1
|
Deng B, Liu S, Wang Y, Ali B, Kong N, Xie T, Koo S, Ouyang J, Tao W. Oral Nanomedicine: Challenges and Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306081. [PMID: 37724825 DOI: 10.1002/adma.202306081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/03/2023] [Indexed: 09/21/2023]
Abstract
Compared to injection administration, oral administration is free of discomfort, wound infection, and complications and has a higher compliance rate for patients with diverse diseases. However, oral administration reduces the bioavailability of medicines, especially biologics (e.g., peptides, proteins, and antibodies), due to harsh gastrointestinal biological barriers. In this context, the development and prosperity of nanotechnology have helped improve the bioactivity and oral availability of oral medicines. On this basis, first, the biological barriers to oral administration are discussed, and then oral nanomedicine based on organic and inorganic nanomaterials and their biomedical applications in diverse diseases are reviewed. Finally, the challenges and potential opportunities in the future development of oral nanomedicine, which may provide a vital reference for the eventual clinical transformation and standardized production of oral nanomedicine, are put forward.
Collapse
Affiliation(s)
- Bo Deng
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
- Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, 710049, China
- Department of Oncology of the First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Shaomin Liu
- Department of Oncology of the First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Ying Wang
- Department of Oncology of the First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Barkat Ali
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Tian Xie
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Seyoung Koo
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jiang Ouyang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
- Department of Oncology of the First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
2
|
Banerjee A, Pata J, Chaptal V, Boumendjel A, Falson P, Prasad R. Structure, function, and inhibition of catalytically asymmetric ABC transporters: Lessons from the PDR subfamily. Drug Resist Updat 2023; 71:100992. [PMID: 37567064 DOI: 10.1016/j.drup.2023.100992] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/20/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
ATP-binding cassette (ABC) superfamily comprises a large group of ubiquitous transmembrane proteins that play a crucial role in transporting a diverse spectrum of substrates across cellular membranes. They participate in a wide array of physiological and pathological processes including nutrient uptake, antigen presentation, toxin elimination, and drug resistance in cancer and microbial cells. ABC transporters couple ATP binding and hydrolysis to undergo conformational changes allowing substrate translocation. Within this superfamily, a set of ABC transporters has lost the capacity to hydrolyze ATP at one of their nucleotide-binding sites (NBS), called the non-catalytic NBS, whose importance became evident with extensive biochemistry carried out on yeast pleiotropic drug resistance (PDR) transporters. Recent single-particle cryogenic electron microscopy (cryo-EM) advances have further catapulted our understanding of the architecture of these pumps. We provide here a comprehensive overview of the structural and functional aspects of catalytically asymmetric ABC pumps with an emphasis on the PDR subfamily. Furthermore, given the increasing evidence of efflux-mediated antifungal resistance in clinical settings, we also discuss potential grounds to explore PDR transporters as therapeutic targets.
Collapse
Affiliation(s)
- Atanu Banerjee
- Amity Institute of Biotechnology and Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurugram, India.
| | - Jorgaq Pata
- Drug Resistance & Membrane Proteins group, CNRS-Lyon 1 University Laboratory 5086, IBCP, Lyon, France
| | - Vincent Chaptal
- Drug Resistance & Membrane Proteins group, CNRS-Lyon 1 University Laboratory 5086, IBCP, Lyon, France
| | | | - Pierre Falson
- Drug Resistance & Membrane Proteins group, CNRS-Lyon 1 University Laboratory 5086, IBCP, Lyon, France.
| | - Rajendra Prasad
- Amity Institute of Biotechnology and Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurugram, India.
| |
Collapse
|
3
|
Puris E, Petralla S, Auriola S, Kidron H, Fricker G, Gynther M. Monoacylglycerol Lipase Inhibitor JJKK048 Ameliorates ABCG2 Transporter-Mediated Regorafenib Resistance Induced by Hypoxia in Triple Negative Breast Cancer Cells. J Pharm Sci 2023; 112:2581-2590. [PMID: 37220829 DOI: 10.1016/j.xphs.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/25/2023]
Abstract
Triple negative breast cancer (TNBC) is among the most aggressive and deadly cancer subtypes. Intra-tumoral hypoxia is associated with aggressiveness and drug resistance in TNBC. One of the underlying mechanisms of hypoxia-induced drug resistance is the elevated expression of efflux transporters such as breast cancer resistant protein (ABCG2). In the present study, we investigated the possibility of ameliorating ABCG2-mediated drug resistance in hypoxic TNBC cells by monoacylglycerol lipase (MAGL) inhibition and the consequent downregulation of ABCG2 expression. The effect of MAGL inhibition on ABCG2 expression, function, and efficacy of regorafenib, an ABCG2 substrate was investigated in cobalt dichloride (CoCl2) induced pseudohypoxic TNBC (MDA-MB-231) cells, using quantitative targeted absolute proteomics, qRT-PCR, anti-cancer drug accumulation in the cells, cell invasiveness and resazurin-based cell viability assays. Our results showed that hypoxia-induced ABCG2 expression led to low regorafenib intracellular concentrations, reduced the anti-invasiveness efficacy, and elevated half maximal inhibitory concentration (IC50) of regorafenib in vitro MDA-MB-231 cells. MAGL inhibitor, JJKK048, reduced ABCG2 expression, increased regorafenib cell accumulation, which led to higher regorafenib efficacy. In conclusion, hypoxia-induced regorafenib resistance due to ABCG2 over-expression in TNBC cells can be ameliorated by MAGL inhibition.
Collapse
Affiliation(s)
- Elena Puris
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany
| | - Sabrina Petralla
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany
| | - Seppo Auriola
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Heidi Kidron
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, P.O. Box 56, Helsinki, 00014, Finland
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany
| | - Mikko Gynther
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany.
| |
Collapse
|
4
|
Prandial state and biological sex modulate clinically relevant efflux transporters to different extents in Wistar and Sprague Dawley rats. Biomed Pharmacother 2023; 160:114329. [PMID: 36731343 DOI: 10.1016/j.biopha.2023.114329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance-associated protein 2 (MRP2) are clinically relevant efflux transporters implicated in the oral absorption of many food and drug substrates. Here, we hypothesised that food intake could influence protein and mRNA intestinal expression of P-gp/abcb1a, BCRP/abcg2, and MRP2/abcc2 differently in male and female Wistar and Sprague Dawley rats. To test this hypothesis, we used enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (PCR) to quantify the protein and mRNA intestinal expression of these transporters, respectively. Our study found food and sex differences in P-gp expression, whereby in the fed state P-gp expression decreased in male Wistar rats, but P-gp expression increased in females. In the fed state, BCRP expression increased in both male and female Wistar rats, compared with the fasted state. In contrast, no sex differences or food effect differences were seen in Sprague Dawley rats for P-gp and BCRP expression. On the other hand, in the fed state, MRP2 expression was higher in male and female Wistar and Sprague Dawley rats when compared with the fasted state. Sex differences were also observed in the fasted state. Overall, significant strain differences were reported for P-gp, BCRP and MRP2 expression. Strong to moderate positive linear correlations were found between ELISA and PCR quantification methods. ELISA may be more useful than PCR as it reports protein expression as opposed to transcript expression. Researchers must consider the influence of sex, strain and feeding status in preclinical studies of P-gp, BCRP and MRP2 drug substrates.
Collapse
|
5
|
Bi Y, Wang X, Ding H, He F, Han L, Zhang Y. Transporter-mediated Natural Product-Drug Interactions. PLANTA MEDICA 2023; 89:119-133. [PMID: 35304735 DOI: 10.1055/a-1803-1744] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The increasing use of natural products in clinical practice has raised great concerns about the potential natural product-drug interactions (NDIs). Drug transporters mediate the transmembrane passage of a broad range of drugs, and thus are important determinants for drug pharmacokinetics and pharmacodynamics. Generally, transporters can be divided into ATP binding cassette (ABC) family and solute carrier (SLC) family. Numerous natural products have been identified as inhibitors, substrates, inducers, and/or activators of drug transporters. This review article aims to provide a comprehensive summary of the recent progress on the research of NDIs, focusing on the main drug transporters, such as P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), organic anion transporter 1 and 3 (OAT1/OAT3), organic anion-transporting polypeptide 1B1 and 1B3 (OATP1B1/OATP1B3), organic cation transporter 2 (OCT2), multidrug and toxin extrusion protein 1 and 2-K (MATE1/MATE2-K). Additionally, the challenges and strategies of studying NDIs are also discussed.
Collapse
Affiliation(s)
- Yajuan Bi
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China
| | - Xue Wang
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, USA
| | - Hui Ding
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Feng He
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Lifeng Han
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Youcai Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China
| |
Collapse
|
6
|
Deng F, Sjöstedt N, Santo M, Neuvonen M, Niemi M, Kidron H. Novel inhibitors of breast cancer resistance protein (BCRP, ABCG2) among marketed drugs. Eur J Pharm Sci 2023; 181:106362. [PMID: 36529162 DOI: 10.1016/j.ejps.2022.106362] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/11/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Drug-drug interactions (DDIs) are a major concern for the safe use of medications. Breast cancer resistance protein (BCRP) is a clinically relevant ATP-binding cassette (ABC) transporter for drug disposition. Inhibition of BCRP increases the plasma concentrations of BCRP substrate drugs, which potentially could lead to adverse drug reactions. The aim of the present study was to identify BCRP inhibitors amongst a library of 232 commonly used drugs and anticancer drugs approved by the United States Food and Drug Administration (FDA). BCRP inhibition studies were carried out using the vesicular transport assay. We found 75 drugs that reduced the relative transport activity of BCRP to less than 25% of the vehicle control and were categorized as strong inhibitors. The concentration required for 50% inhibition (IC50) was determined for 13 strong inhibitors that were previously poorly characterized for BCRP inhibition. The IC50 ranged from 1.1 to 11 µM, with vemurafenib, dabigatran etexilate and everolimus being the strongest inhibitors. According to the drug interaction guidance documents from the FDA and the European Medicines Agency (EMA), in vivo DDI studies are warranted if the theoretical intestinal luminal concentration of a drug exceeds its IC50 by tenfold. Here, the IC50 values for eight of the drugs were 100-fold lower than their theoretical intestinal luminal concentration. Moreover, a mechanistic static model suggested that vemurafenib, bexarotene, dabigatran etexilate, rifapentine, aprepitant, and ivacaftor could almost fully inhibit intestinal BCRP, increasing the exposure of concomitantly administered rosuvastatin over 90%. Therefore, clinical studies are warranted to investigate whether these drugs cause BCRP-mediated DDIs in humans.
Collapse
Affiliation(s)
- Feng Deng
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland. Tukholmankatu 8 C, P.O. Box 20, 00014, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland. Haartmaninkatu 8, P.O. Box 63, 00014, Finland
| | - Noora Sjöstedt
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland. Viikinkaari 5 E, P.O. Box 56, 00014, Finland
| | - Mariangela Santo
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland. Viikinkaari 5 E, P.O. Box 56, 00014, Finland
| | - Mikko Neuvonen
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland. Tukholmankatu 8 C, P.O. Box 20, 00014, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland. Haartmaninkatu 8, P.O. Box 63, 00014, Finland
| | - Mikko Niemi
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland. Tukholmankatu 8 C, P.O. Box 20, 00014, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland. Haartmaninkatu 8, P.O. Box 63, 00014, Finland; Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Heidi Kidron
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland. Viikinkaari 5 E, P.O. Box 56, 00014, Finland.
| |
Collapse
|
7
|
Chong TC, Wong ILK, Cui J, Law MC, Zhu X, Hu X, Kan JWY, Yan CSW, Chan TH, Chow LMC. Characterization of a Potent, Selective, and Safe Inhibitor, Ac15(Az8) 2, in Reversing Multidrug Resistance Mediated by Breast Cancer Resistance Protein (BCRP/ABCG2). Int J Mol Sci 2022; 23:13261. [PMID: 36362047 PMCID: PMC9653733 DOI: 10.3390/ijms232113261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 12/31/2023] Open
Abstract
Overexpression of breast cancer resistance transporter (BCRP/ABCG2) in cancers has been explained for the failure of chemotherapy in clinic. Inhibition of the transport activity of BCRP during chemotherapy should reverse multidrug resistance. In this study, a triazole-bridged flavonoid dimer Ac15(Az8)2 was identified as a potent, nontoxic, and selective BCRP inhibitor. Using BCRP-overexpressing cell lines, its EC50 for reversing BCRP-mediated topotecan resistance was 3 nM in MCF7/MX100 and 72 nM in S1M180 in vitro. Mechanistic studies revealed that Ac15(Az8)2 restored intracellular drug accumulation by inhibiting BCRP-ATPase activity and drug efflux. It did not down-regulate the cell surface BCRP level to enhance drug retention. It was not a transport substrate of BCRP and showed a non-competitive relationship with DOX in binding to BCRP. A pharmacokinetic study revealed that I.P. administration of 45 mg/kg of Ac15(Az8)2 resulted in plasma concentration above its EC50 (72 nM) for longer than 24 h. It increased the AUC of topotecan by 2-fold. In an in vivo model of BCRP-overexpressing S1M180 xenograft in Balb/c nude mice, it significantly reversed BCRP-mediated topotecan resistance and inhibited tumor growth by 40% with no serious body weight loss or death incidence. Moreover, it also increased the topotecan level in the S1M180 xenograft by 2-fold. Our results suggest that Ac15(Az8)2 is a promising candidate for further investigation into combination therapy for treating BCRP-overexpressing cancers.
Collapse
Affiliation(s)
- Tsz Cheung Chong
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
| | - Iris L. K. Wong
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
| | - Jiahua Cui
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Man Chun Law
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
| | - Xuezhen Zhu
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
| | - Xuesen Hu
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
| | - Jason W. Y. Kan
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
| | - Clare S. W. Yan
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
| | - Tak Hang Chan
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
- Department of Chemistry, McGill University, Montreal, QC H3A 2K6, Canada
| | - Larry M. C. Chow
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
8
|
Huang S, Gao Y, Zhang X, Lu J, Wei J, Mei H, Xing J, Pan X. Development of Simple and Accurate in Silico Ligand-Based Models for Predicting ABCG2 Inhibition. Front Chem 2022; 10:863146. [PMID: 35665065 PMCID: PMC9159808 DOI: 10.3389/fchem.2022.863146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
The ATP binding cassette transporter ABCG2 is a physiologically important drug transporter that has a central role in determining the ADMET (absorption, distribution, metabolism, elimination, and toxicity) profile of therapeutics, and contributes to multidrug resistance. Thus, development of predictive in silico models for the identification of ABCG2 inhibitors is of great interest in the early stage of drug discovery. In this work, by exploiting a large public dataset, a number of ligand-based classification models were developed using partial least squares-discriminant analysis (PLS-DA) with molecular interaction field- and fingerprint-based structural description methods, regarding physicochemical and fragmental properties related to ABCG2 inhibition. An in-house dataset compiled from recently experimental studies was used to rigorously validated the model performance. The key molecular properties and fragments favored to inhibitor binding were discussed in detail, which was further explored by docking simulations. A highly informative chemical property was identified as the principal determinant of ABCG2 inhibition, which was utilized to derive a simple rule that had a strong capability for differentiating inhibitors from non-inhibitors. Furthermore, the incorporation of the rule into the best PLS-DA model significantly improved the classification performance, particularly achieving a high prediction accuracy on the independent in-house set. The integrative model is simple and accurate, which could be applied to the evaluation of drug-transporter interactions in drug development. Also, the dominant molecular features derived from the models may help medicinal chemists in the molecular design of novel inhibitors to circumvent ABCG2-mediated drug resistance.
Collapse
Affiliation(s)
- Shuheng Huang
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, Chongqing, China
| | - Yingjie Gao
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xuelian Zhang
- Department of Pathophysiology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Ji Lu
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jun Wei
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Hu Mei
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, Chongqing, China
| | - Juan Xing
- Department of Pathophysiology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
- *Correspondence: Xianchao Pan, ; Juan Xing,
| | - Xianchao Pan
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, China
- *Correspondence: Xianchao Pan, ; Juan Xing,
| |
Collapse
|
9
|
L-amino acid oxidase from snake venom: Biotransformation and induction of apoptosis in human colon cancer cells. Eur J Pharmacol 2021; 910:174466. [PMID: 34481879 DOI: 10.1016/j.ejphar.2021.174466] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/23/2021] [Accepted: 08/30/2021] [Indexed: 01/31/2023]
Abstract
This study evaluated the potential of antitumor activity of snake venom from Vipera ammodytes and L-amino acid oxidase from Crotalus adamanteus on different colorectal cancer cell lines through determination of cytotoxic activity by MTT assay, pro-apoptotic activity by acridine orange/ethidium bromide staining, and concentrations of redox status parameters (superoxide, reduced glutathione, lipid peroxidation) by colorimetric methods. The expression of genes involved in the biotransformation process and metabolite efflux was determined by qPCR method, while protein expression of glutathione synthetase and P-glycoprotein were analysed by immunocytochemistry. The analysis of cell death shows that snake venom dominantly leads cells to necrosis. Induction of apoptosis by L-amino acid oxidase was in correlation with oxidative disbalance in cancer cells. Gene expression profile of membrane transporters and CYP genes were different in each cell line and in correlation with their sensitivity of treatment. Our results show that L-amino acid oxidase from snake venom is a potent cytotoxic substance with pronounced pro-apoptotic activity. The inhibition of P-glycoprotein suggests that L-amino acid oxidase is a good substance for furter research of antitumor effect, with unexpressed potential for occurrence of drug resistance in vitro.
Collapse
|
10
|
Banik A, Ghosh K, Patil UK, Gayen S. Identification of molecular fingerprints of natural products for the inhibition of breast cancer resistance protein (BCRP). PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153523. [PMID: 33662771 DOI: 10.1016/j.phymed.2021.153523] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/15/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Extensive research over the past several decades, explored that the natural compounds contain different plant secondary metabolites and have the potential to inhibit breast cancer resistance protein (BCRP). PURPOSE To identify crucial molecular fingerprints of some natural products for the inhibition of breast cancer resistance protein and also to screen out some potent natural BCRP inhibitors. STUDY DESIGN Multiple modelling strategies were applied with three main mottos: (a) Generation of robust classification models to identify the linear and non-linear relationships among the natural compounds and the inhibition of BCRP, (b) Identification of important structural fingerprints that modulate BCRP inhibition and screening of natural database to find the probable hit molecules, (c) Comprehensive ligand-receptor interactions analysis of those against the putative breast cancer resistant protein through molecular docking analysis. METHODS Monte Carlo optimization and SPCI analysis was used to identify important structural fingerprints. QSARCo. and swissADME analysis were used for screening and prediction of hits. Finally, docking analysis was performed for interaction study. RESULTS In this study, some important structural fingerprints of BCRP inhibitors were identified. Additionally, eleven natural anti-cancer compounds were predicted to be active against the BCRP and also satisfy the different drug-likeliness properties. Among them, apigenin was found to have better binding affinities against the putative target as obtained from molecular docking analysis. CONCLUSION This study is an attempt to understand about the molecular fingerprints of natural compounds for the inhibition of BCRP and also to dig out some novel natural inhibitors against BCRP.
Collapse
Affiliation(s)
- Arghya Banik
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr Harisingh Gour University, Sagar 470003, Madhya Pradesh, India
| | - Kalyan Ghosh
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr Harisingh Gour University, Sagar 470003, Madhya Pradesh, India
| | - Umesh K Patil
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr Harisingh Gour University, Sagar 470003, Madhya Pradesh, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr Harisingh Gour University, Sagar 470003, Madhya Pradesh, India.
| |
Collapse
|
11
|
Wang JQ, Yang Y, Cai CY, Teng QX, Cui Q, Lin J, Assaraf YG, Chen ZS. Multidrug resistance proteins (MRPs): Structure, function and the overcoming of cancer multidrug resistance. Drug Resist Updat 2021; 54:100743. [PMID: 33513557 DOI: 10.1016/j.drup.2021.100743] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 02/08/2023]
Abstract
ATP-binding cassette (ABC) transporters mediate the ATP-driven translocation of structurally and mechanistically distinct substrates against steep concentration gradients. Among the seven human ABC subfamilies namely ABCA-ABCG, ABCC is the largest subfamily with 13 members. In this respect, 9 of the ABCC members are termed "multidrug resistance proteins" (MRPs1-9) due to their ability to mediate cancer multidrug resistance (MDR) by extruding various chemotherapeutic agents or their metabolites from tumor cells. Furthermore, MRPs are also responsible for the ATP-driven efflux of physiologically important organic anions such as leukotriene C4, folic acid, bile acids and cAMP. Thus, MRPs are involved in important regulatory pathways. Blocking the anticancer drug efflux function of MRPs has shown promising results in overcoming cancer MDR. As a result, many novel MRP modulators have been developed in the past decade. In the current review, we summarize the structure, tissue distribution, biological and pharmacological functions as well as clinical insights of MRPs. Furthermore, recent updates in MRP modulators and their therapeutic applications in clinical trials are also discussed.
Collapse
Affiliation(s)
- Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Chao-Yun Cai
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Qingbin Cui
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA; School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong 511436, China; Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Jun Lin
- Department of Anesthesiology, Stony Brook University Health Sciences Center, Stony Brook, NY, 11794, USA
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
12
|
Mohamed M, El Sheikh AK, Mohammed HH. Modulation of Liver P-Glycoprotien Expression May Contribute to Gossypin Protection against Methotrexate-Induced Hepatotoxicity. Indian J Pharmacol 2021; 53:25-30. [PMID: 33975996 PMCID: PMC8216128 DOI: 10.4103/ijp.ijp_824_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVES Methotrexate (MTX) is a broadly used anticancer. Its major side effect is hepatotoxicity. Gossypin is a flavonoid has a hepatoprotective effect as well as antitumor property. The study aimed at inspecting the protective effect of gossypin against MTX hepatotoxicity. MATERIALS AND METHODS Twenty-four adult male rats arranged into four groups (six rats each): control, gossypin control, MTX, and MTX+ gossypin. Animals were orally administered gossypin at 10 mg kg-1 day-1 for 7 days. MTX was injected i.p. (20 mg/kg-1 once) on 5th day. Liver enzyme and oxidative stress markers were assessed. BAX, transforming growth factor-beta (TGF-β) gene expressions, and P-glycoprotein (P-gp) were assessed. The histopathological study as well as the immunohistochemical study for hepatic caspase 3 and nuclear factor kappa-B (NFκ-B) was done. RESULTS MTX produced a significant increase of liver enzymes and distortion of hepatic architecture alongside with increased the hepatic collagen content. MTX administration significantly increased the oxidative stress markers and upregulated the pro-apoptotic BAX and the pro-fibrogenic TGF-β. MTX increased caspase 3 and NFκ-B expression, while diminished the expression of P-gp. Gossypin pretreatment improved the previous parameters, restored the normal hepatic architecture, reduced the hepatic fibrosis, and regained nearly normal expressions for BAX, TGF-β, caspase 3, and NFκ-B. Gossypin caused more reduction in P-gp hepatic expression. CONCLUSIONS Gossypin may be a valuable adjuvant therapy that protects the liver against MTX toxicity through antioxidant, anti-inflammatory, antiapoptotic mechanisms, and mediated P-gp expression reduction.
Collapse
Affiliation(s)
- Mervat Mohamed
- Department of Pharmacology, Faculty of Medicine, Minia University, Minya, Egypt
| | - Azza Kamal El Sheikh
- Department of Pharmacology, Faculty of Medicine, Minia University, Minya, Egypt; Department of Basic Health Sciences, Faculty of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | | |
Collapse
|
13
|
Saito H, Toyoda Y, Hirata H, Ota-Kontani A, Tsuchiya Y, Takada T, Suzuki H. Soy Isoflavone Genistein Inhibits an Axillary Osmidrosis Risk Factor ABCC11: In Vitro Screening and Fractional Approach for ABCC11-Inhibitory Activities in Plant Extracts and Dietary Flavonoids. Nutrients 2020; 12:E2452. [PMID: 32824087 PMCID: PMC7468911 DOI: 10.3390/nu12082452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/06/2020] [Accepted: 08/12/2020] [Indexed: 11/16/2022] Open
Abstract
Axillary osmidrosis (AO) is a common chronic skin condition characterized by unpleasant body odors emanating from the armpits, and its aetiology is not fully understood. AO can seriously impair the psychosocial well-being of the affected individuals; however, no causal therapy has been established for it other than surgical treatment. Recent studies have revealed that human ATP-binding cassette transporter C11 (ABCC11) is an AO risk factor when it is expressed in the axillary apocrine glands-the sources of the offensive odors. Hence, identifying safe ways to inhibit ABCC11 may offer a breakthrough in treating AO. We herein screened for ABCC11-inhibitory activities in 34 natural products derived from plants cultivated for human consumption using an in vitro assay system to measure the ABCC11-mediated transport of radiolabeled dehydroepiandrosterone sulfate (DHEA-S-an ABCC11 substrate). The water extract of soybean (Glycine max) was found to exhibit the strongest transport inhibition. From this extract, via a fractionation approach, we successfully isolated and identified genistein, a soy isoflavone, as a novel ABCC11 inhibitor with a half-maximal inhibitory concentration value of 61.5 μM. Furthermore, we examined the effects of other dietary flavonoids on the ABCC11-mediated DHEA-S transport to uncover the effects of these phytochemicals on ABCC11 function. While further human studies are needed, our findings here about the natural compounds will help develop a non-surgical therapy for AO.
Collapse
Affiliation(s)
- Hiroki Saito
- Frontier Laboratories for Value Creation, Sapporo Holdings Ltd., 10 Okatome, Yaizu, Shizuoka 425-0013, Japan; (H.S.); (H.H.); (A.O.-K.); (Y.T.)
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (T.T.); (H.S.)
| | - Yu Toyoda
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (T.T.); (H.S.)
| | - Hiroshi Hirata
- Frontier Laboratories for Value Creation, Sapporo Holdings Ltd., 10 Okatome, Yaizu, Shizuoka 425-0013, Japan; (H.S.); (H.H.); (A.O.-K.); (Y.T.)
| | - Ami Ota-Kontani
- Frontier Laboratories for Value Creation, Sapporo Holdings Ltd., 10 Okatome, Yaizu, Shizuoka 425-0013, Japan; (H.S.); (H.H.); (A.O.-K.); (Y.T.)
| | - Youichi Tsuchiya
- Frontier Laboratories for Value Creation, Sapporo Holdings Ltd., 10 Okatome, Yaizu, Shizuoka 425-0013, Japan; (H.S.); (H.H.); (A.O.-K.); (Y.T.)
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (T.T.); (H.S.)
| | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (T.T.); (H.S.)
| |
Collapse
|
14
|
Deng F, Ghemtio L, Grazhdankin E, Wipf P, Xhaard H, Kidron H. Binding Site Interactions of Modulators of Breast Cancer Resistance Protein, Multidrug Resistance-Associated Protein 2, and P-Glycoprotein Activity. Mol Pharm 2020; 17:2398-2410. [PMID: 32496785 PMCID: PMC7497665 DOI: 10.1021/acs.molpharmaceut.0c00155] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
ATP-binding cassette (ABC)-transporters
protect tissues by pumping
their substrates out of the cells in many physiological barriers,
such as the blood–brain barrier, intestine, liver, and kidney.
These substrates include various endogenous metabolites, but, in addition,
ABC transporters recognize a wide range of compounds, therefore affecting
the disposition and elimination of clinically used drugs and their
metabolites. Although numerous ABC-transporter inhibitors are known,
the underlying mechanism of inhibition is not well characterized.
The aim of this study is to deepen our understanding of transporter
inhibition by studying the molecular basis of ligand recognition.
In the current work, we compared the effect of 44 compounds on the
active transport mediated by three ABC transporters: breast cancer
resistance protein (BCRP and ABCG2), multidrug-resistance associated
protein (MRP2 and ABCC2), and P-glycoprotein (P-gp and ABCB1). Eight
compounds were strong inhibitors of all three transporters, while
the activity of 36 compounds was transporter-specific. Of the tested
compounds, 39, 25, and 11 were considered as strong inhibitors, while
1, 4, and 11 compounds were inactive against BCRP, MRP2, and P-gp,
respectively. In addition, six transport-enhancing stimulators were
observed for P-gp. In order to understand the observed selectivity,
we compared the surface properties of binding cavities in the transporters
and performed structure–activity analysis and computational
docking of the compounds to known binding sites in the transmembrane
domains and nucleotide-binding domains. Based on the results, the
studied compounds are more likely to interact with the transmembrane
domain than the nucleotide-binding domain. Additionally, the surface
properties of the substrate binding site in the transmembrane domains
of the three transporters were in line with the observed selectivity.
Because of the high activity toward BCRP, we lacked the dynamic range
needed to draw conclusions on favorable interactions; however, we
identified amino acids in both P-gp and MRP2 that appear to be important
for ligand recognition.
Collapse
Affiliation(s)
- Feng Deng
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Helsinki 00014, Finland
| | - Leo Ghemtio
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Helsinki 00014, Finland
| | - Evgeni Grazhdankin
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Helsinki 00014, Finland
| | - Peter Wipf
- Department of Chemistry, The Center for Chemical Methodologies and Library Development, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Henri Xhaard
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Helsinki 00014, Finland
| | - Heidi Kidron
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Helsinki 00014, Finland
| |
Collapse
|
15
|
Jiang D, Lei T, Wang Z, Shen C, Cao D, Hou T. ADMET evaluation in drug discovery. 20. Prediction of breast cancer resistance protein inhibition through machine learning. J Cheminform 2020; 12:16. [PMID: 33430990 PMCID: PMC7059329 DOI: 10.1186/s13321-020-00421-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/20/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer resistance protein (BCRP/ABCG2), an ATP-binding cassette (ABC) efflux transporter, plays a critical role in multi-drug resistance (MDR) to anti-cancer drugs and drug–drug interactions. The prediction of BCRP inhibition can facilitate evaluating potential drug resistance and drug–drug interactions in early stage of drug discovery. Here we reported a structurally diverse dataset consisting of 1098 BCRP inhibitors and 1701 non-inhibitors. Analysis of various physicochemical properties illustrates that BCRP inhibitors are more hydrophobic and aromatic than non-inhibitors. We then developed a series of quantitative structure–activity relationship (QSAR) models to discriminate between BCRP inhibitors and non-inhibitors. The optimal feature subset was determined by a wrapper feature selection method named rfSA (simulated annealing algorithm coupled with random forest), and the classification models were established by using seven machine learning approaches based on the optimal feature subset, including a deep learning method, two ensemble learning methods, and four classical machine learning methods. The statistical results demonstrated that three methods, including support vector machine (SVM), deep neural networks (DNN) and extreme gradient boosting (XGBoost), outperformed the others, and the SVM classifier yielded the best predictions (MCC = 0.812 and AUC = 0.958 for the test set). Then, a perturbation-based model-agnostic method was used to interpret our models and analyze the representative features for different models. The application domain analysis demonstrated the prediction reliability of our models. Moreover, the important structural fragments related to BCRP inhibition were identified by the information gain (IG) method along with the frequency analysis. In conclusion, we believe that the classification models developed in this study can be regarded as simple and accurate tools to distinguish BCRP inhibitors from non-inhibitors in drug design and discovery pipelines.![]()
Collapse
Affiliation(s)
- Dejun Jiang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Tailong Lei
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Zhe Wang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Chao Shen
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Dongsheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410004, Hunan, People's Republic of China.
| | - Tingjun Hou
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China.
| |
Collapse
|
16
|
Antoni F, Bause M, Scholler M, Bauer S, Stark SA, Jackson SM, Manolaridis I, Locher KP, König B, Buschauer A, Bernhardt G. Tariquidar-related triazoles as potent, selective and stable inhibitors of ABCG2 (BCRP). Eur J Med Chem 2020; 191:112133. [PMID: 32105979 DOI: 10.1016/j.ejmech.2020.112133] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/18/2022]
Abstract
Tariquidar derivatives have been described as potent and selective ABCG2 inhibitors. However, their susceptibility to hydrolysis limits their applicability. The current study comprises the synthesis and characterization of novel tariquidar-related inhibitors, obtained by bioisosteric replacement of the labile moieties in our previous tariquidar analog UR-ME22-1 (9). CuAAC ("click" reaction) gave convenient access to a triazole core as a substitute for the labile amide group and the labile ester moiety was replaced by different acyl groups in a Sugasawa reaction. A stability assay proved the enhancement of the stability in blood plasma. Compounds UR-MB108 (57) and UR-MB136 (59) inhibited ABCG2 in a Hoechst 33342 transport assay with an IC50 value of about 80 nM and belong to the most potent ABCG2 inhibitors described so far. Compound 57 was highly selective, whereas its PEGylated analog 59 showed some potency at ABCB1. Both 57 and 59 produced an ABCG2 ATPase-depressing effect which is in agreement with our precedent cryo-EM study identifying 59 as an ATPase inhibitor that exerts its effect via locking the inward-facing conformation. Thermostabilization of ABCG2 by 57 and 59 can be taken as a hint to comparable binding to ABCG2. As reference substances, compounds 57 and 59 allow additional mechanistic studies on ABCG2 inhibition. Due to their stability in blood plasma, they are also applicable in vivo. The highly specific inhibitor 57 is suited for PET labeling, helping to further elucidate the (patho)physiological role of ABCG2, e.g. at the BBB.
Collapse
Affiliation(s)
- Frauke Antoni
- Institute of Pharmacy, University of Regensburg, D-93040, Regensburg, Germany.
| | - Manuel Bause
- Institute of Organic Chemistry, University of Regensburg, D-93040, Regensburg, Germany
| | - Matthias Scholler
- Institute of Pharmacy, University of Regensburg, D-93040, Regensburg, Germany
| | - Stefanie Bauer
- Institute of Pharmacy, University of Regensburg, D-93040, Regensburg, Germany
| | - Simone A Stark
- Institute of Organic Chemistry, University of Regensburg, D-93040, Regensburg, Germany
| | - Scott M Jackson
- Institute of Molecular Biology and Biophysics, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Ioannis Manolaridis
- Institute of Molecular Biology and Biophysics, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Burkhard König
- Institute of Organic Chemistry, University of Regensburg, D-93040, Regensburg, Germany.
| | - Armin Buschauer
- Institute of Pharmacy, University of Regensburg, D-93040, Regensburg, Germany
| | - Günther Bernhardt
- Institute of Pharmacy, University of Regensburg, D-93040, Regensburg, Germany
| |
Collapse
|
17
|
Rozanski M, Studzian M, Pulaski L. Direct Measurement of Kinetic Parameters of ABCG2-Dependent Transport of Natural Flavonoids Using a Fluorogenic Substrate. J Pharmacol Exp Ther 2019; 371:309-319. [DOI: 10.1124/jpet.119.261347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/28/2019] [Indexed: 12/15/2022] Open
|
18
|
Milutinović MG, Maksimović VM, Cvetković DM, Nikodijević DD, Stanković MS, Pešić M, Marković SD. Potential of Teucrium chamaedrys L. to modulate apoptosis and biotransformation in colorectal carcinoma cells. JOURNAL OF ETHNOPHARMACOLOGY 2019; 240:111951. [PMID: 31085226 DOI: 10.1016/j.jep.2019.111951] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Teucrum chamaedrys L. is one of the known medicinal plants, useful for treatment of various health problems, especially digestive. In this study, we investigated methanol, ethyl-acetate and acetone extracts of T. chamaedrys in respect to their anticancer properties in SW480 colorectal cancer cells. MATERIALS AND METHODS Cytotoxicity and proapoptotic potential were assessed by MTT cell viability assay and AO/EB double staining. Molecular mechanisms of induced apoptosis were determined by monitoring Fas receptor protein expression through immunofluorescence, Caspase 8 and 9 activity, as well as concentrations of O2.- spectrophotometrically. Additionally, mRNA expression of biotransformation enzymes (CYP1A1, CYP1B1, GSTP1) and membrane transporters (MRP1 and MRP2) involved in drug resistance were investigated by qPCR method. Qualitative analysis of individual phenolic compounds was performed by reversed phase HPLC-MS analysis. RESULTS Methanol extract shows the best cytotoxicity and selectivity compared to ethyl-acetate and acetone extracts, mainly causing apoptosis of SW480 cells, without affecting normal HaCaT keratinocytes. The increased expression of Fas receptor protein and caspase 8 activity indicate that the death receptor-mediated pathway plays a crucial role in the observed apoptosis. The increased caspase 9 activity and O2.- concentration suggest that mitochondria are also involved in the apoptosis. T. chamaedrys methanol extract inhibits mRNA expression of CYP1A1, CYP1B1, GSTP1, MRP1 and MRP2 in SW480 cells. CONCLUSIONS Induction of apoptosis and inhibition of CYP1A1, CYP1B1, GSTP1, MRP1 and MRP2 mRNA expression implies that T. chamaedrys can serve as a valuable source of bioactive compounds as dietary supplements or selective anticancer agents, with the ability to induce apoptosis and modulate drug resistance in colorectal cancer cells.
Collapse
Affiliation(s)
- Milena G Milutinović
- Faculty of Science, Department of Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia.
| | - Vuk M Maksimović
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030, Belgrade, Serbia
| | - Danijela M Cvetković
- Faculty of Science, Department of Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Danijela D Nikodijević
- Faculty of Science, Department of Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Milan S Stanković
- Faculty of Science, Department of Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Milica Pešić
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Despota Stefana 142, 11060, Belgrade, Serbia
| | - Snežana D Marković
- Faculty of Science, Department of Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| |
Collapse
|
19
|
Jia L, Jia N, Gao Y, Hu H, Zhao X, Chen D, Qiao M. Multi-Modulation of Doxorubicin Resistance in Breast Cancer Cells by Poly(l-histidine)-Based Multifunctional Micelles. Pharmaceutics 2019; 11:E385. [PMID: 31382390 PMCID: PMC6723117 DOI: 10.3390/pharmaceutics11080385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 02/06/2023] Open
Abstract
Even though the reversal of multi-drug resistance (MDR) by numerous nanoparticles has been extensively studied, limited success has been achieved. To overcome this barrier, we report a rationally-designed pH-sensitive micelle, in which doxorubicin (Dox) and resveratrol (Res) were co-loaded. The micelle was based on methoxy poly (ethylene glycol)-poly(d,l-lactide)-poly(l-histidine) (mPEG-PLA-PHis), which integrated passive targeting, endo-lysosomal escape and pH-responsive payloads release. At a physiological pH of 7.4 (slightly alkali), Dox and Res were incorporated into the micelles core using the thin-film hydration method (pH-endoSM/Dox/Res). After cellular uptake, the micelles exhibited an enhanced dissociation in response to the acidic endosomes, triggering the release of Res and Dox. Furthermore, Res was observed to synergistically improve the cytotoxicity of Dox by down-regulating the P-glycoprotein (P-gp) expression, decreasing the membrane potential of the mitochondrial and ATP level, as well as inducing cell apoptosis mediated by mitochondria. The pH-endoSM/Dox/Res showed a prominent ability to decrease the IC50 of Dox by a factor of 17.38 in cell cytotoxicity against the MCF-7/ADR cell line. In vivo distribution demonstrated the excellent tumor-targeting ability of the pH-endoSM/Dox/Res. All results indicated that pH-endoSM/Dox/Res held great potential for the treatment of Dox-resistance breast cancer cells.
Collapse
Affiliation(s)
- Li Jia
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, P.O. Box 42, Shenyang 110016, China
- Department of Pharmacy, Heze Medical College, Heze 274000, China
| | - Nan Jia
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, P.O. Box 42, Shenyang 110016, China
| | - Yan Gao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, P.O. Box 42, Shenyang 110016, China
| | - Haiyang Hu
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, P.O. Box 42, Shenyang 110016, China
| | - Xiuli Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, P.O. Box 42, Shenyang 110016, China
| | - Dawei Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, P.O. Box 42, Shenyang 110016, China
| | - Mingxi Qiao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, P.O. Box 42, Shenyang 110016, China.
| |
Collapse
|
20
|
Sjöstedt N, Salminen TA, Kidron H. Endogenous, cholesterol-activated ATP-dependent transport in membrane vesicles from Spodoptera frugiperda cells. Eur J Pharm Sci 2019; 137:104963. [PMID: 31226387 DOI: 10.1016/j.ejps.2019.104963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 06/04/2019] [Accepted: 06/17/2019] [Indexed: 12/19/2022]
Abstract
Transport proteins of the ATP-binding cassette (ABC) family are found in all kingdoms of life. In humans, several ABC efflux transporters play a role in drug disposition and excretion. Therefore, in vitro methods have been developed to characterize the substrate and inhibitor properties of drugs with respect to these transporters. In the vesicular transport assay, transport is studied using inverted membrane vesicles produced from transporter overexpressing cell lines of both mammalian and insect origin. Insect cell expression systems benefit from a higher expression compared to background, but are not as well characterized as their mammalian counterparts regarding endogenous transport. Therefore, the contribution of this transport in the assay might be underappreciated. In this study, endogenous transport in membrane vesicles from Spodoptera frugiperda -derived Sf9 cells was characterized using four typical substrates of human ABC transporters: 5(6)-carboxy-2,'7'-dichlorofluorescein (CDCF), estradiol-17β-glucuronide, estrone sulfate and N-methyl-quinidine. Significant ATP-dependent transport was observed for three of the substrates with cholesterol-loading of the vesicles, which is sometimes used to improve the activity of human transporters expressed in Sf9 cells. The highest effect of cholesterol was on CDCF transport, and this transport in the cholesterol-loaded Sf9 vesicles was time and concentration dependent with a Km of 8.06 ± 1.11 μM. The observed CDCF transport was inhibited by known inhibitors of human ABCC transporters, but not by ABCB1 and ABCG2 inhibitors verapamil and Ko143, respectively. Two candidate genes for ABCC-type transporters in the S. frugiperda genome (SfABCC2 and SfABCC3) were identified based on sequence analysis as a hypothesis to explain the observed endogenous ABCC-type transport in Sf9 vesicles. Although further studies are needed to verify the role of SfABCC2 and SfABCC3 in Sf9 vesicles, the findings of this study highlight the need to carefully characterize background transport in Sf9 derived membrane vesicles to avoid false positive substrate findings for human ABC transporters studied with this overexpression system.
Collapse
Affiliation(s)
- Noora Sjöstedt
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| | - Tiina A Salminen
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Heidi Kidron
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
21
|
Qin Z, Zhang B, Yang J, Li S, Xu J, Yao Z, Zhang X, Gonzalez FJ, Yao X. The Efflux Mechanism of Fraxetin- O-Glucuronides in UGT1A9-Transfected HeLa Cells: Identification of Multidrug Resistance-Associated Proteins 3 and 4 (MRP3/4) as the Important Contributors. Front Pharmacol 2019; 10:496. [PMID: 31133859 PMCID: PMC6515931 DOI: 10.3389/fphar.2019.00496] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/18/2019] [Indexed: 12/26/2022] Open
Abstract
Fraxetin, a natural compound present in many dietary supplements and herbs, is useful in the treatment of acute bacillary dysentery and type 2 diabetes. Previously, several metabolic studies have revealed extensive first-pass metabolism causing formation of fraxetin-O-glucuronides (G1 and G2), resulting in poor bioavailability of fraxetin. Active transport processes play an important role in the excretion of fraxetin-O-glucuronides. Nevertheless, the transporters involved are yet to be elucidated. In this study, we aimed to determine the active efflux transporters, including breast cancer resistance protein (BCRP) and multidrug resistance-associated proteins (MRPs), involved in the excretion of fraxetin-O-glucuronides. A chemical inhibitor, MK571 (5 and 20 μM), a pan-MRP inhibitor, led to a significant decrease in excreted G1 (maximal 59.1%) and G2 levels (maximal 42.4%), whereas Ko143 (5 and 20 μM), a selective BCRP inhibitor, caused moderate downregulation of excreted G1 (maximal 29.4%) and G2 (maximal 28.5%). Furthermore, MRP3 silencing resulted in a marked decrease of excretion rates (by 29.1% for G1 and by 21.1% for G2) and of fraction metabolized (fmet; by 24.1% for G1 and by 18.6% for G2). Similar results, i.e., a significant reduction in excretion rates (by 34.8% for G1 and by 32.3% for G2) and in fmet (by 22.7% for G1 and by 23.1% for G2) were obtained when MRP4 was partially silenced. No obvious modifications in the excretion rates, intracellular levels, and fmet values of glucuronides were observed after short hairpin RNA (shRNA)-mediated silencing of transporters BCRP and MRP1. Taken together, our results indicate that MRP3 and MRP4 contribute more to the excretion of fraxetin-O-glucuronides than the other transporters do.
Collapse
Affiliation(s)
- Zifei Qin
- Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Beibei Zhang
- Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Jing Yang
- Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Shishi Li
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Jinjin Xu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhihong Yao
- College of Pharmacy, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Xiaojian Zhang
- Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Xinsheng Yao
- College of Pharmacy, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| |
Collapse
|
22
|
Sachs J, Döhl K, Weber A, Bonus M, Ehlers F, Fleischer E, Klinger A, Gohlke H, Pietruszka J, Schmitt L, Teusch N. Novel 3,4-Dihydroisocoumarins Inhibit Human P-gp and BCRP in Multidrug Resistant Tumors and Demonstrate Substrate Inhibition of Yeast Pdr5. Front Pharmacol 2019; 10:400. [PMID: 31040786 PMCID: PMC6476959 DOI: 10.3389/fphar.2019.00400] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 04/01/2019] [Indexed: 12/15/2022] Open
Abstract
Multidrug resistance (MDR) in tumors and pathogens remains a major problem in the efficacious treatment of patients by reduction of therapy options and subsequent treatment failure. Various mechanisms are described to be involved in the development of MDR with overexpression of ATP-binding cassette (ABC) transporters reflecting the most extensively studied. These membrane transporters translocate a wide variety of substrates utilizing energy from ATP hydrolysis leading to decreased intracellular drug accumulation and impaired drug efficacy. One treatment strategy might be inhibition of transporter-mediated efflux by small molecules. Isocoumarins and 3,4-dihydroisocoumarins are a large group of natural products derived from various sources with great structural and functional variety, but have so far not been in the focus as potential MDR reversing agents. Thus, three natural products and nine novel 3,4-dihydroisocoumarins were designed and analyzed regarding cytotoxicity induction and inhibition of human ABC transporters P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1) and breast cancer resistance protein (BCRP) in a variety of human cancer cell lines as well as the yeast ABC transporter Pdr5 in Saccharomyces cerevisiae. Dual inhibitors of P-gp and BCRP and inhibitors of Pdr5 were identified, and distinct structure-activity relationships for transporter inhibition were revealed. The strongest inhibitor of P-gp and BCRP, which inhibited the transporters up to 80 to 90% compared to the respective positive controls, demonstrated the ability to reverse chemotherapy resistance in resistant cancer cell lines up to 5.6-fold. In the case of Pdr5, inhibitors were identified that prevented substrate transport and/or ATPase activity with IC50 values in the low micromolar range. However, cell toxicity was not observed. Molecular docking of the test compounds to P-gp revealed that differences in inhibition capacity were based on different binding affinities to the transporter. Thus, these small molecules provide novel lead structures for further optimization.
Collapse
Affiliation(s)
- Julia Sachs
- Bio-Pharmaceutical Chemistry and Molecular Pharmacology, Faculty of Applied Natural Sciences, Technische Hochschule Köln, Leverkusen, Germany
| | - Katja Döhl
- Institute of Biochemistry, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Anja Weber
- Institute of Bioorganic Chemistry, Heinrich-Heine-Universität Düsseldorf im Forschungszentrum Jülich, Jülich, Germany
| | - Michele Bonus
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Ferdinand Ehlers
- Bio-Pharmaceutical Chemistry and Molecular Pharmacology, Faculty of Applied Natural Sciences, Technische Hochschule Köln, Leverkusen, Germany
| | | | | | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.,John von Neumann Institute for Computing, Jülich Supercomputing Centre and Institute for Complex Systems - Structural Biochemistry, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry, Heinrich-Heine-Universität Düsseldorf im Forschungszentrum Jülich, Jülich, Germany.,IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Nicole Teusch
- Bio-Pharmaceutical Chemistry and Molecular Pharmacology, Faculty of Applied Natural Sciences, Technische Hochschule Köln, Leverkusen, Germany
| |
Collapse
|
23
|
Tsunekawa R, Katayama K, Hanaya K, Higashibayashi S, Sugimoto Y, Sugai T. Synthesis of 5-Hydroxy-3',4',7-trimethoxyflavone and Related Compounds and Elucidation of Their Reversal Effects on BCRP/ABCG2-Mediated Anticancer Drug Resistance. Chembiochem 2019; 20:210-220. [PMID: 30187992 DOI: 10.1002/cbic.201800431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Indexed: 12/18/2022]
Abstract
3',4',7-Trimethoxyflavone (TMF) has been reported to show a potent reversal effect on drug resistance mediated by breast cancer resistance protein (BCRP)/ATP-binding cassette subfamily G member 2 (ABCG2). In this study, we designed and synthesized five derivatives with either a hydroxy group or a fluorine atom at C-5 and several kinds of capping moiety at the C-7 hydroxy group, on the same 3',4'-dimethoxy-substituted flavone skeleton. We subsequently evaluated the efficacies of these compounds against BCRP-expressing human leukaemia K562/BCRP cells. Reversal of drug resistance was expressed as the concentration of compound causing a twofold reduction in drug sensitivity (RI50 ). Of the synthesized compounds, the reversal effect of 5-hydroxy-3',4',7-trimethoxyflavone (HTMF, RI50 7.2 nm) towards 7-ethyl-10-hydroxycamptothecin (SN-38) was stronger than that of TMF (RI50 18 nm). Fluoro-substituted 5-fluoro-3',4',7-trimethoxyflavone (FTMF, RI50 25 nm) and monoglycosylated 7-(β-glucosyloxy)-5-hydroxy-3',4'-dimethoxyflavone (GOHDMF, 91 nm) also exhibited reversal effects, whereas the di- and triglycoside derivatives did not. TMF, HTMF and FTMF at 0.01-10 μm upregulated the K562/BCRP cellular accumulation of Hoechst 33342 nuclear staining dye. In addition, western blotting revealed that treatment of K562/BCRP cells with 0.1 μm TMF, HTMF or FTMT suppressed the expression of BCRP. HTMF showed the strongest inhibition of BCRP-mediated efflux and suppression of BCRP expression of the three effective synthesized flavones.
Collapse
Affiliation(s)
- Ryuji Tsunekawa
- Division of Organic and Biocatalytic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Kazuhiro Katayama
- Division of Chemotherapy, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Kengo Hanaya
- Division of Organic and Biocatalytic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Shuhei Higashibayashi
- Division of Organic and Biocatalytic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Yoshikazu Sugimoto
- Division of Chemotherapy, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Takeshi Sugai
- Division of Organic and Biocatalytic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| |
Collapse
|
24
|
Järvinen E, Deng F, Kidron H, Finel M. Efflux transport of estrogen glucuronides by human MRP2, MRP3, MRP4 and BCRP. J Steroid Biochem Mol Biol 2018; 178:99-107. [PMID: 29175180 DOI: 10.1016/j.jsbmb.2017.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/02/2017] [Accepted: 11/16/2017] [Indexed: 01/01/2023]
Abstract
Estrone, estradiol and estriol are endogenous human estrogens that are rapidly conjugated with glucuronic acid in both intestinal and hepatic epithelial cells. The resulting glucuronides, estrone-3-glucuronide (E1-G), estradiol-3- and 17-glucuronides (E2-3G and E2-17G), as well as estriol-3- and 16-glucuronides (E3-3G and E3-16G) are found in human plasma and urine. Unlike E2-17G, the efflux transport of other estrogen glucuronides by human transporters has not yet been investigated comprehensively. We have studied the transport of E1-G, E2-3G, E3-3G, E3-16G and estrone-3-sulfate (E1-S), another important estrogen conjugate, using the vesicular transport assay with recombinant human MRP2, MRP3, MRP4, MDR1 and BCRP that were expressed in insect cells. The transport screening assays revealed that whereas E1-S was a good and specific substrate for BCRP, the less transporter-specific conjugates, E1-G and E2-3G, were still transported by BCRP at 10-fold higher rates than E1-S. BCRP also transported E3-16G at higher rates than the studied MRPs, while it transported E3-3G at lower rates than MRP3. MRP2 exhibited lower or equal transport rates of E1-G, E2-3G, E3-3G and E3-16G in comparison to MRP3 and BCRP in the screening assays, mainly due to its high Km values, between 180 and 790 μM. MRP3 transported all the tested glucuronides at rather similar rates, at Km values below 20 μM, but lower Vmax values than other transporters. In the case of E3-3G, MRP3 was the most active transporter in the screening assay. MRP4 transported only E3-16G at considerable rates, while none of the tested estrogen conjugates was transported by MDR1 at higher rates than control vesicles. These new results, in combination with previously reported in vivo human data, stimulate our understanding on the substrate specificity and role of efflux transporters in disposition of estrogen glucuronides in humans.
Collapse
Affiliation(s)
- Erkka Järvinen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Finland
| | - Feng Deng
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Finland
| | - Heidi Kidron
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Finland
| | - Moshe Finel
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Finland.
| |
Collapse
|
25
|
Doddapaneni R, Patel K, Chowdhury N, Singh M. Reversal of drug-resistance by noscapine chemo-sensitization in docetaxel resistant triple negative breast cancer. Sci Rep 2017; 7:15824. [PMID: 29158480 PMCID: PMC5696458 DOI: 10.1038/s41598-017-15531-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/26/2017] [Indexed: 12/17/2022] Open
Abstract
Multidrug resistance (MDR) is a major impediment to cancer treatment. Here, for the first time, we investigated the chemo-sensitizing effect of Noscapine (Nos) at low concentrations in conjunction with docetaxel (DTX) to overcome drug resistance of triple negative breast cancer (TNBC). In vitro experiments showed that Nos significantly inhibited proliferation of TNBC wild type (p < 0.01) and drug resistant (p < 0.05) TNBC cells. Nos followed by DTX treatment notably increased the cell viability (~1.3 fold) markedly (p < 0.05) in 3D models compared to conventional 2D systems. In vivo oral administration of Nos (100 mg/kg) followed by intravenous DTX (5 mg/kg) liposome treatment revealed regression of xenograft tumors in both wild type (p < 0.001) and drug-resistant (p < 0.05) xenografts. In wild type xenografts, combination of Nos plus DTX group showed 5.49 and 3.25 fold reduction in tumor volume compared to Nos and DTX alone groups, respectively. In drug-resistant xenografts, tumor volume was decreased 2.33 and 1.41 fold in xenografts treated with Nos plus DTX significantly (p < 0.05) compared to Nos and DTX alone respectively and downregulated the expression of anti-apoptotic factors and multidrug resistance proteins. Collectively, chemo-sensitizing effect of Nos followed by DTX regime provide a promising chemotherapeutic strategy and its significant role for the treatment of drug-resistant TNBC.
Collapse
Affiliation(s)
- Ravi Doddapaneni
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA.,Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Ketan Patel
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA.,College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Nusrat Chowdhury
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA.
| |
Collapse
|
26
|
Sjöstedt N, Deng F, Rauvala O, Tepponen T, Kidron H. Interaction of Food Additives with Intestinal Efflux Transporters. Mol Pharm 2017; 14:3824-3833. [DOI: 10.1021/acs.molpharmaceut.7b00563] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Noora Sjöstedt
- Division of Pharmaceutical
Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Feng Deng
- Division of Pharmaceutical
Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Oskari Rauvala
- Division of Pharmaceutical
Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Tuomas Tepponen
- Division of Pharmaceutical
Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Heidi Kidron
- Division of Pharmaceutical
Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| |
Collapse
|
27
|
Järvinen E, Troberg J, Kidron H, Finel M. Selectivity in the Efflux of Glucuronides by Human Transporters: MRP4 Is Highly Active toward 4-Methylumbelliferone and 1-Naphthol Glucuronides, while MRP3 Exhibits Stereoselective Propranolol Glucuronide Transport. Mol Pharm 2017; 14:3299-3311. [DOI: 10.1021/acs.molpharmaceut.7b00366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Erkka Järvinen
- Division
of Pharmaceutical Chemistry and Technology,
and ‡Division of Pharmaceutical
Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 University of Helsinki, Finland
| | - Johanna Troberg
- Division
of Pharmaceutical Chemistry and Technology,
and ‡Division of Pharmaceutical
Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 University of Helsinki, Finland
| | - Heidi Kidron
- Division
of Pharmaceutical Chemistry and Technology,
and ‡Division of Pharmaceutical
Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 University of Helsinki, Finland
| | - Moshe Finel
- Division
of Pharmaceutical Chemistry and Technology,
and ‡Division of Pharmaceutical
Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 University of Helsinki, Finland
| |
Collapse
|
28
|
Muhrez K, Largeau B, Emond P, Montigny F, Halimi JM, Trouillas P, Barin-Le Guellec C. Single nucleotide polymorphisms of ABCC2 modulate renal secretion of endogenous organic anions. Biochem Pharmacol 2017; 140:124-138. [DOI: 10.1016/j.bcp.2017.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/17/2017] [Indexed: 01/11/2023]
|
29
|
Alamolhodaei NS, Tsatsakis AM, Ramezani M, Hayes AW, Karimi G. Resveratrol as MDR reversion molecule in breast cancer: An overview. Food Chem Toxicol 2017; 103:223-232. [DOI: 10.1016/j.fct.2017.03.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/05/2017] [Accepted: 03/13/2017] [Indexed: 12/25/2022]
|
30
|
Sjöstedt N, van den Heuvel JJMW, Koenderink JB, Kidron H. Transmembrane Domain Single-Nucleotide Polymorphisms Impair Expression and Transport Activity of ABC Transporter ABCG2. Pharm Res 2017; 34:1626-1636. [PMID: 28281205 PMCID: PMC5498656 DOI: 10.1007/s11095-017-2127-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/16/2017] [Indexed: 01/29/2023]
Abstract
Purpose To study the function and expression of nine naturally occurring single-nucleotide polymorphisms (G406R, F431L, S441N, P480L, F489L, M515R, L525R, A528T and T542A) that are predicted to reside in the transmembrane regions of the ABC transporter ABCG2. Methods The transport activity of the variants was tested in inside-out membrane vesicles from Sf9 insect and human derived HEK293 cells overexpressing ABCG2. Lucifer Yellow and estrone sulfate were used as probe substrates of activity. The expression levels and cellular localization of the variants was compared to the wild-type ABCG2 by western blotting and immunofluorescence microscopy. Results All studied variants of ABCG2 displayed markedly decreased transport in both Sf9-ABCG2 and HEK293-ABCG2 vesicles. Impaired transport could be explained for some variants by altered expression levels and cellular localization. Moreover, the destructive effect on transport activity of variants G406R, P480L, M515R and T542A is, to our knowledge, reported for the first time. Conclusions These results indicate that the transmembrane region of ABCG2 is sensitive to amino acid substitution and that patients harboring these ABCG2 variant forms could suffer from unexpected pharmacokinetic events of ABCG2 substrate drugs or have an increased risk for diseases such as gout where ABCG2 is implicated. Electronic supplementary material The online version of this article (doi:10.1007/s11095-017-2127-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Noora Sjöstedt
- Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00014, Helsinki, Finland
| | - Jeroen J M W van den Heuvel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan B Koenderink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Heidi Kidron
- Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00014, Helsinki, Finland.
| |
Collapse
|
31
|
Subramani R, Lakshmanaswamy R. Complementary and Alternative Medicine and Breast Cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 151:231-274. [DOI: 10.1016/bs.pmbts.2017.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|