1
|
Aplin C, Zielinski KA, Pabit S, Ogunribido D, Katt WP, Pollack L, Cerione RA, Milano SK. Distinct conformational states enable transglutaminase 2 to promote cancer cell survival versus cell death. Commun Biol 2024; 7:982. [PMID: 39134806 PMCID: PMC11319651 DOI: 10.1038/s42003-024-06672-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
Transglutaminase 2 (TG2) is a GTP-binding, protein-crosslinking enzyme that has been investigated as a therapeutic target for Celiac disease, neurological disorders, and aggressive cancers. TG2 has been suggested to adopt two conformational states that regulate its functions: a GTP-bound, closed conformation, and a calcium-bound, crosslinking-active open conformation. TG2 mutants that constitutively adopt an open conformation are cytotoxic to cancer cells. Thus, small molecules that bind and stabilize the open conformation of TG2 could offer a new therapeutic strategy. Here, we investigate TG2, using static and time-resolved small-angle X-ray scattering (SAXS) and single-particle cryoelectron microscopy (cryo-EM), to determine the conformational states responsible for conferring its biological effects. We also describe a newly developed TG2 inhibitor, LM11, that potently kills glioblastoma cells and use SAXS to investigate how LM11 affects the conformational states of TG2. Using SAXS and cryo-EM, we show that guanine nucleotides bind and stabilize a monomeric closed conformation while calcium binds to an open state that can form higher order oligomers. SAXS analysis suggests how a TG2 mutant that constitutively adopts the open state binds nucleotides through an alternative mechanism to wildtype TG2. Furthermore, we use time resolved SAXS to show that LM11 increases the ability of calcium to bind and stabilize an open conformation, which is not reversible by guanine nucleotides and is cytotoxic to cancer cells. Taken together, our findings demonstrate that the conformational dynamics of TG2 are more complex than previously suggested and highlight how conformational stabilization of TG2 by LM11 maintains TG2 in a cytotoxic conformational state.
Collapse
Affiliation(s)
- Cody Aplin
- Department of Chemistry and Chemical Biology, Cornell University, 14853, Ithaca, NY, USA
- Department of Molecular Medicine, Cornell University, 14853, Ithaca, NY, USA
| | - Kara A Zielinski
- School of Applied and Engineering Physics, Cornell University, 14853, Ithaca, NY, USA
| | - Suzette Pabit
- School of Applied and Engineering Physics, Cornell University, 14853, Ithaca, NY, USA
| | - Deborah Ogunribido
- Department of Chemistry and Chemical Biology, Cornell University, 14853, Ithaca, NY, USA
| | - William P Katt
- Department of Molecular Medicine, Cornell University, 14853, Ithaca, NY, USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, 14853, Ithaca, NY, USA
| | - Richard A Cerione
- Department of Chemistry and Chemical Biology, Cornell University, 14853, Ithaca, NY, USA.
- Department of Molecular Medicine, Cornell University, 14853, Ithaca, NY, USA.
| | - Shawn K Milano
- Department of Chemistry and Chemical Biology, Cornell University, 14853, Ithaca, NY, USA
- Department of Molecular Medicine, Cornell University, 14853, Ithaca, NY, USA
| |
Collapse
|
2
|
Yang C, Lin ZI, Zhang X, Xu Z, Xu G, Wang YM, Tsai TH, Cheng PW, Law WC, Yong KT, Chen CK. Recent Advances in Engineering Carriers for siRNA Delivery. Macromol Biosci 2024; 24:e2300362. [PMID: 38150293 DOI: 10.1002/mabi.202300362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/29/2023] [Indexed: 12/28/2023]
Abstract
RNA interference (RNAi) technology has been a promising treatment strategy for combating intractable diseases. However, the applications of RNAi in clinical are hampered by extracellular and intracellular barriers. To overcome these barriers, various siRNA delivery systems have been developed in the past two decades. The first approved RNAi therapeutic, Patisiran (ONPATTRO) using lipids as the carrier, for the treatment of amyloidosis is one of the most important milestones. This has greatly encouraged researchers to work on creating new functional siRNA carriers. In this review, the recent advances in siRNA carriers consisting of lipids, polymers, and polymer-modified inorganic particles for cancer therapy are summarized. Representative examples are presented to show the structural design of the carriers in order to overcome the delivery hurdles associated with RNAi therapies. Finally, the existing challenges and future perspective for developing RNAi as a clinical modality will be discussed and proposed. It is believed that the addressed contributions in this review will promote the development of siRNA delivery systems for future clinical applications.
Collapse
Affiliation(s)
- Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Xinmeng Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yu-Min Wang
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Tzu-Hsien Tsai
- Division of Cardiology and Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, 60002, Taiwan
| | - Pei-Wen Cheng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
- Department of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, P. R. China
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
3
|
Aplin C, Zielinski KA, Pabit S, Ogunribido D, Katt WP, Pollack L, Cerione RA, Milano SK. Defining the conformational states that enable transglutaminase 2 to promote cancer cell survival versus cell death. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.04.578794. [PMID: 38370687 PMCID: PMC10871292 DOI: 10.1101/2024.02.04.578794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Transglutaminase 2 (TG2) is a GTP-binding/protein-crosslinking enzyme that has been investigated as a therapeutic target for Celiac disease, neurological disorders, and aggressive cancers. TG2 has been suggested to adopt two conformational states that regulate its functions: a GTP-bound, closed conformation, and a calcium-bound, crosslinking-active open conformation. TG2 mutants that constitutively adopt an open conformation are cytotoxic to cancer cells. Thus, small molecules that maintain the open conformation of TG2 could offer a new therapeutic strategy. Here, we investigate TG2, using static and time-resolved small-angle X-ray scattering (SAXS) and single-particle cryoelectron microscopy (cryo-EM), to determine the conformational states responsible for conferring its biological effects. We also describe a newly developed TG2 inhibitor, LM11, that potently kills glioblastoma cells and use SAXS to investigate how LM11 affects the conformational states of TG2. Using SAXS and cryo-EM, we show that guanine nucleotide-bound TG2 adopts a monomeric closed conformation while calcium-bound TG2 assumes an open conformational state that can form higher order oligomers. SAXS analysis also suggests how a TG2 mutant that constitutively adopts the open state binds nucleotides through an alternative mechanism to wildtype TG2. Furthermore, we use time-resolved SAXS to show that LM11 increases the ability of calcium to drive TG2 to an open conformation, which is not reversible by guanine nucleotides and is cytotoxic to cancer cells. Taken together, our findings demonstrate that the conformational dynamics of TG2 are more complex than previously suggested and highlight how conformational stabilization of TG2 by LM11 maintains TG2 in a cytotoxic conformational state.
Collapse
Affiliation(s)
- Cody Aplin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
| | - Kara A. Zielinski
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853
| | - Suzette Pabit
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853
| | - Deborah Ogunribido
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| | - William P. Katt
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853
| | - Richard A. Cerione
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
| | - Shawn K. Milano
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
| |
Collapse
|
4
|
Won Lee J, Kyu Shim M, Kim H, Jang H, Lee Y, Hwa Kim S. RNAi therapies: Expanding applications for extrahepatic diseases and overcoming delivery challenges. Adv Drug Deliv Rev 2023; 201:115073. [PMID: 37657644 DOI: 10.1016/j.addr.2023.115073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/31/2023] [Accepted: 08/20/2023] [Indexed: 09/03/2023]
Abstract
The era of RNA medicine has become a reality with the success of messenger RNA (mRNA) vaccines against COVID-19 and the approval of several RNA interference (RNAi) agents in recent years. Particularly, therapeutics based on RNAi offer the promise of targeting intractable and previously undruggable disease genes. Recent advances have focused in developing delivery systems to enhance the poor cellular uptake and insufficient pharmacokinetic properties of RNAi therapeutics and thereby improve its efficacy and safety. However, such approach has been mainly achieved via lipid nanoparticles (LNPs) or chemical conjugation with N-Acetylgalactosamine (GalNAc), thus current RNAi therapy has been limited to liver diseases, most likely to encounter liver-targeting limitations. Hence, there is a huge unmet medical need for intense evolution of RNAi therapeutics delivery systems to target extrahepatic tissues and ultimately extend their indications for treating various intractable diseases. In this review, challenges of delivering RNAi therapeutics to tumors and major organs are discussed, as well as their transition to clinical trials. This review also highlights innovative and promising preclinical RNAi-based delivery platforms for the treatment of extrahepatic diseases.
Collapse
Affiliation(s)
- Jong Won Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Man Kyu Shim
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hyosuk Kim
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hochung Jang
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Yuhan Lee
- Department of Anesthesiology, Perioperative, and Pain Medicine, Center for Accelerated Medical Innovation & Center for Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Sun Hwa Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| |
Collapse
|
5
|
Ghazanfar H, Javed N, Lee S, Shaban M, Cordero D, Acherjee T, Hasan KZ, Jyala A, Kandhi S, Hussain AN, Patel H. Novel Therapies for Celiac Disease: A Clinical Review Article. Cureus 2023; 15:e39004. [PMID: 37323330 PMCID: PMC10263194 DOI: 10.7759/cureus.39004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2023] [Indexed: 06/17/2023] Open
Abstract
Celiac disease is emerging as an autoimmune disorder with increasing prevalence and incidence. The mean age of presentation is also increasing with the passage of time. The delay in diagnosis is partly attributable to the asymptomatic state in which most patients present. The diagnosis of the disease is primarily based on biopsy, but serology can also be included for possible screening purposes. Although the primary management strategy is to eliminate gluten from the diet of such patients; however, compliance with the diet and follow-up to detect healing might be difficult to maintain. Therefore, there is a need to investigate further management therapies that can be easily administered and monitored. The aim of the review is to discuss the epidemiology, clinical presentation, and novel therapies being investigated for celiac disease.
Collapse
Affiliation(s)
| | - Nismat Javed
- Internal Medicine, BronxCare Health System, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Somin Lee
- Internal Medicine, BronxCare Hospital Center, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Mohammed Shaban
- Internal Medicine, BronxCare Hospital Center, Icahn School of Medicine at Mount Sinai, New York, USA
| | | | | | - Khushbu Z Hasan
- Internal Medicine, Mohtarma Benazir Bhutto Shaheed Medical College, Mirpur, PAK
| | | | - Sameer Kandhi
- Internal Medicine, BronxCare Health System, New York, USA
| | - Ali N Hussain
- Premedical, Baruch College, City University of New York, New York, USA
| | - Harish Patel
- Medicine/Gastroenterology, BronxCare Health System, New York, USA
| |
Collapse
|
6
|
Interactions between Nanoparticles and Intestine. Int J Mol Sci 2022; 23:ijms23084339. [PMID: 35457155 PMCID: PMC9024817 DOI: 10.3390/ijms23084339] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
The use of nanoparticles (NPs) has surely grown in recent years due to their versatility, with a spectrum of applications that range from nanomedicine to the food industry. Recent research focuses on the development of NPs for the oral administration route rather than the intravenous one, placing the interactions between NPs and the intestine at the centre of the attention. This allows the NPs functionalization to exploit the different characteristics of the digestive tract, such as the different pH, the intestinal mucus layer, or the intestinal absorption capacity. On the other hand, these same characteristics can represent a problem for their complexity, also considering the potential interactions with the food matrix or the microbiota. This review intends to give a comprehensive look into three main branches of NPs delivery through the oral route: the functionalization of NPs drug carriers for systemic targets, with the case of insulin carriers as an example; NPs for the delivery of drugs locally active in the intestine, for the treatment of inflammatory bowel diseases and colon cancer; finally, the potential concerns and side effects of the accidental and uncontrolled exposure to NPs employed as food additives, with focus on E171 (titanium dioxide) and E174 (silver NPs).
Collapse
|
7
|
|
8
|
Attarwala HZ, Suri K, Amiji MM. Co-Silencing of Tissue Transglutaminase-2 and Interleukin-15 Genes in a Celiac Disease Mimetic Mouse Model Using a Nanoparticle-in-Microsphere Oral System. Mol Pharm 2021; 18:3099-3107. [PMID: 34228470 DOI: 10.1021/acs.molpharmaceut.1c00322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Celiac disease is a chronic inflammatory condition characterized by activation of the immune system in response to deamidation of gluten peptides brought about by tissue transglutaminase-2 (TG2). Overexpression of interleukin-15 (IL-15) in the intestinal epithelium and the lamina propria leads to the dysregulation of the immune system, leading to epithelial damage. The goal of this study was to develop an RNA interference therapeutic strategy for celiac disease using a combination of TG2 and IL-15 gene silencing in the inflamed intestine. TG2 and IL-15 silencing siRNA sequences, along with scrambled control, were encapsulated in a nanoparticle-in-microsphere oral system (NiMOS) and administered in a poly(I:C) mouse model of celiac disease. Single TG2 and IL-15 siRNA therapy and the combination showed effective gene silencing in vivo. Additionally, it was found that IL-15 gene silencing alone and combination in the NiMOS significantly reduced other proinflammatory cytokines. The tissue histopathology data also confirmed a reduction in immune cell infiltration and restoration of the mucosal architecture and barrier function in the intestine upon treatment. Overall, the results of this study show evidence that celiac disease can be potentially treated with an oral microsphere formulation using a combination of TG2 and IL-15 RNA interference therapeutic strategies.
Collapse
Affiliation(s)
- Husain Z Attarwala
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Massachusetts 02115, United States
| | - Kanika Suri
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Massachusetts 02115, United States.,Chemical Engineering College of Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
9
|
Liu L, Tao L, Chen J, Zhang T, Xu J, Ding M, Wang X, Zhong J. Fish oil-gelatin core-shell electrospun nanofibrous membranes as promising edible films for the encapsulation of hydrophobic and hydrophilic nutrients. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Development of emulsion gelatin gels for food application: Physicochemical, rheological, structural and thermal characterization. Int J Biol Macromol 2021; 182:1-10. [PMID: 33775767 DOI: 10.1016/j.ijbiomac.2021.03.141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022]
Abstract
The current work aimed to prepare emulsion gels based on European eel skin gelatin (ESG). The results revealed that the ESG exhibited interesting antioxidant and functional properties in a dose-dependent manner. The ESG has a gel strength of 354.86 g and high gelling and melting temperatures of about 33 and 43 °C, respectively. Hence, based on its interesting gelling ability, the ESG-based gel was employed to stabilize European eel oil (EO) emulsions. In this context, two emulsions were prepared by homogenization or homogenization followed by sonication at EO:ESG weight ratios of 1:2 and 1:4. The physicochemical, textural, structural and thermal properties of emulsion gelatin-based gels (EGGs) were evaluated. The EGGs had a rigid and a cohesive gel network, according to the textural and microstructural analysis. Structural and thermogravimetric analyses showed the effective entrapment of EO in the ESG gel network.
Collapse
|
11
|
Ding M, Zhang T, Zhang H, Tao N, Wang X, Zhong J. Gelatin-stabilized traditional emulsions: Emulsion forms, droplets, and storage stability. FOOD SCIENCE AND HUMAN WELLNESS 2020. [DOI: 10.1016/j.fshw.2020.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Escudero-Hernández C. Epithelial cell dysfunction in coeliac disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 358:133-164. [PMID: 33707053 DOI: 10.1016/bs.ircmb.2020.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The intestinal epithelium limits host-luminal interactions and maintains gut homeostasis. Breakdown of the epithelial barrier and villous atrophy are hallmarks of coeliac disease. Besides the well characterized immune-mediated epithelial damage induced in coeliac mucosa, constitutional changes and early gluten direct effects disturb intestinal epithelial cells. The subsequent modifications in key epithelial signaling pathways leads to outnumbered immature epithelial cells that, in turn, facilitate epithelial dysfunction, promote crypt hyperplasia, and increase intestinal permeability. Consequently, underlying immune cells have a greater access to gluten, which boosts the proinflammatory immune response against gluten and positively feedback the epithelial damage loop. Gluten-free diet is an indispensable treatment for coeliac disease patients, but additional therapies are under development, including those that reinforce intestinal epithelial healing. In this chapter, we provide an overview of intestinal epithelial cell disturbances that develop during gluten intake in coeliac disease mucosa.
Collapse
|
13
|
Asri N, Rostami-Nejad M, Rezaei-Tavirani M, Razzaghi M, Asadzadeh-Aghdaei H, Zali MR. Novel Therapeutic Strategies for Celiac Disease. Middle East J Dig Dis 2020; 12:229-237. [PMID: 33564379 PMCID: PMC7859609 DOI: 10.34172/mejdd.2020.187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Abstract
Celiac disease (CeD) is a widespread autoimmune enteropathy caused by dietary gluten peptides in genetically susceptible individuals, which includes a range of intestinal and extraintestinal manifestations. Currently, there is no effective treatment for CeD other than strict adherence to a gluten-free diet (GFD). However, persistent or frequent symptoms and also partial villus atrophy were observed in some patients with CeD due to intentional or inadvertent gluten exposure during the use of GFD. It means that GFD alone is not enough to control CeD symptoms and long-term complications. Accordingly, new therapeutic approaches for CeD treatment such as gluten proteolysis, removing gluten from the digestive tract, promoting tight junction assembly, inhibiting intestinal tissue transglutaminase 2, using probiotics, and developing immunotherapeutic methods have been proposed through different strategies. This review focused on discussing the novel therapeutic strategies for CeD management.
Collapse
Affiliation(s)
- Nastaran Asri
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Razzaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh-Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Droplet and creaming stability of fish oil-loaded gelatin/surfactant-stabilized emulsions depends on both the adsorption ways of emulsifiers and the adjusted pH. FOOD SCIENCE AND HUMAN WELLNESS 2020. [DOI: 10.1016/j.fshw.2020.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
15
|
Attarwala HZ, Suri K, Amiji MM. Pharmacokinetics and Biodistribution Analysis of Small Interference RNA for Silencing Tissue Transglutaminase-2 in Celiac Disease After Oral Administration in Mice Using Gelatin-Based Multicompartmental Delivery Systems. Bioelectricity 2020; 2:167-174. [PMID: 34471844 DOI: 10.1089/bioe.2020.0008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background: RNA interference (RNAi) therapy has tremendous potential in treating diseases that are characterized by overexpression of genes. However, the biggest challenge to utilize the therapy is to engineer delivery systems that can efficiently transport small interfering RNA (siRNA) to appropriate target sites. Our objective in this study was to develop and evaluate multi-compartmental systems for the oral delivery of siRNA that targets the overexpressed TG2 gene (TG2-siRNA) in the small intestine for the treatment of celiac disease (CD). Materials and Methods: Two types of multicompartmental systems were developed and evaluated: (1) a solid-in-solid multicompartmental system featuring "nanoparticle in microsphere oral system (NiMOS)" where type B gelatin nanoparticles containing TG2-siRNA (TG2-NiMOS) were encapsulated within poly(ɛ-caprolactone) (PCL) based microspheres, and (2) a solid-in-liquid multicompartmental system, "Nanoparticle-in-Emulsion (NiE)" consisting of type-B gelatin nanoparticles containing TG2-siRNA encapsulated within safflower oil containing water-in-oil-in-water (W/O/W) multiple emulsion (TG2-NiE). Results: Evaluation of the biodistribution and pharmacokinetics (PK) after a single oral dose of siRNA containing multicompartmental systems to C57BL/6 mice showed that TG2-siRNA was delivered to the small intestine (duodenum, jejunum and ileum), and colon with minimal systemic exposure via both TG2-NiE and TG2-NiMOS systems. TG2-siRNA exposure (AUC0-t) in the duodenum, jejunum, ileum and colon was 56.4-, 34.3-, 85.5- and 35.5-fold greater for the TG2-NiMOS formulation, relative to the TG2-NiE formulation. Conclusion: The results of this study suggest that TG2-NiMOS formulation was more superior than TG2-NiE formulation in facilitating intestinal delivery of siRNA via the oral route of administration and can be potentially used in the treatment of CD.
Collapse
Affiliation(s)
- Husain Z Attarwala
- Department of Pharmaceutical Sciences, School of Pharmacy Northeastern University, Boston, Massachusetts, USA
| | - Kanika Suri
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Jiang HY, Zhang X, Zhou YY, Jiang CM, Shi YD. Infection, antibiotic exposure, and risk of celiac disease: A systematic review and meta-analysis. J Gastroenterol Hepatol 2020; 35:557-566. [PMID: 31733109 DOI: 10.1111/jgh.14928] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/28/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM There is evidence of a relationship between infection (and the associated antibiotic exposure) and the risk of celiac disease (CD). This study performed a meta-analysis to investigate this relationship. METHODS To identify relevant studies, we conducted systematic searches of the PubMed, Embase, and Cochrane databases for articles published up to April 2019. Random effects models were used to determine overall pooled estimates and 95% confidence intervals (CIs). RESULTS The meta-analysis included 19 observational studies (15 on infection and six on antibiotic exposure). Our results showed that any infection was associated with an increased risk of CD later in life (odds ratio, 1.37; 95% CI: 1.2-1.56; P < 0.001). The I2 was 94% (high heterogeneity among studies). Subgroup analyses suggested that the risk of CD is not affected by the type of infectious agent, timing of exposure, and site of infection. Exposure to antibiotics was also associated with new-onset CD (odds ratio, 1.2; 95% CI: 1.04-1.39; P < 0.001). CONCLUSION Exposure to early infection or antibiotic appears to increase the odds of developing CD, suggesting that intestinal immune or microbiota dysbiosis may play a role in the pathogenesis of CD. These findings may influence clinical management and primary prevention of CD. However, noncausal explanations for these positive associations cannot be excluded.
Collapse
Affiliation(s)
- Hai-Yin Jiang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xue Zhang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuan-Yue Zhou
- Department of Child Psychiatry, Hangzhou Seventh People's Hospital, Hangzhou, China
| | - Chun-Min Jiang
- Department of Pediatrics, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu-Dan Shi
- Department of Chinese Internal Medicine, Taizhou First People's Hospital, Taizhou, China
| |
Collapse
|
17
|
Fish oil-loaded emulsions stabilized by synergetic or competitive adsorption of gelatin and surfactants on oil/water interfaces. Food Chem 2020; 308:125597. [DOI: 10.1016/j.foodchem.2019.125597] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/28/2022]
|
18
|
Effects of surfactant type and preparation pH on the droplets and emulsion forms of fish oil-loaded gelatin/surfactant-stabilized emulsions. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108654] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
19
|
Ding M, Zhang T, Zhang H, Tao N, Wang X, Zhong J. Gelatin molecular structures affect behaviors of fish oil-loaded traditional and Pickering emulsions. Food Chem 2019; 309:125642. [PMID: 31685367 DOI: 10.1016/j.foodchem.2019.125642] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/07/2019] [Accepted: 10/01/2019] [Indexed: 01/15/2023]
Abstract
As the differences of traditional and Pickering emulsions might have resulted from stabilizer structures, this study analyzes the effects of gelatin molecular structures (uncrosslinked molecules vs. crosslinked molecules) on the preparation, long-term storage, and dilution of fish oil-loaded traditional and Pickering emulsions. Both traditional and Pickering emulsions have three types of droplets with different sizes, and all the droplet sizes were exponentially decreased with the increase of stabilizer concentration. Pickering emulsions have slightly lower droplet sizes compared with traditional emulsions. Traditional emulsions have three different emulsion forms (liquid, redispersible emulsion gel, and unredispersible emulsion gel), whereas Pickering emulsions only have the liquid form. Emulsion creaming stability was dependent on stabilizer molecular structures and stabilizer concentrations. The two emulsions have similar and good dilution stability. This work demonstrates that gelatin molecular structures affect droplet size, emulsion forms, and creaming stability, but not droplet size types and emulsion dilution stability.
Collapse
Affiliation(s)
- Mengzhen Ding
- Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ting Zhang
- Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Huan Zhang
- Iowa State University, Ames Laboratory, Ames, IA 50011, USA
| | - Ningping Tao
- Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xichang Wang
- Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jian Zhong
- Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
20
|
Fan Y, Dhaliwal HK, Menon AV, Chang J, Choi JE, Amiji MM, Kim J. Site-specific intestinal DMT1 silencing to mitigate iron absorption using pH-sensitive multi-compartmental nanoparticulate oral delivery system. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 22:102091. [PMID: 31626992 DOI: 10.1016/j.nano.2019.102091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 01/01/2023]
Abstract
Iron is a nutrient metal, but excess iron promotes tissue damage. Since iron chelation therapies exhibit multiple off-target toxicities, there is a substantial demand for more specific approaches to decrease iron burden in iron overload. While the divalent metal transporter 1 (DMT1) plays a well-established role in the absorption of dietary iron, up-regulation of intestinal DMT1 is associated with iron overload in both humans and rodents. Hence, we developed a novel pH-sensitive multi-compartmental particulate (MCP) oral delivery system that encapsulates DMT1 siRNA and validated its efficacy in mice. Using the gelatin NPs coated with Eudragit® L100-55, we demonstrated that DMT1 siRNA-loaded MCPs down-regulated DMT1 mRNA levels in the duodenum, which was consistent with decreased intestinal absorption of orally-administered 59Fe. Together, the Eudragit® L100-55-based oral siRNA delivery system could provide an effective strategy to specifically down-regulate duodenal DMT1 and mitigate iron absorption.
Collapse
Affiliation(s)
- Yingfang Fan
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | | | | | - JuOae Chang
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Jee Eun Choi
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA.
| |
Collapse
|
21
|
Ding M, Zhang T, Zhang H, Tao N, Wang X, Zhong J. Effect of preparation factors and storage temperature on fish oil-loaded crosslinked gelatin nanoparticle pickering emulsions in liquid forms. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.04.052] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Chevalier R. siRNA Targeting and Treatment of Gastrointestinal Diseases. Clin Transl Sci 2019; 12:573-585. [PMID: 31309709 PMCID: PMC6853152 DOI: 10.1111/cts.12668] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/10/2019] [Indexed: 12/15/2022] Open
Abstract
RNA interference via small interfering RNA (siRNA) offers opportunities to precisely target genes that contribute to gastrointestinal (GI) pathologies, such as inflammatory bowel disease, celiac, and esophageal scarring. Delivering the siRNA to the GI tract proves challenging as the harsh environment of the intestines degrades the siRNA before it can reach its target or blocks its entry into its site of action in the cytoplasm. Additionally, the GI tract is large and disease is often localized to a specific site. This review discusses polymer and lipid‐based delivery systems for protection and targeting of siRNA therapies to the GI tract to treat local disease.
Collapse
Affiliation(s)
- Rachel Chevalier
- Children's Mercy Kansas City, Kansas City, Missouri, USA.,University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| |
Collapse
|
23
|
Abstract
Gluten is known to be the main triggering factor for celiac disease (CeD), an immune-mediated disorder. CeD is therefore managed using a strict and lifelong gluten-free diet (GFD), the only effective treatment available currently. However, the GFD is restrictive. Hence, efforts are being made to explore alternative therapies. Based on their mechanisms of action on various molecular targets involved in the pathogenesis of CeD, these therapies may be classified into one of the following five broad approaches. The first approach focuses on decreasing the immunogenic content of gluten, using strategies like genetically modified wheat, intra-intestinal gluten digestion using glutenases, microwave thermal treatment of hydrated wheat kernels, and gluten pretreatment with either bacterial/ fungal derived endopeptidases or microbial transglutaminase. The second approach involves sequestering gluten in the gut lumen before it is digested into immunogenic peptides and absorbed, using binder drugs like polymer p(HEMA-co-SS), single chain fragment variable (scFv), and anti- gluten antibody AGY. The third approach aims to prevent uptake of digested gluten through intestinal epithelial tight junctions, using a zonulin antagonist. The fourth approach involves tissue transglutaminase (tTG) inhibitors to prevent the enhancement of immunogenicity of digested gluten by the intestinal tTG enzyme. The fifth approach seeks to prevent downstream immune activation after uptake of gluten immunogenic peptides through the intestinal mucosal epithelial layer. Examples include HLA-DQ2 blockers that prevent presentation of gluten derived- antigens by dendritic cells to T cells, immune- tolerizing therapies like the vaccine Nexvax2 and TIMP-Glia, cathepsin inhibitors, immunosuppressants like corticosteroids, azathioprine etc., and anti-cytokine agents targeting TNF-α and interleukin-15. Apart from these approaches, research is being done to evaluate the effectiveness of probiotics/prebiotics, helminth therapy using Necator americanus, low FODMAP diet, and pancreatic enzyme supplementation in CeD symptom control; however, the mechanisms by which they play a beneficial role in CeD are yet to be clearly established. Overall, although many therapies being explored are still in the pre-clinical phase, some like the zonulin antagonist, immune tolerizing therapies and glutenases have reached phase II/III clinical trials. While these potential options appear exciting, currently they may at best be used to supplement rather than supplant the GFD.
Collapse
Affiliation(s)
- Shakira Yoosuf
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Govind K Makharia
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
24
|
Akpinar MY, Kahramanoglu Aksoy E, Pirincci Sapmaz F, Ceylan Dogan O, Uzman M, Nazligul Y. Pigment Epithelium-Derived Factor Affects Angiogenesis in Celiac Disease. Med Princ Pract 2019; 28:236-241. [PMID: 30726852 PMCID: PMC6597925 DOI: 10.1159/000497612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 02/06/2019] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Recent studies have demonstrated that angiogenesis is impaired in patients with celiac disease (CD). In this study, we evaluated the levels of the novel antiangiogenic factor pigment epithelium-derived factor (PEDF) in CD patients. METHODS Eighty-four patients were included in the study; 71 patients with CD and 13 healthy controls. In the CD patient cohort, there were 21 newly diagnosed patients, 19 with adherence to a gluten-free diet and 31 practicing no adherence to this diet. The PEDF levels were measured using enzyme-linked immunosorbent assays. RESULTS The data revealed that celiac patients had higher levels of PEDF than did healthy controls. PEDF levels were not significantly different among the three CD groups. Additionally, the PEDF levels were not correlated with tissue transglutaminase IgA or IgG. CONCLUSIONS Our data indicate that PEDF levels are significantly higher in CD patients than those in the healthy controls. This result suggests that PEDF negatively affects angiogenesis in CD. Although we did not observe any differences of PEDF levels among celiac patients, additional studies including more patients could clarify this issue.
Collapse
Affiliation(s)
- Muhammet Yener Akpinar
- Department of Gastroenterology, Department of Medical Biochemistry, Kecioren Training and Research Hospital, Ankara, Turkey,
| | - Evrim Kahramanoglu Aksoy
- Department of Gastroenterology, Department of Medical Biochemistry, Kecioren Training and Research Hospital, Ankara, Turkey
| | - Ferdane Pirincci Sapmaz
- Department of Gastroenterology, Department of Medical Biochemistry, Kecioren Training and Research Hospital, Ankara, Turkey
| | | | - Metin Uzman
- Department of Gastroenterology, Department of Medical Biochemistry, Kecioren Training and Research Hospital, Ankara, Turkey
| | - Yasar Nazligul
- Department of Gastroenterology, Department of Medical Biochemistry, Kecioren Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
25
|
Abstract
Tissue transglutaminase (tTG), also referred to as type 2 transglutaminase or Gαh, can bind and hydrolyze GTP, as well as function as a protein crosslinking enzyme. tTG is widely expressed and can be detected both inside cells and in the extracellular space. In contrast to many enzymes, the active and inactive conformations of tTG are markedly different. The catalytically inactive form of tTG adopts a compact “closed-state” conformation, while the catalytically active form of the protein adopts an elongated “open-state” conformation. tTG has long been appreciated as an important player in numerous diseases, including celiac disease, neuronal degenerative diseases, and cancer, and its roles in these diseases often depend as much upon its conformation as its catalytic activity. While its ability to promote these diseases has been traditionally thought to be dependent on its protein crosslinking activity, more recent findings suggest that the conformational state tTG adopts is also important for mediating its effects. In particular, we and others have shown that the closed-state of tTG is important for promoting cell growth and survival, while maintaining tTG in the open-state is cytotoxic. In this review, we examine the two unique conformations of tTG and how they contribute to distinct biological processes. We will also describe how this information can be used to generate novel therapies to treat diseases, with a special focus on cancer.
Collapse
|
26
|
Naik RD, Seidner DL, Adams DW. Nutritional Consideration in Celiac Disease and Nonceliac Gluten Sensitivity. Gastroenterol Clin North Am 2018; 47:139-154. [PMID: 29413009 DOI: 10.1016/j.gtc.2017.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Celiac disease is an autoimmune disorder due to the inflammatory response to gluten in genetically predisposed individuals. It causes an enteropathy associated with several nutritional complications. Strict compliance to a gluten-free diet (GFD) is the current primary therapy. Nonceliac gluten sensitivity (NCGS) is a condition in which gluten ingestion leads to systemic symptoms but is not associated with small bowel atrophy or abnormal celiac serologies. A GFD heals celiac disease enteropathy and improves symptoms in NCGS. However, a long-term GFD can be associated with nutritional deficiencies and requires monitoring and guidance.
Collapse
Affiliation(s)
- Rishi D Naik
- Division of Gastroenterology, Hepatology, and Nutrition, Center for Nutrition, Vanderbilt University Medical Center, 1211 21st Avenue South, Suite 514, Nashville, TN 37232, USA
| | - Douglas L Seidner
- Division of Gastroenterology, Hepatology, and Nutrition, Center for Nutrition, Vanderbilt University Medical Center, 1211 21st Avenue South, Suite 514, Nashville, TN 37232, USA
| | - Dawn Wiese Adams
- Division of Gastroenterology, Hepatology, and Nutrition, Center for Nutrition, Vanderbilt University Medical Center, 1211 21st Avenue South, Suite 514, Nashville, TN 37232, USA.
| |
Collapse
|