1
|
Zhou S, Zhao W, Hu J, Mao C, Zhou M. Application of Nanotechnology in Thrombus Therapy. Adv Healthc Mater 2023; 12:e2202578. [PMID: 36507827 DOI: 10.1002/adhm.202202578] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/26/2022] [Indexed: 12/14/2022]
Abstract
A thrombus is a blood clot that forms in the lumen of an artery or vein, restricting blood flow and causing clinical symptoms. Thrombosis is associated with many life-threatening cardiovascular diseases. However, current clinical therapeutic technologies still have many problems in targeting, enrichment, penetration, and safety to meet the thrombosis treatment needs. Therefore, researchers devote themselves to developing nanosystems loaded with antithrombotic drugs to address this paradox in recent years. Herein, the existing thrombosis treatment technologies are first reviewed; and then, their advantages and disadvantages are outlined based on a brief discussion of thrombosis's definition and formation mechanism. Furthermore, the need and application cases for introducing nanotechnology are discussed, focusing on thrombus-specific targeted ligand modification technology and microenvironment-triggered responsive drug release technology. Then, nanomaterials that can be used to design antithrombotic nanotherapeutic systems are summarized. Moreover, a variety of drug delivery technologies driven by nanomotors in thrombosis therapy is also introduced. Last of all, a prospective discussion on the future development of nanotechnology for thrombosis therapy is highlighted.
Collapse
Affiliation(s)
- Shuyin Zhou
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.,Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Wenbo Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jinglei Hu
- Kuang Yaming Honors School, Nanjing University, Nanjing, 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Min Zhou
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| |
Collapse
|
2
|
Geiger F, Wendlandt T, Berking T, Spatz JP, Wege C. Convenient site-selective protein coupling from bacterial raw lysates to coenzyme A-modified tobacco mosaic virus (TMV) by Bacillus subtilis Sfp phosphopantetheinyl transferase. Virology 2023; 578:61-70. [PMID: 36473278 DOI: 10.1016/j.virol.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
A facile enzyme-mediated strategy enables site-specific covalent one-step coupling of genetically tagged luciferase molecules to coenzyme A-modified tobacco mosaic virus (TMV-CoA) both in solution and on solid supports. Bacillus subtilis surfactin phosphopantetheinyl transferase Sfp produced in E. coli mediated the conjugation of firefly luciferase N-terminally extended by eleven amino acids forming a 'ybbR tag' as Sfp-selective substrate, which even worked in bacterial raw lysates. The enzymes displayed on the protein coat of the TMV nanocarriers exhibited high activity. As TMV has proven a beneficial high surface-area adapter template stabilizing enzymes in different biosensing layouts in recent years, the use of TMV-CoA for fishing ybbR-tagged proteins from complex mixtures might become an advantageous concept for the versatile equipment of miniaturized devices with biologically active proteins. It comes along with new opportunities for immobilizing multiple functionalities on TMV adapter coatings, as desired, e.g., in handheld systems for point-of-care detection.
Collapse
Affiliation(s)
- Fania Geiger
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, 69120, Heidelberg, Germany; Heidelberg University, Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM), Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Tim Wendlandt
- University of Stuttgart, Institute of Biomaterials and Biomolecular Systems, Research Unit Molecular and Synthetic Plant Virology, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Tim Berking
- University of Stuttgart, Institute of Organic Chemistry, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Joachim P Spatz
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, 69120, Heidelberg, Germany; Heidelberg University, Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM), Im Neuenheimer Feld 225, 69120, Heidelberg, Germany; Max Planck School Matter to Life, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Christina Wege
- University of Stuttgart, Institute of Biomaterials and Biomolecular Systems, Research Unit Molecular and Synthetic Plant Virology, Pfaffenwaldring 57, 70569, Stuttgart, Germany.
| |
Collapse
|
3
|
Hale MM, Medina SH. Biomaterials-Enabled Antithrombotics: Recent Advances and Emerging Strategies. Mol Pharm 2022; 19:4453-4465. [PMID: 36149250 PMCID: PMC9728464 DOI: 10.1021/acs.molpharmaceut.2c00626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 12/13/2022]
Abstract
Antithrombotic and thrombolytic therapies are used to prevent, treat, and remove blood clots in various clinical settings, from emergent to prophylactic. While ubiquitous in their healthcare application, short half-lives, off-target effects, overdosing complications, and patient compliance continue to be major liabilities to the utility of these agents. Biomaterials-enabled strategies have the potential to comprehensively address these limitations by creating technologies that are more precise, durable, and safe in their antithrombotic action. In this review, we discuss the state of the art in anticoagulant and thrombolytic biomaterials, covering the nano to macro length scales. We emphasize current methods of formulation, discuss how material properties affect controlled release kinetics, and summarize modern mechanisms of clot-specific drug targeting. The preclinical efficacy of these technologies in an array of cardiovascular applications, including stroke, pulmonary embolism, myocardial infarction, and blood contacting devices, is summarized and performance contrasted. While significant advances have already been made, ongoing development efforts look to deliver bioresponsive "smart" biomaterials that will open new precision medicine opportunities in cardiology.
Collapse
Affiliation(s)
- Macy M. Hale
- Department
of Biomedical Engineering, Pennsylvania
State University, University
Park, Pennsylvania 16802-4400, United States
| | - Scott H. Medina
- Department
of Biomedical Engineering, Pennsylvania
State University, University
Park, Pennsylvania 16802-4400, United States
- Huck
Institutes of the Life Sciences, Pennsylvania
State University, University Park, Pennsylvania 16802-4400, United States
| |
Collapse
|
4
|
Shin MD, Ortega-Rivera OA, Steinmetz NF. Multivalent Display of ApoAI Peptides on the Surface of Tobacco Mosaic Virus Nanotubes Improves Cholesterol Efflux. Bioconjug Chem 2022; 33:1922-1933. [PMID: 36191144 PMCID: PMC9772860 DOI: 10.1021/acs.bioconjchem.2c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Atherosclerosis is a progressive cardiovascular disease in which cholesterol-rich plaques build up within arteries, increasing the risk of thrombosis, myocardial infarction, and stroke. One promising therapeutic approach is the use of high-density lipoprotein (HDL) biomimetic formulations based on ApoAI peptides that promote cholesterol efflux from plaques, ultimately leading to cholesterol excretion. Here, we describe the multivalent display of ApoAI peptides on the surface of protein nanotubes derived from the plant virus tobacco mosaic virus (TMV) and protein nanoparticles using virus-like particles from bacteriophage Qβ. Bioconjugation yielded ApoAI conjugates varying in size and morphology. We tested ABCA1-mediated cholesterol efflux using macrophage foam cells, the mitigation of reactive oxygen species in endothelial cells, and wound healing in endothelial cells. We found that the multivalent ApoAI platform, in particular the TMV-based nanotube, significantly improved the efficacy of cholesterol efflux compared to free peptides, Qβ nanoparticle formulations, and traditional HDL therapy. Finally, to better understand the mechanistic basis of enhanced cholesterol efflux, we used confocal microscopy to show that while native TMV was taken up by cells, TMV-ApoAI remained at the exterior of foam cell membranes and efflux was documented using fluorescent cholesterol. Together, these data highlight that high aspect ratio materials with multivalent display of ApoAI peptides offer unique capabilities promoting efficient cholesterol efflux and may find applications in cardiovascular therapy.
Collapse
Affiliation(s)
- Matthew D. Shin
- Department of NanoEngineering and, Center for Nano-ImmunoEngineering, University of, California San Diego, La Jolla, California 92039, United, States
| | - Oscar A. Ortega-Rivera
- Department of NanoEngineering and Center for Nano-ImmunoEngineering, University of California San Diego, La Jolla, California 92039, United, States
| | - Nicole F. Steinmetz
- Department of NanoEngineering, Center for Nano-ImmunoEngineering, Department of Bioengineering, Department of Radiology, Moores Cancer, Center, and Institute for Materials Discovery and Design, University of California San Diego, La Jolla, California, 92039, United States
| |
Collapse
|
5
|
Sultana A, Zare M, Thomas V, Kumar TS, Ramakrishna S. Nano-based drug delivery systems: Conventional drug delivery routes, recent developments and future prospects. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
6
|
Lin X, Li N, Tang H. Recent Advances in Nanomaterials for Diagnosis, Treatments, and Neurorestoration in Ischemic Stroke. Front Cell Neurosci 2022; 16:885190. [PMID: 35836741 PMCID: PMC9274459 DOI: 10.3389/fncel.2022.885190] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Stroke is a major public health issue, corresponding to the second cause of mortality and the first cause of severe disability. Ischemic stroke is the most common type of stroke, accounting for 87% of all strokes, where early detection and clinical intervention are well known to decrease its morbidity and mortality. However, the diagnosis of ischemic stroke has been limited to the late stages, and its therapeutic window is too narrow to provide rational and effective treatment. In addition, clinical thrombolytics suffer from a short half-life, inactivation, allergic reactions, and non-specific tissue targeting. Another problem is the limited ability of current neuroprotective agents to promote recovery of the ischemic brain tissue after stroke, which contributes to the progressive and irreversible nature of ischemic stroke and also the severity of the outcome. Fortunately, because of biomaterials’ inherent biochemical and biophysical properties, including biocompatibility, biodegradability, renewability, nontoxicity, long blood circulation time, and targeting ability. Utilization of them has been pursued as an innovative and promising strategy to tackle these challenges. In this review, special emphasis will be placed on the recent advances in the study of nanomaterials for the diagnosis and therapy of ischemic stroke. Meanwhile, nanomaterials provide much promise for neural tissue salvage and regeneration in brain ischemia, which is also highlighted.
Collapse
Affiliation(s)
- Xinru Lin
- Department of Anesthesiology, Wenzhou Key Laboratory of Perioperative Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Na Li
- Oujiang Laboratory, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
- *Correspondence: Na Li Hongli Tang
| | - Hongli Tang
- Department of Anesthesiology, Wenzhou Key Laboratory of Perioperative Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Na Li Hongli Tang
| |
Collapse
|
7
|
Lv W, Liu Y, Li S, Lv L, Lu H, Xin H. Advances of nano drug delivery system for the theranostics of ischemic stroke. J Nanobiotechnology 2022; 20:248. [PMID: 35641956 PMCID: PMC9153106 DOI: 10.1186/s12951-022-01450-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 05/05/2022] [Indexed: 02/07/2023] Open
Abstract
From the global perspective, stroke refers to a highly common cause of disability and death. Ischemic stroke (IS), attributed to blood vessel blockage, preventing the flow of blood to brain, acts as the most common form of stroke. Thus far, thrombolytic therapy is the only clinical treatment for IS with the approval from the FDA. Moreover, the physiology barrier complicates therapeutically and diagnostically related intervention development of IS. Accordingly, developing efficient and powerful curative approaches for IS diagnosis and treatment is urgently required. The advent of nanotechnology has brought dawn and hope to better curative and imaging forms for the management of IS. This work reviews the recent advances and challenges correlated with the nano drug delivery system for IS therapy and diagnosis. The overview of the current knowledge of the important molecular pathological mechanisms in cerebral ischemia and how the drugs cross the blood brain barrier will also be briefly summarized.
Collapse
Affiliation(s)
- Wei Lv
- Department of Pharmacy, The Jiangyin Clinical College of Xuzhou Medical University, 214400, Jiangyin, China
| | - Yijiao Liu
- Department of Pharmacy, The Jiangyin Clinical College of Xuzhou Medical University, 214400, Jiangyin, China
| | - Shengnan Li
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, 211166, Nanjing, China
| | - Lingyan Lv
- Department of Pharmacy, The Jiangyin Clinical College of Xuzhou Medical University, 214400, Jiangyin, China
| | - Hongdan Lu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, 211166, Nanjing, China.
| | - Hongliang Xin
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, 211166, Nanjing, China.
| |
Collapse
|
8
|
Pozhitkova AV, Kladko DV, Vinnik DA, Taskaev SV, Vinogradov VV. Reprogrammable Soft Swimmers for Minimally Invasive Thrombus Extraction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23896-23908. [PMID: 35537068 DOI: 10.1021/acsami.2c04745] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Thrombosis-related diseases are the primary cause of death in the world. Despite recent advances in thrombosis treatment methods, their invasive nature remains a crucial factor, which leads to considerable deadly consequences. Soft magnetic robots are attracting widespread interest due to their fast response, remote actuation, and shape reprogrammability and can potentially avoid the side effects of conventional approaches. This paper outlines a new approach to the thrombosis treatment via reprogrammable magnetic soft robots that penetrate, hook, and extract the plasma clots in a vein-mimicking system under applied rotating magnetic fields. We present shape-switching bioinspired soft swimmers, capable of locomotion by different mechanisms in vein-mimicking flow conditions and whose swimming efficiency is similar to animals. Further, we demonstrate the potential of a developed robot for minimally invasive thromboextraction with and without fibrinolytic usage, including hooking the plasma clot for 3.1 ± 1.1 min and extracting it from the vein-mimicking system under the applied magnetic fields. We consider an interesting solution for thrombosis treatment to avoid substantial drawbacks of the existing methods.
Collapse
Affiliation(s)
- Anna V Pozhitkova
- International Institute "Solution Chemistry of Advanced Materials and Technology", ITMO University, St. Petersburg 197101, Russia
| | - Daniil V Kladko
- International Institute "Solution Chemistry of Advanced Materials and Technology", ITMO University, St. Petersburg 197101, Russia
| | - Denis A Vinnik
- National Research South Ural State University, Chelyabinsk 454080, Russia
| | - Sergey V Taskaev
- National Research South Ural State University, Chelyabinsk 454080, Russia
- Chelyabinsk State University, Chelyabinsk 454001, Russia
| | - Vladimir V Vinogradov
- International Institute "Solution Chemistry of Advanced Materials and Technology", ITMO University, St. Petersburg 197101, Russia
| |
Collapse
|
9
|
Cao W, Liu Y, Ran P, He J, Xie S, Weng J, Li X. Ultrasound-Propelled Janus Rod-Shaped Micromotors for Site-Specific Sonodynamic Thrombolysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58411-58421. [PMID: 34846117 DOI: 10.1021/acsami.1c19288] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Antithrombosis therapy is confronted with short half-lives of thrombolytic agents, limited therapeutic effects, and bleeding complications. Drug delivery systems of thrombolytic agents face challenges in effective penetration into thrombi, which are characterized by well-organized fibrin filled with abundant activated platelets. Herein, Janus rod (JR)-shaped micromotors are constructed by side-by-side electrospinning and cryosection, possessing advantages in controlling the Janus structure and aspect ratio of microrods. Silicon phthalocyanine (Pc) and CaO2 nanoparticles (NPs) are loaded into the separate sides of JRs, and Arg-Gly-Asp (RGD) peptides are grafted on the surface to obtain Pc/Ca@r-JRs for the sonodynamic therapy (SDT) of thrombosis without using any thrombolytic agents. Decomposition of CaO2 NPs ejects O2 bubbles from one side of JRs, and ultrasonication of O2 bubbles produces the cavitation effect, both generating mechanical force to drive the thrombus penetration. The integration of ultrasonication-propelled motion and RGD mediation effectively increases the targeting capabilities of r-JRs to activated platelets. In addition to mechanical thrombolysis, ultrasonication of the released Pc produces 1O2 to destruct fibrin networks of clots. In vitro thrombolysis of whole blood clots shows that ultrasonication of Pc/Ca@r-JRs has a significantly higher thrombolysis rate (73.6%) than those without propelled motion or RGD-mediated clot targeting. In a lower limb thrombosis model, intravenous administration of Pc/Ca@r-JRs indicates 3.4-fold higher accumulations at the clot site than those of JRs, and ultrasonication-propelled motion further increases thrombus retention 2.1 times. Treatment with Pc/Ca@r-JRs and ultrasonication fully removes thrombi and significantly prolongs tail bleeding time. Thus, this study has achieved precise and prompt thrombolysis through selective targeting to clots, efficient penetration into dense networks of thrombi, and SDT-executed thrombolysis.
Collapse
Affiliation(s)
- Wenxiong Cao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Yuan Liu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Pan Ran
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Jie He
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Shuang Xie
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Jie Weng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Xiaohong Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| |
Collapse
|
10
|
Pan Q, Xu J, Wen CJ, Xiong YY, Gong ZT, Yang YJ. Nanoparticles: Promising Tools for the Treatment and Prevention of Myocardial Infarction. Int J Nanomedicine 2021; 16:6719-6747. [PMID: 34621124 PMCID: PMC8491866 DOI: 10.2147/ijn.s328723] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
Despite several recent advances, current therapy and prevention strategies for myocardial infarction are far from satisfactory, owing to limitations in their applicability and treatment effects. Nanoparticles (NPs) enable the targeted and stable delivery of therapeutic compounds, enhance tissue engineering processes, and regulate the behaviour of transplants such as stem cells. Thus, NPs may be more effective than other mechanisms, and may minimize potential adverse effects. This review provides evidence for the view that function-oriented systems are more practical than traditional material-based systems; it also summarizes the latest advances in NP-based strategies for the treatment and prevention of myocardial infarction.
Collapse
Affiliation(s)
- Qi Pan
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Cen-Jin Wen
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yu-Yan Xiong
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhao-Ting Gong
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
11
|
Zakharzhevskii MA, Anastasova EI, Kladko DV, Prilepskii AY, Gorshkova MN, Vinnik DA, Taskaev SV, Vinogradov VV. Shape anisotropic magnetic thrombolytic actuators: synthesis and systematic behavior study. J Mater Chem B 2021; 9:4941-4955. [PMID: 34105581 DOI: 10.1039/d1tb00783a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thrombosis-related diseases are undoubtedly the deadliest disorders. During the last decades, numerous attempts were made to reduce the overall death rate and severe complications caused by treatment delays. Significant progress has been made in the development of nanostructured thrombolytics, especially magnetically controlled. The emergence of thrombolytic magnetic actuators, which can deliver tPA to the occlusion zone and perform mechanical disruption of the fibrin network under the application of a rotating magnetic field (RMF), can be considered for the next generation of thrombolytic drugs. Thus, we propose a systematic study of magnetic-field mediated mechanically-assisted thrombolysis (MFMMAT) for the first time. Four types of magnetic particles with different morphology and dimensionality were utilized to assess their impact on model clot lysis under different RMF parameters. Chain-like 1D and sea urchins-like 3D structures were found to be the most effective, increasing thrombolysis efficacy to nearly 200%. The drastic difference was also observed during the dissolution of 3 days old blood clots. Pure plasminogen activator had almost no effect on clot structure during 30 minutes of treatment while applying MFMMAT led to the significant decrease of clot area, thus uncovering the possibility of deep venous thrombosis therapy.
Collapse
Affiliation(s)
- Maxim A Zakharzhevskii
- International Institute "Solution Chemistry of Advanced Materials and Technology", ITMO University, St. Petersburg 197101, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Park J, Wen AM, Gao H, Shin MD, Simon DI, Wang Y, Steinmetz NF. Designing S100A9-Targeted Plant Virus Nanoparticles to Target Deep Vein Thrombosis. Biomacromolecules 2021; 22:2582-2594. [PMID: 34060817 DOI: 10.1021/acs.biomac.1c00303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Thromboembolic conditions are a leading cause of death worldwide, and deep vein thrombosis (DVT), or occlusive venous clot formation, is a critical and rising problem that contributes to damage of vital organs, long-term complications, and life-threatening conditions such as pulmonary embolism. Early diagnosis and treatment are correlated to better prognosis. However, current technologies in these areas, such as ultrasonography for diagnostics and anticoagulants for treatment, are limited in terms of their accuracy and therapeutic windows. In this work, we investigated targeting myeloid related protein 14 (MRP-14, also known as S100A9) using plant virus-based nanoparticle carriers as a means to achieve tissue specificity aiding prognosis and therapeutic intervention. We used a combinatorial peptide library screen to identify peptide ligands that bind MRP-14. Candidates were selected and formulated as nanoparticles by using cowpea mosaic virus (CPMV) and tobacco mosaic virus (TMV). Intravascular delivery of our MRP-14-targeted nanoparticles in a murine model of DVT resulted in enhanced accumulation in the thrombi and reduced thrombus size, suggesting application of nanoparticles for molecular targeting of MRP-14 could be a promising direction for improving DVT diagnostics, therapeutics, and therefore prognosis.
Collapse
Affiliation(s)
- Jooneon Park
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Amy M Wen
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Huiyun Gao
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Matthew D Shin
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Daniel I Simon
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Yunmei Wang
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States.,Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States.,Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States.,Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, United States.,Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States.,Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
13
|
|
14
|
Nkanga CI, Steinmetz NF. The pharmacology of plant virus nanoparticles. Virology 2021; 556:39-61. [PMID: 33545555 PMCID: PMC7974633 DOI: 10.1016/j.virol.2021.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022]
Abstract
The application of nanoparticles for medical purposes has made enormous strides in providing new solutions to health problems. The observation that plant virus-based nanoparticles (VNPs) can be repurposed and engineered as smart bio-vehicles for targeted drug delivery and imaging has launched extensive research for improving the therapeutic and diagnostic management of various diseases. There is evidence that VNPs are promising high value nanocarriers with potential for translational development. This is mainly due to their unique features, encompassing structural uniformity, ease of manufacture and functionalization by means of expression, chemical biology and self-assembly. While the development pipeline is moving rapidly, with many reports focusing on engineering and manufacturing aspects to tailor the properties and efficacy of VNPs, fewer studies have focused on gaining insights into the nanotoxicity of this novel platform nanotechnology. Herein, we discuss the pharmacology of VNPs as a function of formulation and route of administration. VNPs are reviewed in the context of their application as therapeutic adjuvants or nanocarrier excipients to initiate, enhance, attenuate or impede the formulation's toxicity. The summary of the data however also underlines the need for meticulous VNP structure-nanotoxicity studies to improve our understanding of their in vivo fates and pharmacological profiles to pave the way for translation of VNP-based formulations into the clinical setting.
Collapse
Affiliation(s)
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA, 92039, United States; Department of Bioengineering, Department of Radiology, Center for NanoImmunoEngineering, Moores Cancer Center, Institute for Materials Discovery and Design, University of California-San Diego, La Jolla, CA, 92039, United States.
| |
Collapse
|
15
|
|
16
|
Almalki WH, Alghamdi S, Alzahrani A, Zhang W. Emerging paradigms in treating cerebral infarction with nanotheranostics: opportunities and clinical challenges. Drug Discov Today 2020; 26:826-835. [PMID: 33383212 DOI: 10.1016/j.drudis.2020.12.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/10/2020] [Accepted: 12/21/2020] [Indexed: 12/28/2022]
Abstract
Interest is increasing in the use of nanotheranostics as diagnosis, imaging and therapeutic tools for stroke management, but movement to the clinic remains challenging.
Collapse
Affiliation(s)
- Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm al-qura University, Saudi Arabia.
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-qura University, Makkah, Saudi Arabia
| | - Abdulaziz Alzahrani
- Department of Pharmacology, College of Clinical Pharmacy, Albaha University, Saudi Arabia
| | - Wenzhi Zhang
- Senior Research Scientist, Inn Research Sdn. Bhd., Subang Jaya, Selangor, Malaysia
| |
Collapse
|
17
|
Shukla S, Hu H, Cai H, Chan SK, Boone CE, Beiss V, Chariou PL, Steinmetz NF. Plant Viruses and Bacteriophage-Based Reagents for Diagnosis and Therapy. Annu Rev Virol 2020; 7:559-587. [PMID: 32991265 PMCID: PMC8018517 DOI: 10.1146/annurev-virology-010720-052252] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Viral nanotechnology exploits the prefabricated nanostructures of viruses, which are already abundant in nature. With well-defined molecular architectures, viral nanocarriers offer unprecedented opportunities for precise structural and functional manipulation using genetic engineering and/or bio-orthogonal chemistries. In this manner, they can be loaded with diverse molecular payloads for targeted delivery. Mammalian viruses are already established in the clinic for gene therapy and immunotherapy, and inactivated viruses or virus-like particles have long been used as vaccines. More recently, plant viruses and bacteriophages have been developed as nanocarriers for diagnostic imaging, vaccine and drug delivery, and combined diagnosis/therapy (theranostics). The first wave of these novel virus-based tools has completed clinical development and is poised to make an impact on clinical practice.
Collapse
Affiliation(s)
- Sourabh Shukla
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
| | - He Hu
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Hui Cai
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Soo-Khim Chan
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Christine E Boone
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Veronique Beiss
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Paul L Chariou
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
- Moores Cancer Center and Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, USA;
| |
Collapse
|
18
|
Su M, Dai Q, Chen C, Zeng Y, Chu C, Liu G. Nano-Medicine for Thrombosis: A Precise Diagnosis and Treatment Strategy. NANO-MICRO LETTERS 2020; 12:96. [PMID: 34138079 PMCID: PMC7770919 DOI: 10.1007/s40820-020-00434-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/13/2020] [Indexed: 05/11/2023]
Abstract
Thrombosis is a global health issue and one of the leading factors of death. However, its diagnosis has been limited to the late stages, and its therapeutic window is too narrow to provide reasonable and effective treatment. In addition, clinical thrombolytics suffer from a short half-life, allergic reactions, inactivation, and unwanted tissue hemorrhage. Nano-medicines have gained extensive attention in diagnosis, drug delivery, and photo/sound/magnetic-theranostics due to their convertible properties. Furthermore, diagnosis and treatment of thrombosis using nano-medicines have also been widely studied. This review summarizes the recent advances in this area, which revealed six types of nanoparticle approaches: (1) in vitro diagnostic kits using "synthetic biomarkers"; (2) in vivo imaging using nano-contrast agents; (3) targeted drug delivery systems using artificial nanoparticles; (4) microenvironment responsive drug delivery systems; (5) drug delivery systems using biological nanostructures; and (6) treatments with external irradiation. The investigations of nano-medicines are believed to be of great significance, and some of the advanced drug delivery systems show potential applications in clinical theranotics.
Collapse
Affiliation(s)
- Min Su
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Qixuan Dai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Chuan Chen
- Department of Pharmacy, Xiamen Medical College, Xiamen, 361023, People's Republic of China
| | - Yun Zeng
- Department of Pharmacy, Xiamen Medical College, Xiamen, 361023, People's Republic of China
| | - Chengchao Chu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China.
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, 361102, People's Republic of China.
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China.
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China.
| |
Collapse
|
19
|
Chariou PL, Ortega-Rivera OA, Steinmetz NF. Nanocarriers for the Delivery of Medical, Veterinary, and Agricultural Active Ingredients. ACS NANO 2020; 14:2678-2701. [PMID: 32125825 PMCID: PMC8085836 DOI: 10.1021/acsnano.0c00173] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nanocarrier-based delivery systems can be used to increase the safety and efficacy of active ingredients in medical, veterinary, or agricultural applications, particularly when such ingredients are unstable, sparingly soluble, or cause off-target effects. In this review, we highlight the diversity of nanocarrier materials and their key advantages compared to free active ingredients. We discuss current trends based on peer-reviewed research articles, patent applications, clinical trials, and the nanocarrier formulations already approved by regulatory bodies. Although most nanocarriers have been engineered to combat cancer, the number of formulations developed for other purposes is growing rapidly, especially those for the treatment of infectious diseases and parasites affecting humans, livestock, and companion animals. The regulation and prohibition of many pesticides have also fueled research to develop targeted pesticide delivery systems based on nanocarriers, which maximize efficacy while minimizing the environmental impact of agrochemicals.
Collapse
|
20
|
Wang Y, He F, Wu S, Luo Y, Wu R, Hu D, Song B. Design, synthesis, anti-TMV activity, and preliminary mechanism of cinnamic acid derivatives containing dithioacetal moiety. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 164:115-121. [PMID: 32284116 DOI: 10.1016/j.pestbp.2020.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/29/2019] [Accepted: 01/03/2020] [Indexed: 05/24/2023]
Abstract
A series of cinnamic acid derivatives, which contained dithioacetal moiety, were designed and synthesized, and their anti-plant virus activity against Tobacco mosaic virus (TMV) were evaluated. Most target compounds exhibited good anti-plant virus activities. Compound 2y, especially at 500 mg/L concentration, had an excellent activity against TMV, and its curative, protective, and inactivating activities were 62.5%, 61.8%, and 83.5%, respectively. These activity values were significantly superior to those of ribavirin (45.9%, 39.8%, and 70.3%) and xiangcaoliusuobingmi (44.7%, 48.3%, and 71.7%) and comparable to those of ningnanmycin (61.9%, 53.3%, and 85.2%). Compound 2y presented an EC50 value of 50.7 mg/L for inactivating activity against TMV, which was superior to those of ningnanmycin (51.5 mg/L), ribavirin (160.4 mg/L), and xiangcaoliusuobingmi (83.0 mg/L). Through transmission electron microscopy, we found that compound 2y caused a certain degree of damage to TMV particles, which caused them to break and bend. Four conventional hydrogen bonds were formed with amino acid residues GLN34, THR37, ARG90, and ARG46 of TMV coat protein (CP) through molecular docking. Microscale thermophoresis test results showed that compound 2y with TMV CP had a strong binding force, and the dissociation constant (Kd) was 1.6 μM. In summary, the cinnamic acid derivatives containing dithioacetal moiety provide a foundation for further research on antiviral agents.
Collapse
Affiliation(s)
- Yanju Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Fangcheng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Sikai Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yuqin Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Rong Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.
| |
Collapse
|
21
|
Wu J, Wu H, Nakagawa S, Gao J. Virus-derived materials: bury the hatchet with old foes. Biomater Sci 2020; 8:1058-1072. [DOI: 10.1039/c9bm01383k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Viruses, with special architecture and unique biological nature, can be utilized for various biomedical applications.
Collapse
Affiliation(s)
- Jiahe Wu
- Institute of Pharmaceutics
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Honghui Wu
- Institute of Pharmaceutics
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Shinsaku Nakagawa
- Department of Pharmaceutics
- Graduate School of Pharmaceutical Sciences
- Osaka University
- Suita
- Japan
| | - Jianqing Gao
- Institute of Pharmaceutics
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| |
Collapse
|
22
|
Park JH, Dehaini D, Zhou J, Holay M, Fang RH, Zhang L. Biomimetic nanoparticle technology for cardiovascular disease detection and treatment. NANOSCALE HORIZONS 2020; 5:25-42. [PMID: 32133150 PMCID: PMC7055493 DOI: 10.1039/c9nh00291j] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Cardiovascular disease (CVD), which encompasses a number of conditions that can affect the heart and blood vessels, presents a major challenge for modern-day healthcare. Nearly one in three people has some form of CVD, with many suffering from multiple or intertwined conditions that can ultimately lead to traumatic events such as a heart attack or stroke. While the knowledge obtained in the past century regarding the cardiovascular system has paved the way for the development of life-prolonging drugs and treatment modalities, CVD remains one of the leading causes of death in developed countries. More recently, researchers have explored the application of nanotechnology to improve upon current clinical paradigms for the management of CVD. Nanoscale delivery systems have many advantages, including the ability to target diseased sites, improve drug bioavailability, and carry various functional payloads. In this review, we cover the different ways in which nanoparticle technology can be applied towards CVD diagnostics and treatments. The development of novel biomimetic platforms with enhanced functionalities is discussed in detail.
Collapse
Affiliation(s)
| | | | - Jiarong Zhou
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Maya Holay
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronnie H. Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
23
|
Wege C, Koch C. From stars to stripes: RNA-directed shaping of plant viral protein templates-structural synthetic virology for smart biohybrid nanostructures. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1591. [PMID: 31631528 DOI: 10.1002/wnan.1591] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/04/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022]
Abstract
The self-assembly of viral building blocks bears exciting prospects for fabricating new types of bionanoparticles with multivalent protein shells. These enable a spatially controlled immobilization of functionalities at highest surface densities-an increasing demand worldwide for applications from vaccination to tissue engineering, biocatalysis, and sensing. Certain plant viruses hold particular promise because they are sustainably available, biodegradable, nonpathogenic for mammals, and amenable to in vitro self-organization of virus-like particles. This offers great opportunities for their redesign into novel "green" carrier systems by spatial and structural synthetic biology approaches, as worked out here for the robust nanotubular tobacco mosaic virus (TMV) as prime example. Natural TMV of 300 x 18 nm is built from more than 2,100 identical coat proteins (CPs) helically arranged around a 6,395 nucleotides ssRNA. In vitro, TMV-like particles (TLPs) may self-assemble also from modified CPs and RNAs if the latter contain an Origin of Assembly structure, which initiates a bidirectional encapsidation. By way of tailored RNA, the process can be reprogrammed to yield uncommon shapes such as branched nanoobjects. The nonsymmetric mechanism also proceeds on 3'-terminally immobilized RNA and can integrate distinct CP types in blends or serially. Other emerging plant virus-deduced systems include the usually isometric cowpea chlorotic mottle virus (CCMV) with further strikingly altered structures up to "cherrybombs" with protruding nucleic acids. Cartoon strips and pictorial descriptions of major RNA-based strategies induct the reader into a rare field of nanoconstruction that can give rise to utile soft-matter architectures for complex tasks. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures.
Collapse
Affiliation(s)
- Christina Wege
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Claudia Koch
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
24
|
Mican J, Toul M, Bednar D, Damborsky J. Structural Biology and Protein Engineering of Thrombolytics. Comput Struct Biotechnol J 2019; 17:917-938. [PMID: 31360331 PMCID: PMC6637190 DOI: 10.1016/j.csbj.2019.06.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 12/22/2022] Open
Abstract
Myocardial infarction and ischemic stroke are the most frequent causes of death or disability worldwide. Due to their ability to dissolve blood clots, the thrombolytics are frequently used for their treatment. Improving the effectiveness of thrombolytics for clinical uses is of great interest. The knowledge of the multiple roles of the endogenous thrombolytics and the fibrinolytic system grows continuously. The effects of thrombolytics on the alteration of the nervous system and the regulation of the cell migration offer promising novel uses for treating neurodegenerative disorders or targeting cancer metastasis. However, secondary activities of thrombolytics may lead to life-threatening side-effects such as intracranial bleeding and neurotoxicity. Here we provide a structural biology perspective on various thrombolytic enzymes and their key properties: (i) effectiveness of clot lysis, (ii) affinity and specificity towards fibrin, (iii) biological half-life, (iv) mechanisms of activation/inhibition, and (v) risks of side effects. This information needs to be carefully considered while establishing protein engineering strategies aiming at the development of novel thrombolytics. Current trends and perspectives are discussed, including the screening for novel enzymes and small molecules, the enhancement of fibrin specificity by protein engineering, the suppression of interactions with native receptors, liposomal encapsulation and targeted release, the application of adjuvants, and the development of improved production systems.
Collapse
Key Words
- EGF, Epidermal growth factor domain
- F, Fibrin binding finger domain
- Fibrinolysis
- K, Kringle domain
- LRP1, Low-density lipoprotein receptor-related protein 1
- MR, Mannose receptor
- NMDAR, N-methyl-D-aspartate receptor
- P, Proteolytic domain
- PAI-1, Inhibitor of tissue plasminogen activator
- Plg, Plasminogen
- Plm, Plasmin
- RAP, Receptor antagonist protein
- SAK, Staphylokinase
- SK, Streptokinase
- Staphylokinase
- Streptokinase
- Thrombolysis
- Tissue plasminogen activator
- Urokinase
- t-PA, Tissue plasminogen activator
Collapse
Affiliation(s)
- Jan Mican
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Martin Toul
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| |
Collapse
|
25
|
Plant virus-based materials for biomedical applications: Trends and prospects. Adv Drug Deliv Rev 2019; 145:96-118. [PMID: 30176280 DOI: 10.1016/j.addr.2018.08.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/06/2018] [Accepted: 08/27/2018] [Indexed: 12/14/2022]
Abstract
Nanomaterials composed of plant viral components are finding their way into medical technology and health care, as they offer singular properties. Precisely shaped, tailored virus nanoparticles (VNPs) with multivalent protein surfaces are efficiently loaded with functional compounds such as contrast agents and drugs, and serve as carrier templates and targeting vehicles displaying e.g. peptides and synthetic molecules. Multiple modifications enable uses including vaccination, biosensing, tissue engineering, intravital delivery and theranostics. Novel concepts exploit self-organization capacities of viral building blocks into hierarchical 2D and 3D structures, and their conversion into biocompatible, biodegradable units. High yields of VNPs and proteins can be harvested from plants after a few days so that various products have reached or are close to commercialization. The article delineates potentials and limitations of biomedical plant VNP uses, integrating perspectives of chemistry, biomaterials sciences, molecular plant virology and process engineering.
Collapse
|
26
|
Kaviarasi S, Yuba E, Harada A, Krishnan UM. Emerging paradigms in nanotechnology for imaging and treatment of cerebral ischemia. J Control Release 2019; 300:22-45. [DOI: 10.1016/j.jconrel.2019.02.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 02/07/2023]
|
27
|
Luzuriaga MA, Welch RP, Dharmarwardana M, Benjamin CE, Li S, Shahrivarkevishahi A, Popal S, Tuong LH, Creswell CT, Gassensmith JJ. Enhanced Stability and Controlled Delivery of MOF-Encapsulated Vaccines and Their Immunogenic Response In Vivo. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9740-9746. [PMID: 30776885 DOI: 10.1021/acsami.8b20504] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Vaccines have an innate tendency to lose their structural conformation upon environmental and chemical stressors. A loss in conformation reduces the therapeutic ability to prevent the spread of a pathogen. Herein, we report an in-depth study of zeolitic imidazolate framework-8 and its ability to provide protection for a model viral vector against denaturing conditions. The immunoassay and spectroscopy analysis together demonstrate enhanced thermal and chemical stability to the conformational structure of the encapsulated viral nanoparticle. The long-term biological activity of this virus-ZIF composite was investigated in animal models to further elucidate the integrity of the encapsulated virus, the biosafety, and immunogenicity of the overall composite. Additionally, histological analysis found no observable tissue damage in the skin or vital organs in mice, following multiple subcutaneous administrations. This study shows that ZIF-based protein composites are strong candidates for improved preservation of proteinaceous drugs, are biocompatible, and are capable of controlling the release and adsorption of drugs in vivo.
Collapse
|
28
|
Le DHT, Commandeur U, Steinmetz NF. Presentation and Delivery of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand via Elongated Plant Viral Nanoparticle Enhances Antitumor Efficacy. ACS NANO 2019; 13:2501-2510. [PMID: 30668110 DOI: 10.1021/acsnano.8b09462] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Potato virus X (PVX) is a flexuous plant virus-based nanotechnology with promise in cancer therapy. As a high aspect ratio biologic (13 × 515 nm), PVX has excellent spatial control in structures and functions, offering high-precision nanoengineering for multivalent display of functional moieties. Herein, we demonstrate the preparation of the PVX-based nanocarrier for delivery of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a promising protein drug that induces apoptosis in cancer cells but not healthy cells. TRAIL bound to PVX by coordination bonds between nickel-coordinated nitrilotriacetic acid on PVX and His-tag on the protein could mimic the bioactive "membrane-bound" state in native TRAIL, resulting in an elongated nanoparticle displaying up 490 therapeutic protein molecules. Our data show that PVX-delivered TRAIL activates caspase-mediated apoptosis more efficiently compared to soluble TRAIL; also in vivo the therapeutic nanoparticle outperforms in delaying tumor growth in an athymic nude mouse model bearing human triple-negative breast cancer xenografts. This proof-of-concept work highlights the potential of filamentous plant virus nanotechnologies, particularly for targeting protein drug delivery for cancer therapy.
Collapse
Affiliation(s)
- Duc H T Le
- Department of Biomedical Engineering , Case Western Reserve University School of Medicine , Cleveland , Ohio 44106 , United States
| | - Ulrich Commandeur
- Department of Molecular Biology , RWTH-Aachen University , Aachen 52064 , Germany
| | - Nicole F Steinmetz
- Department of NanoEngineering, Moores Cancer Center, Department of Radiology, Department of Bioengineering , University of California, San Diego , La Jolla , California 92093 , United States
- Department of Biomedical Engineering , Case Western Reserve University School of Medicine , Cleveland , Ohio 44106 , United States
| |
Collapse
|
29
|
Advances in particle shape engineering for improved drug delivery. Drug Discov Today 2019; 24:575-583. [DOI: 10.1016/j.drudis.2018.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/26/2018] [Accepted: 10/13/2018] [Indexed: 01/03/2023]
|
30
|
Pitek AS, Park J, Wang Y, Gao H, Hu H, Simon DI, Steinmetz NF. Delivery of thrombolytic therapy using rod-shaped plant viral nanoparticles decreases the risk of hemorrhage. NANOSCALE 2018; 10:16547-16555. [PMID: 30137088 PMCID: PMC6145846 DOI: 10.1039/c8nr02861c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cardiovascular thrombotic disease is an underlying cause of stroke, myocardial infarction and pulmonary embolism - some of the leading causes of death worldwide. Reperfusion therapy with anticoagulant, antiplatelet, and fibrinolytic agents has significantly reduced early mortality and morbidity from acute myocardial infarction and stroke. Nevertheless, bleeding side effects (e.g., intracranial hemorrhage) associated with the anti-thrombotic therapy can offset its benefits and limit its applicability to strictly defined short therapeutic windows. We have previously shown that elongated plant virus based nanoparticles can target cardiovascular thrombi and exhibited their utility for the delivery of streptokinase in an ex vivo model of thrombosis. Herein, we build upon our previous findings and demonstrate plant viral delivery of the current standard-of-care tissue plasminogen activator (tPA). Studies on a pre-clinical mouse model of arterial thrombosis indicate that while the therapeutic efficacy of free tPA and tPA-conjugated TMV are similar, the safety profile of the tPA-TMV formulation is improved, i.e. administration of the latter has less impact on hemostasis as demonstrated by decreased bleeding time. Thus, our data suggest that TMV-based delivery of thrombolytic therapies could be a promising and safer alternative to reperfusion therapy with the tPA.
Collapse
Affiliation(s)
- Andrzej S. Pitek
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jooneon Park
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Yunmei Wang
- Harrington Heart and Vascular Institute, Case Cardiovascular Research Institute, Department of Medicine, University Hospitals Case Medical Center and Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Huiyun Gao
- Harrington Heart and Vascular Institute, Case Cardiovascular Research Institute, Department of Medicine, University Hospitals Case Medical Center and Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - He Hu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Daniel I. Simon
- Harrington Heart and Vascular Institute, Case Cardiovascular Research Institute, Department of Medicine, University Hospitals Case Medical Center and Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Nicole F. Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Materials Science and Engineering,
Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
31
|
Icik E, Eiben S, Schädel N, Kupka J, Martini M, Wege C, Laschat S. Plant virus hybrid materials based on tobacco mosaic virus and small organic cross-linkers. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2018. [DOI: 10.1680/jbibn.18.00016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Esra Icik
- Institut für Organische Chemie, Universität Stuttgart, Stuttgart, Germany
| | - Sabine Eiben
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, Universität Stuttgart, Stuttgart, Germany
| | - Nicole Schädel
- Institut für Organische Chemie, Universität Stuttgart, Stuttgart, Germany
| | - Julia Kupka
- Institut für Organische Chemie, Universität Stuttgart, Stuttgart, Germany
| | - Maike Martini
- Institut für Organische Chemie, Universität Stuttgart, Stuttgart, Germany
| | - Christina Wege
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, Universität Stuttgart, Stuttgart, Germany
| | - Sabine Laschat
- Institut für Organische Chemie, Universität Stuttgart, Stuttgart, Germany
| |
Collapse
|
32
|
Hefferon KL. Repurposing Plant Virus Nanoparticles. Vaccines (Basel) 2018; 6:vaccines6010011. [PMID: 29443902 PMCID: PMC5874652 DOI: 10.3390/vaccines6010011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/26/2018] [Accepted: 02/02/2018] [Indexed: 12/21/2022] Open
Abstract
Plants have been explored for many years as inexpensive and versatile platforms for the generation of vaccines and other biopharmaceuticals. Plant viruses have also been engineered to either express subunit vaccines or act as epitope presentation systems. Both icosahedral and helical, filamentous-shaped plant viruses have been used for these purposes. More recently, plant viruses have been utilized as nanoparticles to transport drugs and active molecules into cancer cells. The following review describes the use of both icosahedral and helical plant viruses in a variety of new functions against cancer. The review illustrates the breadth of variation among different plant virus nanoparticles and how this impacts the immune response.
Collapse
|