis PE_PGRS49 and PE_PGRS56 Proteins by Reverse Vaccinology. Microorganisms 2023; 11:1647. [PMID: 37512820 PMCID: PMC10385543 DOI: 10.3390/microorganisms11071647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/30/2023] Open
Abstract
Tuberculosis is a disease caused by Mycobacterium tuberculosis, representing the second leading cause of death by an infectious agent worldwide. The available vaccine against this disease has insufficient coverage and variable efficacy, accounting for a high number of cases worldwide. In fact, an estimated third of the world's population has a latent infection. Therefore, developing new vaccines is crucial to preventing it. In this study, the highly antigenic PE_PGRS49 and PE_PGRS56 proteins were analyzed. These proteins were used for predicting T- and B-cell epitopes and for human leukocyte antigen (HLA) protein binding efficiency. Epitopes GGAGGNGSLSS, FAGAGGQGGLGG, GIGGGTQSATGLG (PE_PGRS49), and GTGWNGGKGDTG (PE_PGRS56) were selected based on their best physicochemical, antigenic, non-allergenic, and non-toxic properties and coupled to HLA I and HLA II structures for in silico assays. A construct with an adjuvant (RS09) plus each epitope joined by GPGPG linkers was designed, and the stability of the HLA-coupled construct was further evaluated by molecular dynamics simulations. Although experimental and in vivo studies are still necessary to ensure its protective effect against the disease, this study shows that the vaccine construct is dynamically stable and potentially effective against tuberculosis.
Collapse
Affiliation(s)
- Maritriny Ruaro-Moreno
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (M.R.-M.); (G.P.M.-L.); (A.R.-G.); (G.A.-O.); (K.D.-G.)
- Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico;
| | - Gloria Paulina Monterrubio-López
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (M.R.-M.); (G.P.M.-L.); (A.R.-G.); (G.A.-O.); (K.D.-G.)
| | - Abraham Reyes-Gastellou
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (M.R.-M.); (G.P.M.-L.); (A.R.-G.); (G.A.-O.); (K.D.-G.)
| | - Juan Arturo Castelán-Vega
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (M.R.-M.); (G.P.M.-L.); (A.R.-G.); (G.A.-O.); (K.D.-G.)
- Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico;
| | - Alicia Jiménez-Alberto
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (M.R.-M.); (G.P.M.-L.); (A.R.-G.); (G.A.-O.); (K.D.-G.)
- Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico;
| | - Gerardo Aparicio-Ozores
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (M.R.-M.); (G.P.M.-L.); (A.R.-G.); (G.A.-O.); (K.D.-G.)
- Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico;
| | - Karen Delgadillo-Gutiérrez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (M.R.-M.); (G.P.M.-L.); (A.R.-G.); (G.A.-O.); (K.D.-G.)
| | - Jorge Alberto González-Y-Merchand
- Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico;
| | - Rosa María Ribas-Aparicio
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (M.R.-M.); (G.P.M.-L.); (A.R.-G.); (G.A.-O.); (K.D.-G.)
- Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico;
| |
Collapse
|
9
|
Chatterjee D, Al Rimon R, Chowdhury UF, Islam MR. A multi-epitope based vaccine against the surface proteins expressed in cyst and trophozoite stages of parasite Entamoeba histolytica. J Immunol Methods 2023; 517:113475. [PMID: 37088358 DOI: 10.1016/j.jim.2023.113475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/12/2023] [Accepted: 04/19/2023] [Indexed: 04/25/2023]
Abstract
Entamoeba histolytica, an anaerobic parasite, infects humans and other primates and causes fatal diseases, such as amebiasis, amebic liver abscesses, and many others. Thousands of people are infected and dying due to the need for a proper protective cure, especially in poor sanitizing regions, such as Latin America, Asia, and Africa. Around 10% of the world population is infected by E. histolytica every year. Consequently, novel preventive approaches are required to eliminate the threats of the parasite. A designed vaccine targeting the exposed proteins that are common between cyst and trophozoite stages of the parasite's life cycle would be an effective way to repress the impact of the parasite. Therefore, an in silico bioinformatics approach was performed to design an effective vaccine targeting surface proteins common between both stages of the parasite's life cycle using B-cell and T-cell epitopes. The epitopes derived from the conserved portions of the proteins and their corresponding isomers specific to the parasite suggested that the vaccine could benefit cross-protection. Furthermore, the three-dimensional structure of the designed vaccine was modelled, refined, and validated using multiple bioinformatics tools. The physiological properties and solubility were also predicted using different algorithmic tools and found to be highly soluble in nature. The vaccine was found interactcted with TLR immune receptors, and the stability was observed via dynamics simulation. Codon optimization and cloning were performed for expression analysis. Immune simulation prediction anticipated significant immune responses with a high IgG and IgM antibodies expression, Th and Tc cells population, B-cell population, memory cells, INF-γ, and IL-2 cytokines. Therefore, the constructed multi-epitope putative vaccine can effectively neutralize the parasite's harmful effects.
Collapse
Affiliation(s)
- Dipankor Chatterjee
- Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| | - Razoan Al Rimon
- Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| | - Umar Faruq Chowdhury
- Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| | | |
Collapse
|
10
|
Malik S, Muhammad K, Aslam SM, Waheed Y. Tracing the recent updates on vaccination approaches and significant adjuvants being developed against HIV. Expert Rev Anti Infect Ther 2023; 21:431-446. [PMID: 36803177 DOI: 10.1080/14787210.2023.2182771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
INTRODUCTION Human Immunodeficiency Virus type 1 (HIV1); the causative agent of Acquired Immunodeficiency Syndrome (AIDS), has been a major target of the scientific community to develop an anti-viral therapy. Some successful discoveries have been made during the last two decades in the form of availability of antiviral therapy in endemic regions. Nevertheless, a total cure and safety vaccine has not yet been designed to eradicate HIV from the world. AREAS COVERED The purpose of this comprehensive study is to compile recent data regarding therapeutic interventions against HIV and to determine future research needs in this field. A systematic research strategy has been used to gather data from recent, most advanced published electronic sources. Literature based results show that experiments at the invitro level and animal models are continuously in research annals and are providing hope for human trials. EXPERT OPINION There is still a gap and more work is needed in the direction of modern drug and vaccination designs. Moreover coordination is necessary among researchers, educationists, public health workers, and the general community to communicate and coordinate the repercussions associated with the deadly disease. It is important for taking timely measures regarding mitigation and adaptation with HIV in future.
Collapse
Affiliation(s)
- Shiza Malik
- Bridging Health Foundation, Rawalpindi, Pakistan
| | - Khalid Muhammad
- Department of Biology, College of Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sanaa Masood Aslam
- Foundation University College of Dentistry, Foundation University Islamabad, Islamabad, Pakistan
| | - Yasir Waheed
- Office of Research, Innovation, and Commercialization (ORIC), Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad, Pakistan.,Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| |
Collapse
|
11
|
Tan C, Zhu F, Pan P, Wu A, Li C. Development of multi-epitope vaccines against the monkeypox virus based on envelope proteins using immunoinformatics approaches. Front Immunol 2023; 14:1112816. [PMID: 36993967 PMCID: PMC10040844 DOI: 10.3389/fimmu.2023.1112816] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/21/2023] [Indexed: 03/14/2023] Open
Abstract
BackgroundSince May 2022, cases of monkeypox, a zoonotic disease caused by the monkeypox virus (MPXV), have been increasingly reported worldwide. There are, however, no proven therapies or vaccines available for monkeypox. In this study, several multi-epitope vaccines were designed against the MPXV using immunoinformatics approaches.MethodsThree target proteins, A35R and B6R, enveloped virion (EV) form-derived antigens, and H3L, expressed on the mature virion (MV) form, were selected for epitope identification. The shortlisted epitopes were fused with appropriate adjuvants and linkers to vaccine candidates. The biophysical andbiochemical features of vaccine candidates were evaluated. The Molecular docking and molecular dynamics(MD) simulation were run to understand the binding mode and binding stability between the vaccines and Toll-like receptors (TLRs) and major histocompatibility complexes (MHCs). The immunogenicity of the designed vaccines was evaluated via immune simulation.ResultsFive vaccine constructs (MPXV-1-5) were formed. After the evaluation of various immunological and physicochemical parameters, MPXV-2 and MPXV-5 were selected for further analysis. The results of molecular docking showed that the MPXV-2 and MPXV-5 had a stronger affinity to TLRs (TLR2 and TLR4) and MHC (HLA-A*02:01 and HLA-DRB1*02:01) molecules, and the analyses of molecular dynamics (MD) simulation have further confirmed the strong binding stability of MPXV-2 and MPXV-5 with TLRs and MHC molecules. The results of the immune simulation indicated that both MPXV-2 and MPXV-5 could effectively induce robust protective immune responses in the human body.ConclusionThe MPXV-2 and MPXV-5 have good efficacy against the MPXV in theory, but further studies are required to validate their safety and efficacy.
Collapse
Affiliation(s)
- Caixia Tan
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Changsha, Hunan, China
| | - Fei Zhu
- National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Changsha, Hunan, China
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
| | - Pinhua Pan
- National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Changsha, Hunan, China
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- *Correspondence: Chunhui Li, ; Anhua Wu, ; Pinhua Pan,
| | - Anhua Wu
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Changsha, Hunan, China
- *Correspondence: Chunhui Li, ; Anhua Wu, ; Pinhua Pan,
| | - Chunhui Li
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Changsha, Hunan, China
- *Correspondence: Chunhui Li, ; Anhua Wu, ; Pinhua Pan,
| |
Collapse
|
12
|
Mahmoodi S, Amirzakaria JZ, Ghasemian A. In silico design and validation of a novel multi-epitope vaccine candidate against structural proteins of Chikungunya virus using comprehensive immunoinformatics analyses. PLoS One 2023; 18:e0285177. [PMID: 37146081 PMCID: PMC10162528 DOI: 10.1371/journal.pone.0285177] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/16/2023] [Indexed: 05/07/2023] Open
Abstract
Chikungunya virus (CHIKV) is an emerging viral infectious agent with the potential of causing pandemic. There is neither a protective vaccine nor an approved drug against the virus. The aim of this study was design of a novel multi-epitope vaccine (MEV) candidate against the CHIKV structural proteins using comprehensive immunoinformatics and immune simulation analyses. In this study, using comprehensive immunoinformatics approaches, we developed a novel MEV candidate using the CHIKV structural proteins (E1, E2, 6 K, and E3). The polyprotein sequence was obtained from the UniProt Knowledgebase and saved in FASTA format. The helper and cytotoxic T lymphocytes (HTLs and CTLs respectively) and B cell epitopes were predicted. The toll-like receptor 4 (TLR4) agonist RS09 and PADRE epitope were employed as promising immunostimulatory adjuvant proteins. All vaccine components were fused using proper linkers. The MEV construct was checked in terms of antigenicity, allergenicity, immunogenicity, and physicochemical features. The docking of the MEV construct and the TLR4 and molecular dynamics (MD) simulation were also performed to assess the binding stability. The designed construct was non-allergen and was immunogen which efficiently stimulated immune responses using the proper synthetic adjuvant. The MEV candidate exhibited acceptable physicochemical features. Immune provocation included prediction of HTL, B cell, and CTL epitopes. The docking and MD simulation confirmed the stability of the docked TLR4-MEV complex. The high-level protein expression in the Escherichia coli (E. coli) host was observed through in silico cloning. The in vitro, in vivo, and clinical trial investigations are required to verify the findings of the current study.
Collapse
Affiliation(s)
- Shirin Mahmoodi
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Javad Zamani Amirzakaria
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
13
|
Antonelli AC, Almeida VP, da Fonseca SG. Immunoinformatics Vaccine Design for Zika Virus. Methods Mol Biol 2023; 2673:411-429. [PMID: 37258930 DOI: 10.1007/978-1-0716-3239-0_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Zika virus (ZIKV) is an emerging virus from the Flaviviridae family and Flavivirus genus that has caused important outbreaks around the world. ZIKV infection is associated with severe neuropathology in newborns and adults. Until now, there is no licensed vaccine available for ZIKV infection. Therefore, the development of a safe and effective vaccine against ZIKV is an urgent need. Recently, we designed an in silico multi-epitope vaccine for ZIKV based on immunoinformatics tools. To construct this in silico ZIKV vaccine, we used a consensus sequence generated from ZIKV sequences available in databank. Then, we selected CD4+ and CD8+ T cell epitopes from all ZIKV proteins based on the binding prediction to class II and class I human leukocyte antigen (HLA) molecules, promiscuity, and immunogenicity. ZIKV Envelope protein domain III (EDIII) was added to the construct and B cell epitopes were identified. Adjuvants were associated to increase immunogenicity. Distinct linkers were used for connecting the CD4+ and CD8+ T cell epitopes, EDIII, and adjuvants. Several analyses, such as antigenicity, population coverage, allergenicity, autoimmunity, and secondary and tertiary structures of the vaccine, were evaluated using various immunoinformatics tools and online web servers. In this chapter, we present the protocols with the rationale and detailed steps needed for this in silico multi-epitope ZIKV vaccine design.
Collapse
Affiliation(s)
- Ana Clara Antonelli
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Vinnycius Pereira Almeida
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Simone Gonçalves da Fonseca
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
14
|
Teng Z, Meng LY, Yang JK, He Z, Chen XG, Liu Y. Bridging nanoplatform and vaccine delivery, a landscape of strategy to enhance nasal immunity. J Control Release 2022; 351:456-475. [PMID: 36174803 DOI: 10.1016/j.jconrel.2022.09.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022]
Abstract
Vaccination is an urgently needed and effective option to address epidemic, cancers, allergies, and other diseases. Nasal administration of vaccines offers many benefits over needle-based injection including high compliance and less risk of infection. Inactivated or attenuated vaccines as convention vaccine present potential risks of pathogenic virulence reversal, the focus of nasal vaccine development has shifted to the use of next-generation (subunit and nucleic acid) vaccines. However, subunit and nucleic acid vaccine intranasally have numerous challenges in development and utilization due to mucociliary clearance, mucosal epithelial tight junction, and enzyme/pH degradation. Nanoplatforms as ideal delivery systems, with the ability to enhance the retention, penetration, and uptake of nasal mucosa, shows great potential in improving immunogenic efficacy of nasal vaccine. This review provides an overview of delivery strategies for overcoming nasal barrier, including mucosal adhesion, mucus penetration, targeting of antigen presenting cells (APCs), enhancement of paracellular transportation. We discuss methods of enhancing antigen immunogenicity by nanoplatforms as immune-modulators or multi-antigen co-delivery. Meanwhile, we describe the application status and development prospect of nanoplatforms for nasal vaccine administration. Development of nanoplatforms for vaccine delivery via nasal route will facilitate large-scale and faster global vaccination, helping to address the threat of epidemics.
Collapse
Affiliation(s)
- Zhuang Teng
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Ling-Yang Meng
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Jian-Ke Yang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Zheng He
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Xi-Guang Chen
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, PR China
| | - Ya Liu
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
15
|
Floresta G, Zagni C, Gentile D, Patamia V, Rescifina A. Artificial Intelligence Technologies for COVID-19 De Novo Drug Design. Int J Mol Sci 2022; 23:ijms23063261. [PMID: 35328682 PMCID: PMC8949797 DOI: 10.3390/ijms23063261] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/16/2022] Open
Abstract
The recent covid crisis has provided important lessons for academia and industry regarding digital reorganization. Among the fascinating lessons from these times is the huge potential of data analytics and artificial intelligence. The crisis exponentially accelerated the adoption of analytics and artificial intelligence, and this momentum is predicted to continue into the 2020s and beyond. Drug development is a costly and time-consuming business, and only a minority of approved drugs generate returns exceeding the research and development costs. As a result, there is a huge drive to make drug discovery cheaper and faster. With modern algorithms and hardware, it is not too surprising that the new technologies of artificial intelligence and other computational simulation tools can help drug developers. In only two years of covid research, many novel molecules have been designed/identified using artificial intelligence methods with astonishing results in terms of time and effectiveness. This paper reviews the most significant research on artificial intelligence in de novo drug design for COVID-19 pharmaceutical research.
Collapse
|
16
|
Feng F, Wen Z, Chen J, Yuan Y, Wang C, Sun C. Strategies to Develop a Mucosa-Targeting Vaccine against Emerging Infectious Diseases. Viruses 2022; 14:v14030520. [PMID: 35336927 PMCID: PMC8952777 DOI: 10.3390/v14030520] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
Numerous pathogenic microbes, including viruses, bacteria, and fungi, usually infect the host through the mucosal surfaces of the respiratory tract, gastrointestinal tract, and reproductive tract. The mucosa is well known to provide the first line of host defense against pathogen entry by physical, chemical, biological, and immunological barriers, and therefore, mucosa-targeting vaccination is emerging as a promising strategy for conferring superior protection. However, there are still many challenges to be solved to develop an effective mucosal vaccine, such as poor adhesion to the mucosal surface, insufficient uptake to break through the mucus, and the difficulty in avoiding strong degradation through the gastrointestinal tract. Recently, increasing efforts to overcome these issues have been made, and we herein summarize the latest findings on these strategies to develop mucosa-targeting vaccines, including a novel needle-free mucosa-targeting route, the development of mucosa-targeting vectors, the administration of mucosal adjuvants, encapsulating vaccines into nanoparticle formulations, and antigen design to conjugate with mucosa-targeting ligands. Our work will highlight the importance of further developing mucosal vaccine technology to combat the frequent outbreaks of infectious diseases.
Collapse
Affiliation(s)
- Fengling Feng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (F.F.); (Z.W.); (J.C.); (Y.Y.); (C.W.)
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Ziyu Wen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (F.F.); (Z.W.); (J.C.); (Y.Y.); (C.W.)
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Jiaoshan Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (F.F.); (Z.W.); (J.C.); (Y.Y.); (C.W.)
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Yue Yuan
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (F.F.); (Z.W.); (J.C.); (Y.Y.); (C.W.)
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Congcong Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (F.F.); (Z.W.); (J.C.); (Y.Y.); (C.W.)
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Caijun Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (F.F.); (Z.W.); (J.C.); (Y.Y.); (C.W.)
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
- Correspondence:
| |
Collapse
|
17
|
Antonelli ACB, Almeida VP, de Castro FOF, Silva JM, Pfrimer IAH, Cunha-Neto E, Maranhão AQ, Brígido MM, Resende RO, Bocca AL, Fonseca SG. In silico construction of a multiepitope Zika virus vaccine using immunoinformatics tools. Sci Rep 2022; 12:53. [PMID: 34997041 PMCID: PMC8741764 DOI: 10.1038/s41598-021-03990-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 12/01/2021] [Indexed: 01/02/2023] Open
Abstract
Zika virus (ZIKV) is an arbovirus from the Flaviviridae family and Flavivirus genus. Neurological events have been associated with ZIKV-infected individuals, such as Guillain-Barré syndrome, an autoimmune acute neuropathy that causes nerve demyelination and can induce paralysis. With the increase of ZIKV infection incidence in 2015, malformation and microcephaly cases in newborns have grown considerably, which suggested congenital transmission. Therefore, the development of an effective vaccine against ZIKV became an urgent need. Live attenuated vaccines present some theoretical risks for administration in pregnant women. Thus, we developed an in silico multiepitope vaccine against ZIKV. All structural and non-structural proteins were investigated using immunoinformatics tools designed for the prediction of CD4 + and CD8 + T cell epitopes. We selected 13 CD8 + and 12 CD4 + T cell epitopes considering parameters such as binding affinity to HLA class I and II molecules, promiscuity based on the number of different HLA alleles that bind to the epitopes, and immunogenicity. ZIKV Envelope protein domain III (EDIII) was added to the vaccine construct, creating a hybrid protein domain-multiepitope vaccine. Three high scoring continuous and two discontinuous B cell epitopes were found in EDIII. Aiming to increase the candidate vaccine antigenicity even further, we tested secondary and tertiary structures and physicochemical parameters of the vaccine conjugated to four different protein adjuvants: flagellin, 50S ribosomal protein L7/L12, heparin-binding hemagglutinin, or RS09 synthetic peptide. The addition of the flagellin adjuvant increased the vaccine's predicted antigenicity. In silico predictions revealed that the protein is a probable antigen, non-allergenic and predicted to be stable. The vaccine’s average population coverage is estimated to be 87.86%, which indicates it can be administered worldwide. Peripheral Blood Mononuclear Cells (PBMC) of individuals with previous ZIKV infection were tested for cytokine production in response to the pool of CD4 and CD8 ZIKV peptide selected. CD4 + and CD8 + T cells showed significant production of IFN-γ upon stimulation and IL-2 production was also detected by CD8 + T cells, which indicated the potential of our peptides to be recognized by specific T cells and induce immune response. In conclusion, we developed an in silico universal vaccine predicted to induce broad and high-coverage cellular and humoral immune responses against ZIKV, which can be a good candidate for posterior in vivo validation.
Collapse
Affiliation(s)
- Ana Clara Barbosa Antonelli
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Rua 235 s/n, sala 335, Setor Universitário, Goiânia, GO, 74605-050, Brazil
| | - Vinnycius Pereira Almeida
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Rua 235 s/n, sala 335, Setor Universitário, Goiânia, GO, 74605-050, Brazil
| | - Fernanda Oliveira Feitosa de Castro
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Rua 235 s/n, sala 335, Setor Universitário, Goiânia, GO, 74605-050, Brazil.,Departament of Master in Environmental Sciences and Health, School of Medical, Pharmaceutical and Biomedical Sciences, Pontifical Catholic University of Goiás, Goiânia, Brazil
| | | | - Irmtraut Araci Hoffmann Pfrimer
- Departament of Master in Environmental Sciences and Health, School of Medical, Pharmaceutical and Biomedical Sciences, Pontifical Catholic University of Goiás, Goiânia, Brazil
| | - Edecio Cunha-Neto
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil.,Institute for Investigation in Immunology (iii) - National Institute of Science and Technology (INCT), São Paulo, Brazil
| | - Andréa Queiroz Maranhão
- Department of Cell Biology, University of Brasília, Brasília, Brazil.,Institute for Investigation in Immunology (iii) - National Institute of Science and Technology (INCT), São Paulo, Brazil
| | - Marcelo Macedo Brígido
- Department of Cell Biology, University of Brasília, Brasília, Brazil.,Institute for Investigation in Immunology (iii) - National Institute of Science and Technology (INCT), São Paulo, Brazil
| | | | | | - Simone Gonçalves Fonseca
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Rua 235 s/n, sala 335, Setor Universitário, Goiânia, GO, 74605-050, Brazil. .,Institute for Investigation in Immunology (iii) - National Institute of Science and Technology (INCT), São Paulo, Brazil.
| |
Collapse
|
18
|
Xu H, Cai L, Hufnagel S, Cui Z. Intranasal vaccine: Factors to consider in research and development. Int J Pharm 2021; 609:121180. [PMID: 34637935 DOI: 10.1016/j.ijpharm.2021.121180] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 01/01/2023]
Abstract
Most existing vaccines for human use are administered by needle-based injection. Administering vaccines needle-free intranasally has numerous advantages over by needle-based injection, but there are only a few intranasal vaccines that are currently approved for human use, and all of them are live attenuated influenza virus vaccines. Clearly, there are immunological as well as non-immunological challenges that prevent vaccine developers from choosing the intranasal route of administration. We reviewed current approved intranasal vaccines and pipelines and described the target of intranasal vaccines, i.e. nose and lymphoid tissues in the nasal cavity. We then analyzed factors unique to intranasal vaccines that need to be considered when researching and developing new intranasal vaccines. We concluded that while the choice of vaccine formulations, mucoadhesives, mucosal and epithelial permeation enhancers, and ligands that target M-cells are important, safe and effective intranasal mucosal vaccine adjuvants are needed to successfully develop an intranasal vaccine that is not based on live-attenuated viruses or bacteria. Moreover, more effective intranasal vaccine application devices that can efficiently target a vaccine to lymphoid tissues in the nasal cavity as well as preclinical animal models that can better predict intranasal vaccine performance in clinical trials are needed to increase the success rate of intranasal vaccines in clinical trials.
Collapse
Affiliation(s)
- Haiyue Xu
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Lucy Cai
- University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Stephanie Hufnagel
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Zhengrong Cui
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States.
| |
Collapse
|
19
|
Yang Z, Bogdan P, Nazarian S. An in silico deep learning approach to multi-epitope vaccine design: a SARS-CoV-2 case study. Sci Rep 2021; 11:3238. [PMID: 33547334 PMCID: PMC7865008 DOI: 10.1038/s41598-021-81749-9] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 01/11/2021] [Indexed: 12/22/2022] Open
Abstract
The rampant spread of COVID-19, an infectious disease caused by SARS-CoV-2, all over the world has led to over millions of deaths, and devastated the social, financial and political entities around the world. Without an existing effective medical therapy, vaccines are urgently needed to avoid the spread of this disease. In this study, we propose an in silico deep learning approach for prediction and design of a multi-epitope vaccine (DeepVacPred). By combining the in silico immunoinformatics and deep neural network strategies, the DeepVacPred computational framework directly predicts 26 potential vaccine subunits from the available SARS-CoV-2 spike protein sequence. We further use in silico methods to investigate the linear B-cell epitopes, Cytotoxic T Lymphocytes (CTL) epitopes, Helper T Lymphocytes (HTL) epitopes in the 26 subunit candidates and identify the best 11 of them to construct a multi-epitope vaccine for SARS-CoV-2 virus. The human population coverage, antigenicity, allergenicity, toxicity, physicochemical properties and secondary structure of the designed vaccine are evaluated via state-of-the-art bioinformatic approaches, showing good quality of the designed vaccine. The 3D structure of the designed vaccine is predicted, refined and validated by in silico tools. Finally, we optimize and insert the codon sequence into a plasmid to ensure the cloning and expression efficiency. In conclusion, this proposed artificial intelligence (AI) based vaccine discovery framework accelerates the vaccine design process and constructs a 694aa multi-epitope vaccine containing 16 B-cell epitopes, 82 CTL epitopes and 89 HTL epitopes, which is promising to fight the SARS-CoV-2 viral infection and can be further evaluated in clinical studies. Moreover, we trace the RNA mutations of the SARS-CoV-2 and ensure that the designed vaccine can tackle the recent RNA mutations of the virus.
Collapse
MESH Headings
- Allergens
- COVID-19/prevention & control
- COVID-19 Vaccines/adverse effects
- COVID-19 Vaccines/chemistry
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/toxicity
- Codon Usage
- Computational Biology
- Deep Learning
- Drug Design
- Epitopes, B-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/immunology
- Humans
- Immunogenicity, Vaccine
- Models, Molecular
- Molecular Docking Simulation
- Molecular Dynamics Simulation
- Mutation
- Protein Conformation
- RNA, Viral
- SARS-CoV-2/chemistry
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- Solubility
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Helper-Inducer/immunology
- Vaccines, Subunit/chemistry
- Vaccines, Subunit/immunology
Collapse
Affiliation(s)
- Zikun Yang
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Paul Bogdan
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Shahin Nazarian
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| |
Collapse
|
20
|
Devi YD, Devi A, Gogoi H, Dehingia B, Doley R, Buragohain AK, Singh CS, Borah PP, Rao CD, Ray P, Varghese GM, Kumar S, Namsa ND. Exploring rotavirus proteome to identify potential B- and T-cell epitope using computational immunoinformatics. Heliyon 2020; 6:e05760. [PMID: 33426322 PMCID: PMC7779714 DOI: 10.1016/j.heliyon.2020.e05760] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/02/2020] [Accepted: 12/14/2020] [Indexed: 11/28/2022] Open
Abstract
Rotavirus is the most common cause of acute gastroenteritis in infants and children worldwide. The functional correlation of B- and T-cells to long-lasting immunity against rotavirus infection in the literature is limited. In this work, a series of computational immuno-informatics approaches were applied and identified 28 linear B-cells, 26 conformational B-cell, 44 TC cell and 40 TH cell binding epitopes for structural and non-structural proteins of rotavirus. Further selection of putative B and T cell epitopes in the multi-epitope vaccine construct was carried out based on immunogenicity, conservancy, allergenicity and the helical content of predicted epitopes. An in-silico vaccine constructs was developed using an N-terminal adjuvant (RGD motif) followed by TC and TH cell epitopes and B-cell epitope with an appropriate linker. Multi-threading models of multi-epitope vaccine construct with B- and T-cell epitopes were generated and molecular dynamics simulation was performed to determine the stability of designed vaccine. Codon optimized multi-epitope vaccine antigens was expressed and affinity purified using the E. coli expression system. Further the T cell epitope presentation assay using the recombinant multi-epitope constructs and the T cell epitope predicted and identified in this study have not been investigated. Multi-epitope vaccine construct encompassing predicted B- and T-cell epitopes may help to generate long-term immune responses against rotavirus. The computational findings reported in this study may provide information in developing epitope-based vaccine and diagnostic assay for rotavirus-led diarrhea in children's.
Collapse
Affiliation(s)
- Yengkhom Damayanti Devi
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam 784 028, Assam, India
| | - Arpita Devi
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam 784 028, Assam, India
| | - Hemanga Gogoi
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam 784 028, Assam, India
| | - Bondita Dehingia
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam 784 028, Assam, India
| | - Robin Doley
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam 784 028, Assam, India
| | | | - Ch Shyamsunder Singh
- Department of Paediatrics, Regional Institute of Medical Sciences, Imphal, India
| | - Partha Pratim Borah
- Department of Paediatrics and Neonatology, Pratiksha Hospital, Guwahati, India
| | - C Durga Rao
- School of Liberal Arts and Basic Sciences, SRM University AP, Amaravati, India
| | - Pratima Ray
- Department of Biotechnology, Jamia Hamdard, Delhi, India
| | - George M Varghese
- Department of Infectious Diseases, Christian Medical College, Vellore, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, India
| | - Nima D Namsa
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam 784 028, Assam, India
| |
Collapse
|
21
|
Pourseif MM, Parvizpour S, Jafari B, Dehghani J, Naghili B, Omidi Y. A domain-based vaccine construct against SARS-CoV-2, the causative agent of COVID-19 pandemic: development of self-amplifying mRNA and peptide vaccines. BIOIMPACTS : BI 2020; 11:65-84. [PMID: 33469510 PMCID: PMC7803919 DOI: 10.34172/bi.2021.11] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 12/15/2022]
Abstract
Introduction: Coronavirus disease 2019 (COVID-19) is undoubtedly the most challenging pandemic in the current century with more than 293,241 deaths worldwide since its emergence in late 2019 (updated May 13, 2020). COVID-19 is caused by a novel emerged coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Today, the world needs crucially to develop a prophylactic vaccine scheme for such emerged and emerging infectious pathogens. Methods: In this study, we have targeted spike (S) glycoprotein, as an important surface antigen to identify its B- and T-cell immunodominant regions. We have conducted a multi-method B-cell epitope (BCE) prediction approach using different predictor algorithms to discover the most potential BCEs. Besides, we sought among a pool of MHC class I and II-associated peptide binders provided by the IEDB server through the strict cut-off values. To design a broad-coverage vaccine, we carried out a population coverage analysis for a set of candidate T-cell epitopes and based on the HLA allele frequency in the top most-affected countries by COVID-19 (update 02 April 2020). Results: The final determined B- and T-cell epitopes were mapped on the S glycoprotein sequence, and three potential hub regions covering the largest number of overlapping epitopes were identified for the vaccine designing (I531-N711; T717-C877; and V883-E973). Here, we have designed two domain-based constructs to be produced and delivered through the recombinant protein- and gene-based approaches, including (i) an adjuvanted domain-based protein vaccine construct (DPVC), and (ii) a self-amplifying mRNA vaccine (SAMV) construct. The safety, stability, and immunogenicity of the DPVC were validated using the integrated sequential (i.e. allergenicity, autoimmunity, and physicochemical features) and structural (i.e. molecular docking between the vaccine and human Toll-like receptors (TLRs) 4 and 5) analysis. The stability of the docked complexes was evaluated using the molecular dynamics (MD) simulations. Conclusion: These rigorous in silico validations supported the potential of the DPVC and SAMV to promote both innate and specific immune responses in preclinical studies.
Collapse
Affiliation(s)
- Mohammad Mostafa Pourseif
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Parvizpour
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Jafari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Jaber Dehghani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrouz Naghili
- Research Center for Infectious and Tropical Diseases, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Nova Southeastern University, College of Pharmacy, Florida, USA
| |
Collapse
|
22
|
Federico S, Pozzetti L, Papa A, Carullo G, Gemma S, Butini S, Campiani G, Relitti N. Modulation of the Innate Immune Response by Targeting Toll-like Receptors: A Perspective on Their Agonists and Antagonists. J Med Chem 2020; 63:13466-13513. [PMID: 32845153 DOI: 10.1021/acs.jmedchem.0c01049] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Toll-like receptors (TLRs) are a class of proteins that recognize pathogen-associated molecular patterns (PAMPs) and damaged-associated molecular patterns (DAMPs), and they are involved in the regulation of innate immune system. These transmembrane receptors, localized at the cellular or endosomal membrane, trigger inflammatory processes through either myeloid differentiation primary response 88 (MyD88) or TIR-domain-containing adapter-inducing interferon-β (TRIF) signaling pathways. In the last decades, extensive research has been performed on TLR modulators and their therapeutic implication under several pathological conditions, spanning from infections to cancer, from metabolic disorders to neurodegeneration and autoimmune diseases. This Perspective will highlight the recent discoveries in this field, emphasizing the role of TLRs in different diseases and the therapeutic effect of their natural and synthetic modulators, and it will discuss insights for the future exploitation of TLR modulators in human health.
Collapse
Affiliation(s)
- Stefano Federico
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Luca Pozzetti
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Alessandro Papa
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Gabriele Carullo
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Nicola Relitti
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| |
Collapse
|
23
|
Gupta N, Regar H, Verma VK, Prusty D, Mishra A, Prajapati VK. Receptor-ligand based molecular interaction to discover adjuvant for immune cell TLRs to develop next-generation vaccine. Int J Biol Macromol 2020; 152:535-545. [PMID: 32112848 DOI: 10.1016/j.ijbiomac.2020.02.297] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/11/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022]
Abstract
Human immune cell toll-like receptors (TLRs) provide a novel chance for the development of the vaccine adjuvant engaging TLR signaling. A library of peptides was developed and peptides structure was generated through homology modeling and refinement. Further, these peptides were subjected to receptor-ligand interaction study against human immune cell TLRs using Schrödinger-suite software. Here, we identified the most potent ligands for each human immune cell receptor and identified it as a potent adjuvant. This work portrays the ability of binding of different known protein adjuvants with human TLRs 1--10. The significance of the study deals with the identification of adjuvant (ligand) for human TLRs individually which assist in the development of the optimal highly immunogenic vaccine.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, 305817 Ajmer, Rajasthan, India
| | - Hansa Regar
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, 305817 Ajmer, Rajasthan, India
| | - Vijay Kumar Verma
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, 305817 Ajmer, Rajasthan, India
| | - Dhaneswar Prusty
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, 305817 Ajmer, Rajasthan, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342011, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, 305817 Ajmer, Rajasthan, India.
| |
Collapse
|
24
|
Tarang S, Kesherwani V, LaTendresse B, Lindgren L, Rocha-Sanchez SM, Weston MD. In silico Design of a Multivalent Vaccine Against Candida albicans. Sci Rep 2020; 10:1066. [PMID: 31974431 PMCID: PMC6978452 DOI: 10.1038/s41598-020-57906-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 01/07/2020] [Indexed: 12/14/2022] Open
Abstract
Invasive candidiasis (IC) is the most common nosocomial infection and a leading cause of mycoses-related deaths. High-systemic toxicity and emergence of antifungal-resistant species warrant the development of newer preventive approaches against IC. Here, we have adopted an immunotherapeutic peptide vaccine-based approach, to enhance the body's immune response against invasive candida infections. Using computational tools, we screened the entire candida proteome (6030 proteins) and identified the most immunodominant HLA class I, HLA class II and B- cell epitopes. By further immunoinformatic analyses for enhanced vaccine efficacy, we selected the 18- most promising epitopes, which were joined together using molecular linkers to create a multivalent recombinant protein against Candida albicans (mvPC). To increase mvPC's immunogenicity, we added a synthetic adjuvant (RS09) to the mvPC design. The selected mvPC epitopes are homologous against all currently available annotated reference sequences of 22 C. albicans strains, thus offering a higher coverage and greater protective response. A major advantage of the current vaccine approach is mvPC's multivalent nature (recognizing multiple-epitopes), which is likely to provide enhanced protection against complex candida antigens. Here, we describe the computational analyses leading to mvPC design.
Collapse
Affiliation(s)
- Shikha Tarang
- Creighton University School of Dentistry, Department of Oral Biology, Omaha, NE, 68178, USA.
| | - Varun Kesherwani
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Blake LaTendresse
- Creighton University School of Dentistry, Department of Oral Biology, Omaha, NE, 68178, USA
| | - Laramie Lindgren
- Creighton University School of Dentistry, Department of Oral Biology, Omaha, NE, 68178, USA
| | - Sonia M Rocha-Sanchez
- Creighton University School of Dentistry, Department of Oral Biology, Omaha, NE, 68178, USA
| | - Michael D Weston
- Creighton University School of Dentistry, Department of Oral Biology, Omaha, NE, 68178, USA
| |
Collapse
|
25
|
An effective and biocompatible polyethylenimine based vaginal suppository for gene delivery. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 20:101994. [DOI: 10.1016/j.nano.2019.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/28/2019] [Accepted: 03/25/2019] [Indexed: 12/22/2022]
|
26
|
Agrawal B, Gupta N, Vedi S, Singh S, Li W, Garg S, Li J, Kumar R. Heterologous Immunity between Adenoviruses and Hepatitis C Virus (HCV): Recombinant Adenovirus Vaccine Vectors Containing Antigens from Unrelated Pathogens Induce Cross-Reactive Immunity Against HCV Antigens. Cells 2019; 8:E507. [PMID: 31130710 PMCID: PMC6562520 DOI: 10.3390/cells8050507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/13/2019] [Accepted: 05/24/2019] [Indexed: 12/15/2022] Open
Abstract
Host immune responses play an important role in the outcome of infection with hepatitis C virus (HCV). They can lead to viral clearance and a positive outcome, or progression and severity of chronic disease. Extensive research in the past >25 years into understanding the immune responses against HCV have still resulted in many unanswered questions implicating a role for unknown factors and events. In our earlier studies, we made a surprising discovery that peptides derived from structural and non-structural proteins of HCV have substantial amino acid sequence homologies with various proteins of adenoviruses and that immunizing mice with a non-replicating, non-recombinant adenovirus vector leads to induction of a robust cross-reactive cellular and humoral response against various HCV antigens. In this work, we further demonstrate antibody cross-reactivity between Ad and HCV in vivo. We also extend this observation to show that recombinant adenoviruses containing antigens from unrelated pathogens also possess the ability to induce cross-reactive immune responses against HCV antigens along with the induction of transgene antigen-specific immunity. This cross-reactive immunity can (a) accommodate the making of dual-pathogen vaccines, (b) play an important role in the natural course of HCV infection and (c) provide a plausible answer to many unexplained questions regarding immunity to HCV.
Collapse
Affiliation(s)
- Babita Agrawal
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2S2, Canada.
| | - Nancy Gupta
- Department of Laboratory Medicine & Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2S2, Canada.
| | - Satish Vedi
- Department of Laboratory Medicine & Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2S2, Canada.
| | - Shakti Singh
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2S2, Canada.
| | - Wen Li
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2S2, Canada.
| | - Saurabh Garg
- Department of Laboratory Medicine & Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2S2, Canada.
| | - Jie Li
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2S2, Canada.
| | - Rakesh Kumar
- Department of Laboratory Medicine & Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2S2, Canada.
| |
Collapse
|
27
|
An immunoinformatic approach to universal therapeutic vaccine design against BK virus. Vaccine 2019; 37:3457-3463. [PMID: 31097352 DOI: 10.1016/j.vaccine.2019.04.096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/10/2019] [Accepted: 04/30/2019] [Indexed: 12/28/2022]
Abstract
In kidney transplant recipients (KTRs) long-term immunosuppression leads to BK virus (BKV) reactivation, with an increased incidence of BKV-associated pathologies and allograft rejection. The current approaches to limit BKV infection include a reduction in immunosuppression and use of anti-BKV drugs, which are clinically sub-optimal and lead to undesirable therapeutic outcomes. Here, we adopted an immune-based approach to augment the endogenous BKV specific T-cells. Using reverse vaccinology based in silico analyses, we designed a peptide-based multi-epitope vaccine for BKV (MVBKV). A major advantage of our approach is that the selected epitopes show an affinity towards all the 12 superfamilies of HLA class I alleles and 27 reference alleles of HLA class II. This suggests MVBKV's universal nature and its potential effectiveness in a wide-population base. To improve MVBKV's immunogenic properties, a synthetic Toll-like Receptor (TLR) 4 peptide ligand (RS09) was added to the final vaccine construct. The sequences of the individual epitopes were molecularly linked to form a 3D-stable synthetic protein. Overall, our immunoinformatic-based approach led to the design of a new MVBKV vaccine, which remains to be validated experimentally.
Collapse
|
28
|
Tandon A, Pathak M, Harioudh MK, Ahmad S, Sayeed M, Afshan T, Siddiqi MI, Mitra K, Bhattacharya SM, Ghosh JK. A TLR4-derived non-cytotoxic, self-assembling peptide functions as a vaccine adjuvant in mice. J Biol Chem 2018; 293:19874-19885. [PMID: 30385503 DOI: 10.1074/jbc.ra118.002768] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 09/01/2018] [Indexed: 12/18/2022] Open
Abstract
Vaccination is devised/formulated to stimulate specific and prolonged immune responses for long-term protection against infection or disease. A vaccine component, namely adjuvant, enhances antigen recognition by the host immune system and thereby stimulates its cellular and adaptive responses. Especially synthetic Toll-like receptor (TLR) agonists having self-assembling properties are considered as good candidates for adjuvant development. Here, a human TLR4-derived 20-residue peptide (TR-433), present in the dimerization interface of the TLR4-myeloid differentiation protein-2 (MD2) complex, displayed self-assembly and adopted a nanostructure. Both in vitro studies and in vivo experiments in mice indicated that TR-433 is nontoxic. TR-433 induced pro-inflammatory responses in THP-1 monocytes and HEK293T cells that were transiently transfected with TLR4/CD14/MD2 and also in BALB/c mice. In light of the self-assembly and pro-inflammatory properties of TR-433, we immunized with a mixture of TR-433 and either ovalbumin or filarial antigen trehalose-6-phosphate phosphatase (TPP). A significant amount of IgG titers was produced, suggesting adjuvanting capability of TR-433 that was comparable with that of Freund's complete adjuvant (FCA) and appreciably higher than that of alum. We found that TR-433 preferentially activates type 1 helper T cell (Th1) response rather than type 2 helper T cell (Th2) response. To our knowledge, this is the first report on the identification of a short TLR4-derived peptide that possesses both self-assembling and pro-inflammatory properties and has significant efficacy as an adjuvant, capable of activating cellular responses in mice. These results indicate that TR-433 possesses significant potential for development as a new adjuvant in therapeutic application.
Collapse
Affiliation(s)
| | | | | | | | - Mohd Sayeed
- From the Molecular and Structural Biology Division
| | | | - M I Siddiqi
- From the Molecular and Structural Biology Division
| | - Kalyan Mitra
- Electron Microscopy Unit, SAIF Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road Lucknow-226 031, India
| | | | | |
Collapse
|
29
|
Li M, Yang Y, Wei J, Cun X, Lu Z, Qiu Y, Zhang Z, He Q. Enhanced chemo-immunotherapy against melanoma by inhibition of cholesterol esterification in CD8 + T cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:2541-2550. [PMID: 30193815 DOI: 10.1016/j.nano.2018.08.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/07/2018] [Accepted: 08/22/2018] [Indexed: 01/02/2023]
Abstract
Cholesterol facilitated the formation of T cell receptor on cytotoxic CD8+ T lymphocytes (CTLs). However, the activation of CD8+ T cells always resulted in the upregulation of acetyl-CoA acetyltransferase-1 (ACAT-1) and enhanced the esterification of cholesterol. To relieve the suppression on CD8+ T cells, an ACAT-1 inhibitor avasimibe was combined with chemo-immunotherapy. Paclitaxel and immunoadjuvant αGC were co-encapsulated in liposomes modified with pH sensitive TH peptide (PTX/αGC-TH-Lip). After intravenous injections, the combination of avasimibe significantly elevated the free cholesterol level and relieved the inhibition of CD8+ T cells caused by PTX/αGC-TH-Lip, leading to enhanced CTL responses and anti-tumor effects of PTX/αGC-TH-Lip in B16F10 melanoma xenograft and lung metastasis models. The adoptive immunotherapy further confirmed the enhanced anti-tumor immune responses of the combined strategy. The combination of avasimibe and PTX/αGC-TH-Lip was proven as a feasible approach to enhance the antitumor effects of chemo-immunotherapy by relieving the inhibition of CD8+ T cells.
Collapse
Affiliation(s)
- Man Li
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, People's Republic of China
| | - Yuting Yang
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, People's Republic of China
| | - Jiaojie Wei
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, People's Republic of China
| | - Xingli Cun
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, People's Republic of China
| | - Zhengze Lu
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, People's Republic of China
| | - Yue Qiu
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, People's Republic of China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, People's Republic of China
| | - Qin He
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
30
|
Lebedeva E, Bagaev A, Pichugin A, Chulkina M, Lysenko A, Tutykhina I, Shmarov M, Logunov D, Naroditsky B, Ataullakhanov R. The differences in immunoadjuvant mechanisms of TLR3 and TLR4 agonists on the level of antigen-presenting cells during immunization with recombinant adenovirus vector. BMC Immunol 2018; 19:26. [PMID: 30055563 PMCID: PMC6064145 DOI: 10.1186/s12865-018-0264-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/20/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Agonists of TLR3 and TLR4 are effective immunoadjuvants for different types of vaccines. The mechanisms of their immunostimulatory action differ significantly; these differences are particularly critical for immunization with non-replicating adenovirus vectors (rAds) based vaccines. Unlike traditional vaccines, rAd based vaccines are not designed to capture vaccine antigens from the external environment by antigen presenting cells (APCs), but rather they are targeted to the de novo synthesis of vaccine antigens in APCs transfected with rAd. To date, there is no clear understanding about approaches to improve the efficacy of rAd vaccinations with immunoadjuvants. In this study, we investigated the immunoadjuvant effect of TLR3 and TLR4 agonists on the level of activation of APCs during vaccination with rAds. RESULTS We demonstrated that TLR3 and TLR4 agonists confer different effects on the molecular processes in APCs that determine the efficacy of antigen delivery and activation of antigen-specific CD4+ and CD8+ T cells. APCs activated with agonists of TLR4 were characterized by up-regulated production of target antigen mRNA and protein encoded in rAd, as well as enhanced expression of the co-activation receptors CD80, CD86 and CD40, and pro-inflammatory cytokines TNF-α, IL6 and IL12. These effects of TLR4 agonists have provided a significant increase in the number of antigen-specific CD4+ and CD8+ T cells. TLR3 agonist, on the contrary, inhibited transcription and synthesis of rAd-encoded antigens, but improved expression of CD40 and IFN-β in APCs. The cumulative effect of TLR3 agonist have resulted in only a slight improvement in the activation of antigen-specific T cells. Also, we demonstrated that IFN-β and TNF-α, secreted by APCs in response to TLR3 and TLR4 agonists, respectively, have an opposite effect on the transcription of the targeted gene encoded in rAd. Specifically, IFN-β inhibited, and TNF-α stimulated the expression of target vaccine antigens in APCs. CONCLUSIONS Our data demonstrate that agonists of TLR4 but not TLR3 merit further study as adjuvants for development of vaccines based on recombinant adenoviral vectors.
Collapse
Affiliation(s)
- Ekaterina Lebedeva
- National Research Center Institute of Immunology, Federal Medical-Biological Agency of Russia, Moscow, Russia.
| | - Alexander Bagaev
- National Research Center Institute of Immunology, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Alexey Pichugin
- National Research Center Institute of Immunology, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Marina Chulkina
- National Research Center Institute of Immunology, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Andrei Lysenko
- Federal Research Centre of Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya, Ministry of Health, Moscow, Russia
| | - Irina Tutykhina
- Federal Research Centre of Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya, Ministry of Health, Moscow, Russia
| | - Maxim Shmarov
- Federal Research Centre of Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya, Ministry of Health, Moscow, Russia
| | - Denis Logunov
- Federal Research Centre of Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya, Ministry of Health, Moscow, Russia
| | - Boris Naroditsky
- Federal Research Centre of Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya, Ministry of Health, Moscow, Russia
| | - Ravshan Ataullakhanov
- National Research Center Institute of Immunology, Federal Medical-Biological Agency of Russia, Moscow, Russia.
| |
Collapse
|
31
|
Novel Immunoinformatics Approaches to Design Multi-epitope Subunit Vaccine for Malaria by Investigating Anopheles Salivary Protein. Sci Rep 2018; 8:1125. [PMID: 29348555 PMCID: PMC5773588 DOI: 10.1038/s41598-018-19456-1] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/02/2018] [Indexed: 12/19/2022] Open
Abstract
Malaria fever has been pervasive for quite a while in tropical developing regions causing high morbidity and mortality. The causal organism is a protozoan parasite of genus Plasmodium which spreads to the human host by the bite of hitherto infected female Anopheles mosquito. In the course of biting, a salivary protein of Anopheles helps in blood feeding behavior and having the ability to elicit the host immune response. This study represents a series of immunoinformatics approaches to design multi-epitope subunit vaccine using Anopheles mosquito salivary proteins. Designed subunit vaccine was evaluated for its immunogenicity, allergenicity and physiochemical parameters. To enhance the stability of vaccine protein, disulfide engineering was performed in a region of high mobility. Codon adaptation and in silico cloning was also performed to ensure the higher expression of designed subunit vaccine in E. coli K12 expression system. Finally, molecular docking and simulation study was performed for the vaccine protein and TLR-4 receptor, to determine the binding free energy and complex stability. Moreover, the designed subunit vaccine was found to induce anti-salivary immunity which may have the ability to prevent the entry of Plasmodium sporozoites into the human host.
Collapse
|
32
|
Abstract
Vaccines have helped considerably in eliminating some life-threatening infectious diseases in past two hundred years. Recently, human medicine has focused on vaccination against some of the world's most common infectious diseases (AIDS, malaria, tuberculosis, etc.), and vaccination is also gaining popularity in the treatment of cancer or autoimmune diseases. The major limitation of current vaccines lies in their poor ability to generate a sufficient level of protective antibodies and T cell responses against diseases such as HIV, malaria, tuberculosis and cancers. Among the promising vaccination systems that could improve the potency of weakly immunogenic vaccines belong macromolecular carriers (water soluble polymers, polymer particels, micelles, gels etc.) conjugated with antigens and immunistumulatory molecules. The size, architecture, and the composition of the high molecular-weight carrier can significantly improve the vaccine efficiency. This review includes the most recently developed (bio)polymer-based vaccines reported in the literature.
Collapse
Affiliation(s)
- G MuŽíková
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| | | |
Collapse
|
33
|
Tanaka A, Furubayashi T, Matsushita A, Inoue D, Kimura S, Katsumi H, Sakane T, Yamamoto A. Nasal Absorption of Macromolecules from Powder Formulations and Effects of Sodium Carboxymethyl Cellulose on Their Absorption. PLoS One 2016; 11:e0159150. [PMID: 27598527 PMCID: PMC5012702 DOI: 10.1371/journal.pone.0159150] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 06/07/2016] [Indexed: 11/18/2022] Open
Abstract
The nasal absorption of macromolecules from powder formulations and the effect of sodium carboxymethyl cellulose (CMC-Na) as a pharmaceutical excipient on their absorption were studied. Model macromolecules were fluorescein isothiocyanate-labeled dextran (average molecular weight of 4.4kDa, FD4) and insulin. The plasma concentration of FD4 after application of the powder containing 50% starch (control) was higher than that after application of the solution, and the absorption from 50% starch powder was enhanced by the substitution of starch with CMC-Na. The fractional absorption of FD4 after administration of the CMC-Na powder formulation was 30% and 40% higher than that after administration from the solution and the starch powder, respectively. The nasal absorption of insulin from the powder and the effect of CMC-Na were similar with those of FD4. The effective absorption of FD4 and insulin after application of powder with CMC-Na could be due to the increase in the nasal residence of FD4 and insulin. No damage in the nasal mucosa or dysfunction of the mucociliary clearance was observed after application of the drug powder and CMC-Na. The present findings indicate that nasal delivery of powder formulations with the addition of CMC-Na as an excipient is a promising approach for improving the nasal absorption of macromolecules.
Collapse
Affiliation(s)
- Akiko Tanaka
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto 607–8414, Japan
| | - Tomoyuki Furubayashi
- School of Pharmacy, Shujitsu University, Nishikawara, Kita, Okayama 703–8516, Japan
| | - Akifumi Matsushita
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto 607–8414, Japan
| | - Daisuke Inoue
- School of Pharmacy, Shujitsu University, Nishikawara, Kita, Okayama 703–8516, Japan
| | - Shunsuke Kimura
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kodo, Kyotanabe, Kyoto 610–0395, Japan
| | - Hidemasa Katsumi
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto 607–8414, Japan
| | - Toshiyasu Sakane
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto 607–8414, Japan
- Department of Pharmaceutical Technology, Kobe Pharmaceutical University, Motoyamakita-machi 4-19-1, Higashinada-ku, Kobe 658–8558, Japan
- * E-mail:
| | - Akira Yamamoto
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto 607–8414, Japan
| |
Collapse
|