1
|
Zhang X, Goedegebuure SP, Chen MY, Mishra R, Zhang F, Yu YY, Singhal K, Li L, Gao F, Myers NB, Vickery T, Hundal J, McLellan MD, Sturmoski MA, Kim SW, Chen I, Davidson JT, Sankpal NV, Myles S, Suresh R, Ma CX, Foluso A, Wang-Gillam A, Davies S, Hagemann IS, Mardis ER, Griffith O, Griffith M, Miller CA, Hansen TH, Fleming TP, Schreiber RD, Gillanders WE. Neoantigen DNA vaccines are safe, feasible, and induce neoantigen-specific immune responses in triple-negative breast cancer patients. Genome Med 2024; 16:131. [PMID: 39538331 PMCID: PMC11562513 DOI: 10.1186/s13073-024-01388-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 09/20/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Neoantigen vaccines can induce or enhance highly specific antitumor immune responses with minimal risk of autoimmunity. We have developed a neoantigen DNA vaccine platform capable of efficiently presenting both HLA class I and II epitopes and performed a phase 1 clinical trial in triple-negative breast cancer patients with persistent disease on surgical pathology following neoadjuvant chemotherapy, a patient population at high risk of disease recurrence. METHODS Expressed somatic mutations were identified by tumor/normal exome sequencing and tumor RNA sequencing. The pVACtools software suite of neoantigen prediction algorithms was used to identify and prioritize cancer neoantigens and facilitate vaccine design for manufacture in an academic GMP facility. Neoantigen DNA vaccines were administered via electroporation in the adjuvant setting (i.e., following surgical removal of the primary tumor and completion of standard of care therapy). Vaccines were monitored for safety and immune responses via ELISpot, intracellular cytokine production via flow cytometry, and TCR sequencing. RESULTS Eighteen subjects received three doses of a neoantigen DNA vaccine encoding on average 11 neoantigens per patient (range 4-20). The vaccinations were well tolerated with relatively few adverse events. Neoantigen-specific T cell responses were induced in 14/18 patients as measured by ELISpot and flow cytometry. At a median follow-up of 36 months, recurrence-free survival was 87.5% (95% CI: 72.7-100%) in the cohort of vaccinated patients. CONCLUSION Our study demonstrates neoantigen DNA vaccines are safe, feasible, and capable of inducing neoantigen-specific immune responses. CLINICAL TRIAL REGISTRATION NUMBER NCT02348320.
Collapse
Affiliation(s)
- Xiuli Zhang
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - S Peter Goedegebuure
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
- The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, Saint Louis, MO, USA
| | - Michael Y Chen
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Rashmi Mishra
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Felicia Zhang
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Yik Yeung Yu
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Kartik Singhal
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Lijin Li
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Feng Gao
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Nancy B Myers
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Tammi Vickery
- Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jasreet Hundal
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO, USA
| | - Michael D McLellan
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO, USA
| | - Mark A Sturmoski
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Samuel W Kim
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ina Chen
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jesse T Davidson
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Narendra V Sankpal
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Stephanie Myles
- The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, Saint Louis, MO, USA
| | - Rama Suresh
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
- The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, Saint Louis, MO, USA
| | - Cynthia X Ma
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
- The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, Saint Louis, MO, USA
| | - Ademuyiwa Foluso
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
- The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, Saint Louis, MO, USA
| | - Andrea Wang-Gillam
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
- The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, Saint Louis, MO, USA
| | - Sherri Davies
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ian S Hagemann
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Elaine R Mardis
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO, USA
- The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, Saint Louis, MO, USA
- Current Affiliation: Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH, USA
| | - Obi Griffith
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO, USA
| | - Malachi Griffith
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO, USA
| | - Christopher A Miller
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ted H Hansen
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Timothy P Fleming
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
- The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, Saint Louis, MO, USA
| | - Robert D Schreiber
- Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
- The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, Saint Louis, MO, USA
| | - William E Gillanders
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA.
- The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
2
|
Chi WY, Hu Y, Huang HC, Kuo HH, Lin SH, Kuo CTJ, Tao J, Fan D, Huang YM, Wu AA, Hung CF, Wu TC. Molecular targets and strategies in the development of nucleic acid cancer vaccines: from shared to personalized antigens. J Biomed Sci 2024; 31:94. [PMID: 39379923 PMCID: PMC11463125 DOI: 10.1186/s12929-024-01082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/01/2024] [Indexed: 10/10/2024] Open
Abstract
Recent breakthroughs in cancer immunotherapies have emphasized the importance of harnessing the immune system for treating cancer. Vaccines, which have traditionally been used to promote protective immunity against pathogens, are now being explored as a method to target cancer neoantigens. Over the past few years, extensive preclinical research and more than a hundred clinical trials have been dedicated to investigating various approaches to neoantigen discovery and vaccine formulations, encouraging development of personalized medicine. Nucleic acids (DNA and mRNA) have become particularly promising platform for the development of these cancer immunotherapies. This shift towards nucleic acid-based personalized vaccines has been facilitated by advancements in molecular techniques for identifying neoantigens, antigen prediction methodologies, and the development of new vaccine platforms. Generating these personalized vaccines involves a comprehensive pipeline that includes sequencing of patient tumor samples, data analysis for antigen prediction, and tailored vaccine manufacturing. In this review, we will discuss the various shared and personalized antigens used for cancer vaccine development and introduce strategies for identifying neoantigens through the characterization of gene mutation, transcription, translation and post translational modifications associated with oncogenesis. In addition, we will focus on the most up-to-date nucleic acid vaccine platforms, discuss the limitations of cancer vaccines as well as provide potential solutions, and raise key clinical and technical considerations in vaccine development.
Collapse
Affiliation(s)
- Wei-Yu Chi
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Yingying Hu
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hsin-Che Huang
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hui-Hsuan Kuo
- Pharmacology PhD Program, Weill Cornell Medicine, New York, NY, USA
| | - Shu-Hong Lin
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston and MD Anderson Cancer Center, Houston, TX, USA
| | - Chun-Tien Jimmy Kuo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Julia Tao
- Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA
| | - Darrell Fan
- Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA
| | - Yi-Min Huang
- Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA
| | - Annie A Wu
- Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Obstetrics and Gynecology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - T-C Wu
- Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA.
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Obstetrics and Gynecology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Markelc B, Jesenko T, Kranjc Brezar S, Omerzel M, Lampreht Tratar U, Rencelj A, Matkovic U, Znidar K, Kos S, Levpuscek K, Pisljar Z, Kesar U, Komel T, Bozic T, Tuljak A, Hudej R, Peterka M, Kamensek U, Cör A, Gasljevic G, Nemec Svete A, Tozon N, Sersa G, Cemazar M. Non-clinical evaluation of pmIL12 gene therapy for approval of the phase I clinical study. Sci Rep 2024; 14:22288. [PMID: 39333733 PMCID: PMC11437156 DOI: 10.1038/s41598-024-73314-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
Immunotherapeutic drugs are promising medicines for cancer treatment. A potential candidate for immunotherapy is interleukin-12 (IL-12), a cytokine well known for its ability to mediate antitumor activity. We developed a plasmid encoding human IL-12 devoid of an antibiotic resistance gene (phIL12). For the approval of phase I clinical trials in basal cell carcinoma (BCC), the regulatory agency requires non-clinical in vivo testing of the pharmacodynamic, pharmacokinetic and toxicological properties of the plasmid. As human IL-12 is not biologically active in mice, a mouse ortholog of the plasmid phIL12 (pmIL12) was evaluated. The evaluation demonstrated the antitumor effectiveness of the protein accompanied by immune cell infiltration. The plasmid was distributed throughout the body, and the amount of plasmid diminished over time in all organs except the skin around the tumor. The therapy did not cause any detectable systemic toxicity. The results of the non-clinical evaluation demonstrated the safety and efficacy of the pmIL12/phIL12 GET, and on the basis of these results, approval was obtained for the initiation of a phase I clinical study in BCC.
Collapse
Affiliation(s)
- Bostjan Markelc
- Institute of Oncology Ljubljana, 1000, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Tanja Jesenko
- Institute of Oncology Ljubljana, 1000, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Simona Kranjc Brezar
- Institute of Oncology Ljubljana, 1000, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Masa Omerzel
- Institute of Oncology Ljubljana, 1000, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Ursa Lampreht Tratar
- Institute of Oncology Ljubljana, 1000, Ljubljana, Slovenia
- Veterinary Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Andrej Rencelj
- Institute of Oncology Ljubljana, 1000, Ljubljana, Slovenia
| | - Urska Matkovic
- Institute of Oncology Ljubljana, 1000, Ljubljana, Slovenia
| | | | - Spela Kos
- Institute of Oncology Ljubljana, 1000, Ljubljana, Slovenia
| | - Kristina Levpuscek
- Institute of Oncology Ljubljana, 1000, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Ziva Pisljar
- Institute of Oncology Ljubljana, 1000, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Ursa Kesar
- Institute of Oncology Ljubljana, 1000, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Tilen Komel
- Institute of Oncology Ljubljana, 1000, Ljubljana, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, 6310, Izola, Slovenia
| | - Tim Bozic
- Institute of Oncology Ljubljana, 1000, Ljubljana, Slovenia
| | | | | | | | - Urska Kamensek
- Institute of Oncology Ljubljana, 1000, Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Andrej Cör
- Orthopaedic Hospital Valdoltra, 6280, Ankaran, Slovenia
- Faculty of Health Sciences, University of Primorska, 6310, Izola, Slovenia
| | - Gorana Gasljevic
- Institute of Oncology Ljubljana, 1000, Ljubljana, Slovenia
- Medical Faculty, University of Maribor, 2000, Maribor, Slovenia
| | | | - Natasa Tozon
- Veterinary Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Gregor Sersa
- Institute of Oncology Ljubljana, 1000, Ljubljana, Slovenia.
- Faculty of Health Sciences, University of Ljubljana, 1000, Ljubljana, Slovenia.
| | - Maja Cemazar
- Institute of Oncology Ljubljana, 1000, Ljubljana, Slovenia.
- Faculty of Health Sciences, University of Primorska, 6310, Izola, Slovenia.
| |
Collapse
|
4
|
Palepšienė R, Muralidharan A, Maciulevičius M, Ruzgys P, Chopra S, Boukany PE, Šatkauskas S. New insights into the mechanism of electrotransfer of small nucleic acids. Bioelectrochemistry 2024; 158:108696. [PMID: 38583283 DOI: 10.1016/j.bioelechem.2024.108696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
RNA interference (RNAi) is a powerful and rapidly developing technology that enables precise silencing of genes of interest. However, the clinical development of RNAi is hampered by the limited cellular uptake and stability of the transferred molecules. Electroporation (EP) is an efficient and versatile technique for the transfer of both RNA and DNA. Although the mechanism of electrotransfer of small nucleic acids has been studied previously, too little is known about the potential effects of significantly larger pDNA on this process. Here we present a fundamental study of the mechanism of electrotransfer of oligonucleotides and siRNA that occur independently and simultaneously with pDNA by employing confocal fluorescence microscopy. In contrast to the conditional understanding of the mechanism, we have shown that the electrotransfer of oligonucleotides and siRNA is driven by both electrophoretic forces and diffusion after EP, followed by subsequent entry into the nucleus within 5 min after treatment. The study also revealed that the efficiency of siRNA electrotransfer decreases in response to an increase in pDNA concentration. Overall, the study provides new insights into the mechanism of electrotransfer of small nucleic acids which may have broader implications for the future application of RNAi-based strategies.
Collapse
Affiliation(s)
- Rūta Palepšienė
- Research Institute of Natural Sciences and Technology, Vytautas Magnus University, Universiteto str. 10, Akademija, Kaunas district LT-53361, Lithuania.
| | - Aswin Muralidharan
- Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9 2629 HZ Delft, Netherlands; Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9 2629 HZ Delft, Netherlands.
| | - Martynas Maciulevičius
- Research Institute of Natural Sciences and Technology, Vytautas Magnus University, Universiteto str. 10, Akademija, Kaunas district LT-53361, Lithuania.
| | - Paulius Ruzgys
- Research Institute of Natural Sciences and Technology, Vytautas Magnus University, Universiteto str. 10, Akademija, Kaunas district LT-53361, Lithuania.
| | - Sonam Chopra
- Research Institute of Natural Sciences and Technology, Vytautas Magnus University, Universiteto str. 10, Akademija, Kaunas district LT-53361, Lithuania.
| | - Pouyan E Boukany
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9 2629 HZ Delft, Netherlands.
| | - Saulius Šatkauskas
- Research Institute of Natural Sciences and Technology, Vytautas Magnus University, Universiteto str. 10, Akademija, Kaunas district LT-53361, Lithuania.
| |
Collapse
|
5
|
Radzevičiūtė-Valčiukė E, Gečaitė J, Balevičiūtė A, Szewczyk A, Želvys A, Lekešytė B, Malyško-Ptašinskė V, Mickevičiūtė E, Malakauskaitė P, Kulbacka J, Novickij V. Effects of buffer composition and plasmid toxicity on electroporation-based non-viral gene delivery in mammalian cells using bursts of nanosecond and microsecond pulses. Front Bioeng Biotechnol 2024; 12:1430637. [PMID: 39050682 PMCID: PMC11266100 DOI: 10.3389/fbioe.2024.1430637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
Gene electrotransfer (GET) is non-viral gene delivery technique, also known as electroporation-mediated gene delivery or electrotransfection. GET is a method used to introduce foreign genetic material (such as DNA or RNA) into cells by applying external pulsed electric fields (PEFs) to create temporary pores in the cell membrane. This study was undertaken to examine the impact of buffer composition on the efficiency of GET in mammalian cells Also, we specifically compared the effectiveness of high-frequency nanosecond (ns) pulses with standard microsecond (µs) pulses. For the assessment of cell transfection efficiency and viability, flow cytometric analysis, luminescent assays, and measurements of metabolic activity were conducted. The efficiency of electrotransfection was evaluated using two different proteins encoding plasmids (pEGFP-N1 and Luciferase-pcDNA3). The investigation revealed that the composition of the electroporation buffer significantly influences the efficacy of GET in CHO-K1 cell line. The different susceptibility of cell lines to the electric field and the plasmid cytotoxicity were reported. It was also shown that electroporation with nanosecond duration PEF protocols ensured equivalent or even better transfection efficiency than standard µsPEF. Additionally, we successfully performed long-term transfection of the murine 4T1 cell line using high-frequency nanosecond PEFs and confirmed its' applicability in an in vivo model. The findings from the study can be applied to optimize electrotransfection conditions.
Collapse
Affiliation(s)
- Eivina Radzevičiūtė-Valčiukė
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Jovita Gečaitė
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
| | - Austėja Balevičiūtė
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
| | - Anna Szewczyk
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
- Faculty of Pharmacy, Department of Molecular and Cellular Biology, Wroclaw Medical University, Wroclaw, Poland
| | - Augustinas Želvys
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Barbora Lekešytė
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | | | - Eglė Mickevičiūtė
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Paulina Malakauskaitė
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Julita Kulbacka
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
- Faculty of Pharmacy, Department of Molecular and Cellular Biology, Wroclaw Medical University, Wroclaw, Poland
| | - Vitalij Novickij
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| |
Collapse
|
6
|
Wang C, Yuan F. A comprehensive comparison of DNA and RNA vaccines. Adv Drug Deliv Rev 2024; 210:115340. [PMID: 38810703 PMCID: PMC11181159 DOI: 10.1016/j.addr.2024.115340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/06/2024] [Accepted: 05/18/2024] [Indexed: 05/31/2024]
Abstract
Nucleic acid technology has revolutionized vaccine development, enabling rapid design and production of RNA and DNA vaccines for prevention and treatment of diseases. The successful deployment of mRNA and plasmid DNA vaccines against COVID-19 has further validated the technology. At present, mRNA platform is prevailing due to its higher efficacy, while DNA platform is undergoing rapid evolution because it possesses unique advantages that can potentially overcome the problems associated with the mRNA platform. To help understand the recent performances of the two vaccine platforms and recognize their clinical potentials in the future, this review compares the advantages and drawbacks of mRNA and DNA vaccines that are currently known in the literature, in terms of development timeline, financial cost, ease of distribution, efficacy, safety, and regulatory approval of products. Additionally, the review discusses the ongoing clinical trials, strategies for improvement, and alternative designs of RNA and DNA platforms for vaccination.
Collapse
Affiliation(s)
- Chunxi Wang
- Department of Biomedical Engineering, Duke University, Durham, NC 27705, United States
| | - Fan Yuan
- Department of Biomedical Engineering, Duke University, Durham, NC 27705, United States.
| |
Collapse
|
7
|
Urbanskas E, Jakštys B, Venckus J, Malakauskaitė P, Šatkauskienė I, Morkvėnaitė-Vilkončienė I, Šatkauskas S. Interplay between Electric Field Strength and Number of Short-Duration Pulses for Efficient Gene Electrotransfer. Pharmaceuticals (Basel) 2024; 17:825. [PMID: 39065676 PMCID: PMC11279932 DOI: 10.3390/ph17070825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/08/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Electroporation is a method that shows great promise as a non-viral approach for delivering genes by using high-voltage electric pulses to introduce DNA into cells to induce transient gene expression. This research aimed to evaluate the interplay between electric pulse intensity and 100 µs-duration pulse numbers as an outcome of gene electrotransfer efficacy and cell viability. Our results indicated a close relationship between pulse number and electric field strength regarding gene electrotransfer efficacy; higher electric pulse intensity resulted in fewer pulses needed to achieve the same gene electrotransfer efficacy. Subsequently, an increase in pulse number had a more negative impact on overall gene electrotransfer by significantly reducing cell viability. Based on our data, the best pulse parameters to transfect CHO cells with the pMax-GFP plasmid were using 5 HV square wave pulses of 1000 V/cm and 2 HV of 1600 V/cm, correspondingly resulting in 55 and 71% of transfected cells and maintaining 79 and 54% proliferating cells. This shows ESOPE-like 100 µs-duration pulse protocols can be used simultaneously to deliver cytotoxic drugs as well as immune response regulating genetically encoded cytokines.
Collapse
Affiliation(s)
- Ernestas Urbanskas
- Research Institute of Natural and Technological Sciences, Vytautas Magnus University, 44404 Kaunas, Lithuania; (E.U.); (B.J.); (J.V.); (I.Š.)
| | - Baltramiejus Jakštys
- Research Institute of Natural and Technological Sciences, Vytautas Magnus University, 44404 Kaunas, Lithuania; (E.U.); (B.J.); (J.V.); (I.Š.)
- Faculty of Electronics, Vilnius Gediminas Technical University, 10105 Vilnius, Lithuania;
| | - Justinas Venckus
- Research Institute of Natural and Technological Sciences, Vytautas Magnus University, 44404 Kaunas, Lithuania; (E.U.); (B.J.); (J.V.); (I.Š.)
| | - Paulina Malakauskaitė
- Faculty of Electronics, Vilnius Gediminas Technical University, 10105 Vilnius, Lithuania;
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania
| | - Ingrida Šatkauskienė
- Research Institute of Natural and Technological Sciences, Vytautas Magnus University, 44404 Kaunas, Lithuania; (E.U.); (B.J.); (J.V.); (I.Š.)
| | - Inga Morkvėnaitė-Vilkončienė
- Department of Nanotechnology, State Research Institute Centre for Physical Sciences and Technology, 02300 Vilnius, Lithuania;
| | - Saulius Šatkauskas
- Research Institute of Natural and Technological Sciences, Vytautas Magnus University, 44404 Kaunas, Lithuania; (E.U.); (B.J.); (J.V.); (I.Š.)
| |
Collapse
|
8
|
Wang C, Chang CC, Chi JT, Yuan F. Sucrose Treatment Enhances the Electrotransfer of DNA by Activating Phospholipase A2. Pharmaceutics 2024; 16:475. [PMID: 38675136 PMCID: PMC11054232 DOI: 10.3390/pharmaceutics16040475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/08/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Our previous study discovered that sucrose and other non-reducing sugars (e.g., trehalose and raffinose) could be used to improve the electrotransfer (ET) of molecular cargo, including DNA, mRNA, and ribonucleoprotein in various cell lines and primary human cells in vitro and in vivo. To understand the molecular mechanisms of this improvement, we used RNA sequencing technology to analyze changes in the cell transcriptome after sucrose treatment. The results from our analysis demonstrated that the sucrose treatment upregulated phospholipase A2 and V-ATPase gene families, which could potentially influence the acidity of intracellular vesicles through augmenting vesicle fusion and the influx of proton, respectively. To determine how this upregulation affects ET efficiency, we treated cells with pharmaceutical inhibitors of phospholipase A2 and V-ATPase. The data demonstrated that the treatment with the phospholipase A2 inhibitor could reverse the ET improvement elicited by the sucrose treatment. The V-ATPase inhibitor treatment either had little influence or further enhanced the effect of the sucrose treatment on the ET efficiency. These observations provide a molecular explanation for our previous findings, demonstrating that the sucrose treatment primarily enhanced the ET efficiency by promoting vesicle trafficking and fusion through the activation of phospholipase A2.
Collapse
Affiliation(s)
- Chunxi Wang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Chun-Chi Chang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Fan Yuan
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
9
|
Zhang Y, Peng T, Ge Y, Li M, Li C, Xi J, Li Z, Wei Z, Hu Y. A flexible electrode Array for genetic transfection of different layers of the retina by electroporation. LAB ON A CHIP 2024; 24:1957-1964. [PMID: 38353261 DOI: 10.1039/d3lc01014g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Electroporation (in which the permeability of a cell membrane is increased transiently by exposure to an appropriate electric field) has exhibited great potential of becoming an alternative to adeno-associated virus (AAV)-based retina gene delivery. Electroporation eliminates the safety concerns of employing exogenous viruses and exceeds the limit of AAV cargo size. Unfortunately, several concerns (e.g., relatively high electroporation voltage, poor surgical operability and a lack of spatial selectivity of retina tissue) have prevented electroporation from being approved for clinical application (or even clinical trials). In this study, a flexible micro-electrode array for retina electroporation (FERE) was developed for retina electroporation. A suitably shaped flexible substrate and well-placed micro-electrodes were designed to adapt to the retina curvature and generate an evenly distributed electric field on the retina with a significantly reduced electroporation voltage of 5 V. The FERE provided (for the first time) a capability of controlled gene delivery to the different structural layers of retina tissue by precise control of the distribution of the electrical field. After ensuring the surgical operability of the FERE on rabbit eyeballs, the FERE was verified to be capable of transfecting different layers of retina tissue with satisfactory efficiency and minimum damage. Our method bridges the technical gap between laboratory validation and clinical use of retina electroporation.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biomedical Engineering, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Tao Peng
- Department of Biomedical Engineering, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Yu Ge
- Eye Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China.
| | - Mengda Li
- Eye Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China.
- Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
| | - Chendi Li
- Eye Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China.
- Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
| | - Jiyu Xi
- Department of Biomedical Engineering, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Zixi Li
- Department of Biomedical Engineering, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Zewen Wei
- Department of Biomedical Engineering, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Yuntao Hu
- Eye Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China.
- Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Zhang H, Wang P, Huang N, Zhao L, Su Y, Li L, Bian S, Sawan M. Single neurons on microelectrode array chip: manipulation and analyses. Front Bioeng Biotechnol 2023; 11:1258626. [PMID: 37829565 PMCID: PMC10565505 DOI: 10.3389/fbioe.2023.1258626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Abstract
Chips-based platforms intended for single-cell manipulation are considered powerful tools to analyze intercellular interactions and cellular functions. Although the conventional cell co-culture models could investigate cell communication to some extent, the role of a single cell requires further analysis. In this study, a precise intercellular interaction model was built using a microelectrode array [microelectrode array (MEA)]-based and dielectrophoresis-driven single-cell manipulation chip. The integrated platform enabled precise manipulation of single cells, which were either trapped on or transferred between electrodes. Each electrode was controlled independently to record the corresponding cellular electrophysiology. Multiple parameters were explored to investigate their effects on cell manipulation including the diameter and depth of microwells, the geometry of cells, and the voltage amplitude of the control signal. Under the optimized microenvironment, the chip was further evaluated using 293T and neural cells to investigate the influence of electric field on cells. An examination of the inappropriate use of electric fields on cells revealed the occurrence of oncosis. In the end of the study, electrophysiology of single neurons and network of neurons, both differentiated from human induced pluripotent stem cells (iPSC), was recorded and compared to demonstrate the functionality of the chip. The obtained preliminary results extended the nature growing model to the controllable level, satisfying the expectation of introducing more elaborated intercellular interaction models.
Collapse
Affiliation(s)
- Hongyong Zhang
- Zhejiang University, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Pengbo Wang
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Nan Huang
- School of Life Science, Westlake University, Hangzhou, China
| | - Lingrui Zhao
- School of Life Science, Westlake University, Hangzhou, China
| | - Yi Su
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Lingfei Li
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sumin Bian
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Mohamad Sawan
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Radzevičiūtė-Valčiukė E, Gečaitė J, Želvys A, Zinkevičienė A, Žalnėravičius R, Malyško-Ptašinskė V, Nemeikaitė-Čenienė A, Kašėta V, German N, Novickij J, Ramanavičienė A, Kulbacka J, Novickij V. Improving NonViral Gene Delivery Using MHz Bursts of Nanosecond Pulses and Gold Nanoparticles for Electric Field Amplification. Pharmaceutics 2023; 15:1178. [PMID: 37111663 PMCID: PMC10146442 DOI: 10.3390/pharmaceutics15041178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Gene delivery by the pulsed electric field is a promising alternative technology for nonviral transfection; however, the application of short pulses (i.e., nanosecond) is extremely limited. In this work, we aimed to show the capability to improve gene delivery using MHz frequency bursts of nanosecond pulses and characterize the potential use of gold nanoparticles (AuNPs: 9, 13, 14, and 22 nm) in this context. We have used bursts of MHz pulses 3/5/7 kV/cm × 300 ns × 100 and compared the efficacy of the parametric protocols to conventional microsecond protocols (100 µs × 8, 1 Hz) separately and in combination with nanoparticles. Furthermore, the effects of pulses and AuNPs on the generation of reactive oxygen species (ROS) were analyzed. It was shown that gene delivery using microsecond protocols could be significantly improved with AuNPs; however, the efficacy is strongly dependent on the surface charge of AuNPs and their size. The capability of local field amplification using AuNPs was also confirmed by finite element method simulation. Finally, it was shown that AuNPs are not effective with nanosecond protocols. However, MHz protocols are still competitive in the context of gene delivery, resulting in low ROS generation, preserved viability, and easier procedure to trigger comparable efficacy.
Collapse
Affiliation(s)
- Eivina Radzevičiūtė-Valčiukė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (E.R.-V.); (J.G.); (A.Ž.); (A.Z.)
- Faculty of Electronics, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania; (V.M.-P.)
| | - Jovita Gečaitė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (E.R.-V.); (J.G.); (A.Ž.); (A.Z.)
| | - Augustinas Želvys
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (E.R.-V.); (J.G.); (A.Ž.); (A.Z.)
| | - Auksė Zinkevičienė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (E.R.-V.); (J.G.); (A.Ž.); (A.Z.)
| | - Rokas Žalnėravičius
- State Research Institute Center for Physical Science and Technology, 02300 Vilnius, Lithuania;
| | | | - Aušra Nemeikaitė-Čenienė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (E.R.-V.); (J.G.); (A.Ž.); (A.Z.)
| | - Vytautas Kašėta
- Department of Biomodels, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania
| | - Natalija German
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (E.R.-V.); (J.G.); (A.Ž.); (A.Z.)
| | - Jurij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania; (V.M.-P.)
| | - Almira Ramanavičienė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (E.R.-V.); (J.G.); (A.Ž.); (A.Z.)
| | - Julita Kulbacka
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (E.R.-V.); (J.G.); (A.Ž.); (A.Z.)
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Vitalij Novickij
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (E.R.-V.); (J.G.); (A.Ž.); (A.Z.)
- Faculty of Electronics, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania; (V.M.-P.)
| |
Collapse
|
12
|
Ye Z, Li Y, Zhao Y, Zhang J, Zhu T, Xu F, Li F. Effect of Exogenous Electric Stimulation on the Cardiac Tissue Function In Situ Monitored by Scanning Electrochemical Microscopy. Anal Chem 2023; 95:4634-4643. [PMID: 36787441 DOI: 10.1021/acs.analchem.2c04758] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Cardiac tissue is sensitive to and can be easily damaged by exogenous electric stimulation. However, due to the thermal-electric coeffect and the limitation of in situ and quantitative information on the cardiac tissue function under electric stimulation, the detailed effect and the underlying mechanism of exogenous electric stimulation on the cardiac tissue remain elusive. To address this, in this work, we first constructed an in vitro cardiac tissue model and established a thermal-electric coupled theoretical model for simulating the electric field and temperature distributions around the cardiac tissue, from which we selected the electric field strengths (1.19, 2.37, and 3.39 kV cm-1) and electrical energies (0.001, 0.005, and 0.011 J) for electric stimulations without inducing a thermal effect. Then, we applied electric field stimulations on the cardiac tissue using these parameters and scanning electrochemical microscopy (SECM) to in situ and quantitatively monitor the dynamic changes in the key parameters of the cardiac tissue function, including respiratory activity, membrane permeability, and contraction frequency, after electric field stimulations. The SECM results showed that the oxygen consumption, cell membrane permeability coefficient, and contraction frequency of the cardiac tissue were strongly dependent on electrical energy, especially when the electrical energy was higher than 0.001 J. Our work, for the first time, achieves the in situ and quantitative monitoring of the cardiac tissue function under electric stimulation using SECM, which would provide important references for designing an electric stimulation regime for cardiac tissue engineering and clinical application of electrotherapy.
Collapse
Affiliation(s)
- Zhaoyang Ye
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yabei Li
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China.,School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yuxiang Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Junjie Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Tong Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China.,Department of Cardiovasology, Xidian Group Hospital, Xi'an 710077, Shaanxi, P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Fei Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
13
|
Malyško-Ptašinskė V, Staigvila G, Novickij V. Invasive and non-invasive electrodes for successful drug and gene delivery in electroporation-based treatments. Front Bioeng Biotechnol 2023; 10:1094968. [PMID: 36727038 PMCID: PMC9885012 DOI: 10.3389/fbioe.2022.1094968] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/28/2022] [Indexed: 01/17/2023] Open
Abstract
Electroporation is an effective physical method for irreversible or reversible permeabilization of plasma membranes of biological cells and is typically used for tissue ablation or targeted drug/DNA delivery into living cells. In the context of cancer treatment, full recovery from an electroporation-based procedure is frequently dependent on the spatial distribution/homogeneity of the electric field in the tissue; therefore, the structure of electrodes/applicators plays an important role. This review focuses on the analysis of electrodes and in silico models used for electroporation in cancer treatment and gene therapy. We have reviewed various invasive and non-invasive electrodes; analyzed the spatial electric field distribution using finite element method analysis; evaluated parametric compatibility, and the pros and cons of application; and summarized options for improvement. Additionally, this review highlights the importance of tissue bioimpedance for accurate treatment planning using numerical modeling and the effects of pulse frequency on tissue conductivity and relative permittivity values.
Collapse
Affiliation(s)
| | - Gediminas Staigvila
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Vitalij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
- Department of Immunology, State Research Institute Centre of Innovative Medicine, Vilnius, Lithuania
| |
Collapse
|
14
|
Sales Conniff A, Tur J, Kohena K, Zhang M, Gibbons J, Heller LC. Transcriptomic Analysis of the Acute Skeletal Muscle Effects after Intramuscular DNA Electroporation Reveals Inflammatory Signaling. Vaccines (Basel) 2022; 10:vaccines10122037. [PMID: 36560447 PMCID: PMC9786673 DOI: 10.3390/vaccines10122037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
Skeletal muscle is a promising tissue for therapeutic gene delivery because it is highly vascularized, accessible, and capable of synthesizing protein for therapies or vaccines. The application of electric pulses (electroporation) enhances plasmid DNA delivery and expression by increasing membrane permeability. Four hours after plasmid electroporation, we evaluated acute gene and protein expression changes in mouse skeletal muscle to identify regulated genes and genetic pathways. RNA sequencing followed by functional annotation was used to evaluate differentially expressed mRNAs. Our data highlighted immune signaling pathways that may influence the effectiveness of DNA electroporation. Cytokine and chemokine protein levels in muscle lysates revealed the upregulation of a subset of inflammatory proteins and confirmed the RNA sequencing analysis. Several regulated DNA-specific pattern recognition receptor mRNAs were also detected. Identifying unique molecular changes in the muscle will facilitate a better understanding of the underlying molecular mechanisms and the development of safety biomarkers and novel strategies to improve skeletal muscle targeted gene therapy.
Collapse
Affiliation(s)
- Amanda Sales Conniff
- Department of Medical Engineering, University of South Florida, Tampa, FL 33612, USA
| | - Jared Tur
- Department of Medical Engineering, University of South Florida, Tampa, FL 33612, USA
| | - Kristopher Kohena
- Department of Medical Engineering, University of South Florida, Tampa, FL 33612, USA
| | - Min Zhang
- USF Genomics Core, University of South Florida, Tampa, FL 33612, USA
| | - Justin Gibbons
- USF Omics Hub, University of South Florida, Tampa, FL 33612, USA
| | - Loree C. Heller
- Department of Medical Engineering, University of South Florida, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-813-974-4637
| |
Collapse
|
15
|
Liu F, Yang Z, Yao R, Li H, Cheng J, Guo M. Bulk Electroporation for Intracellular Delivery Directly Driven by Mechanical Stimulus. ACS NANO 2022; 16:19363-19372. [PMID: 36350673 DOI: 10.1021/acsnano.2c08945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Electroporation (EP) is an effective and widely accepted intracellular delivery method for fundamental research and medical applications. Existing electroporation methods usually require a commercially available EP system or tailor-made high-voltage (HV, up to kV) power source and are complicated, expensive, harmful to the cells, and even dangerous to the operators. A triboelectric nanogenerator (TENG) is a highly studied device that can generate HV output with limited charges and ultrahigh internal impedance. Here, we developed a Bulk Electroporation System based on TENG (BEST). To maximize the load voltage of the TENG, a flowing EP unit with a capillary was designed as a resistive load to realize impedance matching. A low conductivity buffer was used to further match and assist cell electroporation. Besides, the electrical model and experiments on cells transfected with the BEST showed that the bulk electric field of the cell medium could reach up to 1 kV/cm, therefore resulting in a nearly 30 times increase of trans-membrane potential, thus largely improving transfection efficiency. Finally, using 40 kDa FITC-dextran, we showed that a delivery efficiency above 50% with a cell viability maintained over 90% can be achieved in HeLa cells. This work demonstrated the potential of TENG in the biomedical field as a naturally safe HV power source. It also provided a simple, alternative, and low-cost solution for EP research and related biomedicine applications.
Collapse
Affiliation(s)
- Fan Liu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Ze Yang
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing100084, P. R. China
- School of Engineering and Technology, China University of Geosciences (Beijing), Beijing100083, P. R. China
| | - Rui Yao
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing100084, P.R. China
| | - Hui Li
- School of Systems Science and Institute of Nonequilibrium Systems, Beijing Normal University, Beijing100875, P.R. China
| | - Jia Cheng
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing100084, P. R. China
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| |
Collapse
|
16
|
Li C, Du Y, Zhang T, Wang H, Hou Z, Zhang Y, Cui W, Chen W. "Genetic scissors" CRISPR/Cas9 genome editing cutting-edge biocarrier technology for bone and cartilage repair. Bioact Mater 2022; 22:254-273. [PMID: 36263098 PMCID: PMC9554751 DOI: 10.1016/j.bioactmat.2022.09.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/13/2022] [Accepted: 09/28/2022] [Indexed: 12/02/2022] Open
Abstract
CRISPR/Cas9 is a revolutionary genome editing technology with the tremendous advantages such as precisely targeting/shearing ability, low cost and convenient operation, becoming an efficient and indispensable tool in biological research. As a disruptive technique, CRISPR/Cas9 genome editing has a great potential to realize a future breakthrough in the clinical bone and cartilage repairing as well. This review highlights the research status of CRISPR/Cas9 system in bone and cartilage repair, illustrates its mechanism for promoting osteogenesis and chondrogenesis, and explores the development tendency of CRISPR/Cas9 in bone and cartilage repair to overcome the current limitations.
Collapse
Affiliation(s)
- Chao Li
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China,Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Yawei Du
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Tongtong Zhang
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
| | - Haoran Wang
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China,Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Zhiyong Hou
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
| | - Yingze Zhang
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China,Corresponding author.
| | - Wei Chen
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China,Corresponding author.
| |
Collapse
|
17
|
In Vivo and Ex Vivo Gene Electrotransfer in Ophthalmological Disorders. Biomedicines 2022; 10:biomedicines10081889. [PMID: 36009435 PMCID: PMC9405572 DOI: 10.3390/biomedicines10081889] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this document is to present an overview of gene electrotransfer in ophthalmological disorders. In order to ensure an adequate variety of the assessed studies, several electronic databases were considered and studies published between January 1998 and December 2021 were analysed. Three investigators carried out data extraction and analysis, focusing on both technical (i.e., electrical protocol, type of electrode, plasmid) and medical (i.e., type of study, threated disease) aspects and highlighting the main differences in terms of results obtained. Moreover, the IGEA experience in the project “Transposon-based, targeted ex vivo gene therapy to treat age-related macular degeneration” (TargetAMD) was reported in the results section. No clinical trial was found on international literature and on ClinicalTrials.gov. Twelve preclinical studies were found including in vivo and ex-vivo applications. The studied showed that electrotransfer could be very efficient for plasmid DNA transfection. Many attempts such as modification of the electric field, buffers and electrodes have been made and the optimization of electric field setting seems to be very important. Using this technique, gene replacement can be designed in cases of retinal inheritance or corneal disease and a wide range of human eye diseases could, in the future, benefitfrom these gene therapy technologies.
Collapse
|
18
|
Panikker P, Roy S, Ghosh A, Poornachandra B, Ghosh A. Advancing precision medicines for ocular disorders: Diagnostic genomics to tailored therapies. Front Med (Lausanne) 2022; 9:906482. [PMID: 35911417 PMCID: PMC9334564 DOI: 10.3389/fmed.2022.906482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/29/2022] [Indexed: 11/20/2022] Open
Abstract
Successful sequencing of the human genome and evolving functional knowledge of gene products has taken genomic medicine to the forefront, soon combining broadly with traditional diagnostics, therapeutics, and prognostics in patients. Recent years have witnessed an extraordinary leap in our understanding of ocular diseases and their respective genetic underpinnings. As we are entering the age of genomic medicine, rapid advances in genome sequencing, gene delivery, genome surgery, and computational genomics enable an ever-increasing capacity to provide a precise and robust diagnosis of diseases and the development of targeted treatment strategies. Inherited retinal diseases are a major source of blindness around the world where a large number of causative genes have been identified, paving the way for personalized diagnostics in the clinic. Developments in functional genetics and gene transfer techniques has also led to the first FDA approval of gene therapy for LCA, a childhood blindness. Many such retinal diseases are the focus of various clinical trials, making clinical diagnoses of retinal diseases, their underlying genetics and the studies of natural history important. Here, we review methodologies for identifying new genes and variants associated with various ocular disorders and the complexities associated with them. Thereafter we discuss briefly, various retinal diseases and the application of genomic technologies in their diagnosis. We also discuss the strategies, challenges, and potential of gene therapy for the treatment of inherited and acquired retinal diseases. Additionally, we discuss the translational aspects of gene therapy, the important vector types and considerations for human trials that may help advance personalized therapeutics in ophthalmology. Retinal disease research has led the application of precision diagnostics and precision therapies; therefore, this review provides a general understanding of the current status of precision medicine in ophthalmology.
Collapse
Affiliation(s)
| | - Shomereeta Roy
- Grow Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| | - Anuprita Ghosh
- Grow Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| | | | - Arkasubhra Ghosh
- Grow Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| |
Collapse
|
19
|
Sachdev S, Potočnik T, Rems L, Miklavčič D. Revisiting the role of pulsed electric fields in overcoming the barriers to in vivo gene electrotransfer. Bioelectrochemistry 2022; 144:107994. [PMID: 34930678 DOI: 10.1016/j.bioelechem.2021.107994] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/15/2021] [Accepted: 11/02/2021] [Indexed: 12/21/2022]
Abstract
Gene therapies are revolutionizing medicine by providing a way to cure hitherto incurable diseases. The scientific and technological advances have enabled the first gene therapies to become clinically approved. In addition, with the ongoing COVID-19 pandemic, we are witnessing record speeds in the development and distribution of gene-based vaccines. For gene therapy to take effect, the therapeutic nucleic acids (RNA or DNA) need to overcome several barriers before they can execute their function of producing a protein or silencing a defective or overexpressing gene. This includes the barriers of the interstitium, the cell membrane, the cytoplasmic barriers and (in case of DNA) the nuclear envelope. Gene electrotransfer (GET), i.e., transfection by means of pulsed electric fields, is a non-viral technique that can overcome these barriers in a safe and effective manner. GET has reached the clinical stage of investigations where it is currently being evaluated for its therapeutic benefits across a wide variety of indications. In this review, we formalize our current understanding of GET from a biophysical perspective and critically discuss the mechanisms by which electric field can aid in overcoming the barriers. We also identify the gaps in knowledge that are hindering optimization of GET in vivo.
Collapse
Affiliation(s)
- Shaurya Sachdev
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | - Tjaša Potočnik
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | - Lea Rems
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia.
| |
Collapse
|
20
|
Brooks JR, Mungloo I, Mirfendereski S, Quint JP, Paul D, Jaberi A, Park JS, Yang R. An equivalent circuit model for localized electroporation on porous substrates. Biosens Bioelectron 2022; 199:113862. [PMID: 34923307 PMCID: PMC8741749 DOI: 10.1016/j.bios.2021.113862] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 11/02/2022]
Abstract
In vitro intracellular delivery is a fundamental challenge with no widely adopted methods capable of both delivering to millions of cells and controlling that delivery to a high degree of accuracy. One promising method is porous substrate electroporation (PSEP), where cells are cultured on porous substrates and electric fields are used to permeabilize discrete portions of the cell membrane for delivery. A major obstacle to the widespread use of PSEP is a poor understanding of the various impedances that constitute the system, including the impedances of the porous substrate and the cell monolayer, and how these impedances are influenced by experimental parameters. In response, we used impedance measurements to develop an equivalent circuit model that closely mimics the behavior of each of the main components of the PSEP system. This circuit model reveals for the first time the distribution of voltage across the electrode-electrolyte interface impedances, the channels of the porous substrate, the cell monolayer, and the transmembrane potential during PSEP. We applied sample waveforms through our model to understand how waveforms can be improved for future studies. Our model was validated from intracellular delivery of protein using PSEP.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ruiguo Yang
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| |
Collapse
|
21
|
Sayed N, Allawadhi P, Khurana A, Singh V, Navik U, Pasumarthi SK, Khurana I, Banothu AK, Weiskirchen R, Bharani KK. Gene therapy: Comprehensive overview and therapeutic applications. Life Sci 2022; 294:120375. [PMID: 35123997 DOI: 10.1016/j.lfs.2022.120375] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 02/07/2023]
Abstract
Gene therapy is the product of man's quest to eliminate diseases. Gene therapy has three facets namely, gene silencing using siRNA, shRNA and miRNA, gene replacement where the desired gene in the form of plasmids and viral vectors, are directly administered and finally gene editing based therapy where mutations are modified using specific nucleases such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regulatory interspaced short tandem repeats (CRISPR)/CRISPR-associated protein (Cas)-associated nucleases. Transfer of gene is either through transformation where under specific conditions the gene is directly taken up by the bacterial cells, transduction where a bacteriophage is used to transfer the genetic material and lastly transfection that involves forceful delivery of gene using either viral or non-viral vectors. The non-viral transfection methods are subdivided into physical, chemical and biological. The physical methods include electroporation, biolistic, microinjection, laser, elevated temperature, ultrasound and hydrodynamic gene transfer. The chemical methods utilize calcium- phosphate, DAE-dextran, liposomes and nanoparticles for transfection. The biological methods are increasingly using viruses for gene transfer, these viruses could either integrate within the genome of the host cell conferring a stable gene expression, whereas few other non-integrating viruses are episomal and their expression is diluted proportional to the cell division. So far, gene therapy has been wielded in a plethora of diseases. However, coherent and innocuous delivery of genes is among the major hurdles in the use of this promising therapy. Hence this review aims to highlight the current options available for gene transfer along with the advantages and limitations of every method.
Collapse
Affiliation(s)
- Nilofer Sayed
- Department of Pharmacy, Pravara Rural Education Society's (P.R.E.S.'s) College of Pharmacy, Shreemati Nathibai Damodar Thackersey (SNDT) Women's University, Nashik 400020, Maharashtra, India
| | - Prince Allawadhi
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT), Roorkee, Roorkee, Uttarakhand 247667, India
| | - Amit Khurana
- Centre for Biomedical Engineering (CBME), Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India; Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Rajendranagar, Hyderabad 500030, Telangana, India; Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Mamnoor, Warangal 506166, Telangana, India; Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | - Vishakha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT), Roorkee, Roorkee, Uttarakhand 247667, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India
| | | | - Isha Khurana
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Anil Kumar Banothu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Rajendranagar, Hyderabad 500030, Telangana, India
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | - Kala Kumar Bharani
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Mamnoor, Warangal 506166, Telangana, India.
| |
Collapse
|
22
|
Lallow EO, Jhumur NC, Ahmed I, Kudchodkar SB, Roberts CC, Jeong M, Melnik JM, Park SH, Muthumani K, Shan JW, Zahn JD, Shreiber DI, Singer JP, Park YK, Maslow JN, Lin H. Novel suction-based in vivo cutaneous DNA transfection platform. SCIENCE ADVANCES 2021; 7:eabj0611. [PMID: 34739313 PMCID: PMC8570601 DOI: 10.1126/sciadv.abj0611] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/17/2021] [Indexed: 05/19/2023]
Abstract
This work reports a suction-based cutaneous delivery method for in vivo DNA transfection. Following intradermal Mantoux injection of plasmid DNA in a rat model, a moderate negative pressure is applied to the injection site, a technique similar to Chinese báguàn and Middle Eastern hijama cupping therapies. Strong GFP expression was demonstrated with pEGFP-N1 plasmids where fluorescence was observed as early as 1 hour after dosing. Modeling indicates a strong correlation between focal strain/stress and expression patterns. The absence of visible and/or histological tissue injury contrasts with current in vivo transfection systems such as electroporation. Specific utility was demonstrated with a synthetic SARS-CoV-2 DNA vaccine, which generated host humoral immune response in rats with notable antibody production. This method enables an easy-to-use, cost-effective, and highly scalable platform for both laboratorial transfection needs and clinical applications for nucleic acid–based therapeutics and vaccines.
Collapse
Affiliation(s)
- Emran O. Lallow
- Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Nandita C. Jhumur
- Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ijaz Ahmed
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | | - Juliet M. Melnik
- Graduate School of Biomedical Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Sarah H. Park
- Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | - Jerry W. Shan
- Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jeffrey D. Zahn
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - David I. Shreiber
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jonathan P. Singer
- Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | - Joel N. Maslow
- GeneOne Life Science, Seoul, South Korea
- Corresponding author. (J.N.M.); (H.L.)
| | - Hao Lin
- Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Corresponding author. (J.N.M.); (H.L.)
| |
Collapse
|
23
|
Yadegari-Dehkordi S, Firoozabadi SM, Forouzandeh Moghadam M, Shankayi Z. Role of Endocytosis Pathways in Electropermeablization of MCF7 Cells Using Low Voltage and High Frequency Electrochemotherapy. CELL JOURNAL 2021; 23:445-450. [PMID: 34455720 PMCID: PMC8405087 DOI: 10.22074/cellj.2021.7203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/16/2020] [Indexed: 11/22/2022]
Abstract
Objective The cell membrane is a major barrier for delivery of hydrophilic drugs and molecules into the cells. Although
low voltage and high frequency electric fields (LVHF) are proposed to overcome the cell membrane barrier, the
mechanism of membrane permeabilization is unclear. The aim of study is to investigate endocytosis pathways as a
possible mechanism for enhancing uptake of bleomycin by LVHF. Materials and Methods In this experimental study, MCF-7 cells were exposed to bleomycin or to electric fields with
various strengths (10-80 V/cm), frequency of 5 kHz, 4000 electric pulse and 100 µs duration in the presence and
absence of three endocytosis inhibitors-chlorpromazine (Cpz), amiloride (Amilo) and genistein (Geni). We determined
the efficiency of these chemotherapeutic agents in each group.
Results LVHF, depending on the intensity, induced different endocytosis pathways. Electric field strengths of 10 and
20 V/cm stimulated the macropinocytosis route. Clathrin-mediated endocytosis was observed at electric field intensities
of 10, 30, 60 and 70 V/cm, whereas induction of caveolae-mediated endocytosis was observed only at the lowest
electric field intensity (10 V/cm).
Conclusion The results of this study imply that LVHF can induce different endocytosis pathways in MCF-7 cells, which
leads to an increase in bleomycin uptake.
Collapse
Affiliation(s)
- Sajedeh Yadegari-Dehkordi
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mehdi Forouzandeh Moghadam
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zeinab Shankayi
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
24
|
Dielectrophoretic Manipulation of Cell Transfection Efficiency during Electroporation Using a Center Needle Electrode. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11157015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Long duration electric pulses are frequently used to facilitate DNA electrotransfer into cells and tissues, while electroporation pulses can be combined with electrophoresis to maximize the transfection efficiency. In this work, we present the dielectrophoresis (DEP)-assisted methodology for electrotransfer of plasmid DNA (3.5 kbp pmaxGFP) into mammalian cells (CHO-K1). A prototype of an electroporation cuvette with center needle electrode for DEP-assisted transfection is presented resulting in a 1.4-fold of transfection efficiency increase compared to the electroporation-only procedure (1.4 kV/cm × 100 µs × 8). The efficiency of transfection has been compared between three DEP frequencies of 1, 100, and 1 MHz. Lastly, the effects of exposure time (1, 3, and 5 min) during the DEP application step have been determined. It is concluded that the proposed methodology and exposure setup allow a significant improvement of transfection efficiency and could be used as an alternative to the currently popular electrotransfection techniques.
Collapse
|
25
|
Jiang Z, Li N, Zhu D, Ren L, Shao Q, Yu K, Yang G. Genetically modified cell sheets in regenerative medicine and tissue engineering. Biomaterials 2021; 275:120908. [PMID: 34119885 DOI: 10.1016/j.biomaterials.2021.120908] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/16/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
Genetically modified cell sheet technology is emerging as a promising biomedical tool to deliver therapeutic genes for regenerative medicine and tissue engineering. Virus-based gene transfection and non-viral gene transfection have been used to fabricate genetically modified cell sheets. Preclinical and clinical studies have shown various beneficial effects of genetically modified cell sheets in the regeneration of bone, periodontal tissue, cartilage and nerves, as well as the amelioration of dental implant osseointegration, myocardial infarction, skeletal muscle ischemia and kidney injury. Furthermore, this technology provides a potential treatment option for various hereditary diseases. However, the method has several limitations, such as safety concerns and difficulties in controlling transgene expression. Therefore, recent studies explored efficient and safe gene transfection methods, prolonged and controllable transgene expression and their potential application in personalized and precision medicine. This review summarizes various types of genetically modified cell sheets, preparation procedures, therapeutic applications and possible improvements.
Collapse
Affiliation(s)
- Zhiwei Jiang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Na Li
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Danji Zhu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Lingfei Ren
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Qin Shao
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Ke Yu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Guoli Yang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
26
|
Egorova KS, Posvyatenko AV, Larin SS, Ananikov V. Ionic liquids: prospects for nucleic acid handling and delivery. Nucleic Acids Res 2021; 49:1201-1234. [PMID: 33476366 PMCID: PMC7897475 DOI: 10.1093/nar/gkaa1280] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/18/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
Operations with nucleic acids are among the main means of studying the mechanisms of gene function and developing novel methods of molecular medicine and gene therapy. These endeavours usually imply the necessity of nucleic acid storage and delivery into eukaryotic cells. In spite of diversity of the existing dedicated techniques, all of them have their limitations. Thus, a recent notion of using ionic liquids in manipulations of nucleic acids has been attracting significant attention lately. Due to their unique physicochemical properties, in particular, their micro-structuring impact and tunability, ionic liquids are currently applied as solvents and stabilizing media in chemical synthesis, electrochemistry, biotechnology, and other areas. Here, we review the current knowledge on interactions between nucleic acids and ionic liquids and discuss potential advantages of applying the latter in delivery of the former into eukaryotic cells.
Collapse
Affiliation(s)
- Ksenia S Egorova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Alexandra V Posvyatenko
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
- Molecular Immunology Laboratory, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela St 1, Moscow 117997, Russia
| | - Sergey S Larin
- Molecular Immunology Laboratory, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela St 1, Moscow 117997, Russia
| | - Valentine P Ananikov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| |
Collapse
|
27
|
Wang L, Chang CC, Sylvers J, Yuan F. A statistical framework for determination of minimal plasmid copy number required for transgene expression in mammalian cells. Bioelectrochemistry 2020; 138:107731. [PMID: 33434786 DOI: 10.1016/j.bioelechem.2020.107731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
Plasmid DNA (pDNA) has been widely used for non-viral gene delivery. After pDNA molecules enter a mammalian cell, they may be trapped in subcellular structures or degraded by nucleases. Only a fraction of them can function as templates for transcription in the nucleus. Thus, an important question is, what is the minimal amount of pDNA molecules that need to be delivered into a cell for transgene expression? At present, it is technically a challenge to experimentally answer the question. To this end, we developed a statistical framework to establish the relationship between two experimentally quantifiable factors - average copy number of pDNA per cell among a group of cells after transfection and percent of the cells with transgene expression. The framework was applied to the analysis of electrotransfection under different experimental conditions in vitro. We experimentally varied the average copy number per cell and the electrotransfection efficiency through changes in extracellular pDNA dose, electric field strength, and pulse number. The experimental data could be explained or predicted quantitatively by the statistical framework. Based on the data and the framework, we could predict that the minimal number of pDNA molecules in the nucleus for transgene expression was on the order of 10. Although the prediction was dependent on the cell and experimental conditions used in the study, the framework may be generally applied to analysis of non-viral gene delivery.
Collapse
Affiliation(s)
- Liangli Wang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Chun-Chi Chang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Justin Sylvers
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Fan Yuan
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
28
|
Liu J, Zou T, Yao Q, Zhang Y, Zhao Y, Zhang C. Hypoxia-mimicking cobalt-doped multi-walled carbon nanotube nanocomposites enhance the angiogenic capacity of stem cells from apical papilla. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111797. [PMID: 33545919 DOI: 10.1016/j.msec.2020.111797] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/26/2020] [Accepted: 12/06/2020] [Indexed: 12/28/2022]
Abstract
Adequate and timely vascularization is crucial for the success of dental pulp tissue engineering. Hypoxia, an important driving force of angiogenesis, plays an important role in this process. However, few studies have investigated the fabrication of hypoxia-simulating biomaterials for dental applications. In this study, a novel hypoxia-mimicking, multi-walled carbon nanotubes/cobalt (MWCNTs/Co) nanocomposite was prepared using the metal-organic framework (MOF) route for the in situ insertion of MWCNTs into Co3O4 polyhedra. The obtained nanocomposites were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Cobalt ion release of MWCNTs/Co was analyzed in vitro. Cell viability and proliferation were assessed by culturing stem cells from apical papilla (SCAP) with MWCNTs/Co nanocomposites. The angiogenic capacity of SCAP after exposure to nanocomposites was evaluated by enzyme-linked immunosorbent assay (ELISA), western blotting and the Matrigel angiogenesis assay. Our results proved that the synthesized MWCNTs/Co nanocomposites possessed a well-designed connecting structure and could release cobalt ions in a sustained way. The MWCNTs/Co nanocomposites at 50 μg/mL significantly upregulated hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) protein expression in SCAP, with no apparent cellular cytotoxicity. The conditioned medium collected from SCAP treated with MWCNTs/Co markedly promoted endothelial cells vessel formation. In conclusion, hypoxia-mimicking MWCNTs/Co nanocomposites exhibit promising angiogenic potential for dental tissue engineering and might provide an alternative solution for translational applications.
Collapse
Affiliation(s)
- Junqing Liu
- Restorative Dental Sciences, Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Ting Zou
- Restorative Dental Sciences, Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Qianqian Yao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350108, China
| | - Yuchen Zhang
- Restorative Dental Sciences, Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Yi Zhao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350108, China.
| | - Chengfei Zhang
- Restorative Dental Sciences, Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
29
|
Kurita H, Nihonyanagi H, Watanabe Y, Sugano K, Shinozaki R, Kishikawa K, Numano R, Takashima K. Mechanistic studies of gene delivery into mammalian cells by electrical short-circuiting via an aqueous droplet in dielectric oil. PLoS One 2020; 15:e0243361. [PMID: 33275626 PMCID: PMC7717561 DOI: 10.1371/journal.pone.0243361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/19/2020] [Indexed: 11/20/2022] Open
Abstract
We have developed a novel methodology for the delivery of cell-impermeable molecules, based on electrical short-circuiting via a water droplet in dielectric oil. When a cell suspension droplet is placed between a pair of electrodes with an intense DC electric field, droplet bouncing and droplet deformation, which results in an instantaneous short-circuit, can be induced, depending on the electric field strength. We have demonstrated successful transfection of various mammalian cells using the short-circuiting; however, the molecular mechanism remains to be elucidated. In this study, flow cytometric assays were performed with Jurkat cells. An aqueous droplet containing Jurkat cells and plasmids carrying fluorescent proteins was treated with droplet bouncing or short-circuiting. The short-circuiting resulted in sufficient cell viability and fluorescent protein expression after 24 hours’ incubation. In contrast, droplet bouncing did not result in successful gene transfection. Transient membrane pore formation was investigated by uptake of a cell-impermeable fluorescence dye YO-PRO-1 and the influx of calcium ions. As a result, short-circuiting increased YO-PRO-1 fluorescence intensity and intracellular calcium ion concentration, but droplet bouncing did not. We also investigated the contribution of endocytosis to the transfection. The pre-treatment of cells with endocytosis inhibitors decreased the efficiency of gene transfection in a concentration-dependent manner. Besides, the use of pH-sensitive dye conjugates indicated the formation of an acidic environment in the endosomes after the short-circuiting. Endocytosis is a possible mechanism for the intracellular delivery of exogenous DNA.
Collapse
Affiliation(s)
- Hirofumi Kurita
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
- * E-mail:
| | - Hirohito Nihonyanagi
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Yuki Watanabe
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Kenta Sugano
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Ryuto Shinozaki
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Kenta Kishikawa
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Rika Numano
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Kazunori Takashima
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| |
Collapse
|
30
|
Rosa Lima E, Regina Cecchi C, Higuti E, Protasio Pacheco de Jesus G, Moura Gomes A, Aparecido Zacarias E, Bartolini P, Nunes Peroni C. Optimization of Mouse Growth Hormone Plasmid DNA Electrotransfer into Tibialis Cranialis Muscle of "Little" Mice. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25215034. [PMID: 33142961 PMCID: PMC7662792 DOI: 10.3390/molecules25215034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 10/17/2020] [Indexed: 11/16/2022]
Abstract
Previous non-viral gene therapy was directed towards two animal models of dwarfism: Immunodeficient (lit/scid) and immunocompetent (lit/lit) dwarf mice. The former, based on hGH DNA administration into muscle, performed better, while the latter, a homologous model based on mGH DNA, was less efficient, though recommended as useful for pre-clinical assays. We have now improved the growth parameters aiming at a complete recovery of the lit/lit phenotype. Electrotransfer was based on three pulses of 375 V/cm of 25 ms each, after mGH-DNA administration into two sites of each non-exposed tibialis cranialis muscle. A 36-day bioassay, performed using 60-day old lit/lit mice, provided the highest GH circulatory levels we have ever obtained for GH non-viral gene therapy: 14.7 ± 3.7 ng mGH/mL. These levels, at the end of the experiment, were 8.5 ± 2.3 ng/mL, i.e., significantly higher than those of the positive control (4.5 ± 1.5 ng/mL). The catch-up growth reached 40.9% for body weight, 38.2% for body length and 82.6%–76.9% for femur length. The catch-up in terms of the mIGF-1 levels remained low, increasing from the previous value of 5.9% to the actual 8.5%. Although a complete phenotypic recovery was not obtained, it should be possible starting with much younger animals and/or increasing the number of injection sites.
Collapse
Affiliation(s)
- Eliana Rosa Lima
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), Cidade Universitária, 05508-000 São Paulo, SP, Brazil; (E.R.L.); (C.R.C.); (E.H.); (G.P.P.d.J.); (A.M.G.); (E.A.Z.); (P.B.)
| | - Claudia Regina Cecchi
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), Cidade Universitária, 05508-000 São Paulo, SP, Brazil; (E.R.L.); (C.R.C.); (E.H.); (G.P.P.d.J.); (A.M.G.); (E.A.Z.); (P.B.)
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | - Eliza Higuti
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), Cidade Universitária, 05508-000 São Paulo, SP, Brazil; (E.R.L.); (C.R.C.); (E.H.); (G.P.P.d.J.); (A.M.G.); (E.A.Z.); (P.B.)
- Biotechnology Quality Control Laboratory, Butantan Institute, 05503-900 São Paulo, SP, Brazil
| | - Gustavo Protasio Pacheco de Jesus
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), Cidade Universitária, 05508-000 São Paulo, SP, Brazil; (E.R.L.); (C.R.C.); (E.H.); (G.P.P.d.J.); (A.M.G.); (E.A.Z.); (P.B.)
| | - Alissandra Moura Gomes
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), Cidade Universitária, 05508-000 São Paulo, SP, Brazil; (E.R.L.); (C.R.C.); (E.H.); (G.P.P.d.J.); (A.M.G.); (E.A.Z.); (P.B.)
| | - Enio Aparecido Zacarias
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), Cidade Universitária, 05508-000 São Paulo, SP, Brazil; (E.R.L.); (C.R.C.); (E.H.); (G.P.P.d.J.); (A.M.G.); (E.A.Z.); (P.B.)
| | - Paolo Bartolini
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), Cidade Universitária, 05508-000 São Paulo, SP, Brazil; (E.R.L.); (C.R.C.); (E.H.); (G.P.P.d.J.); (A.M.G.); (E.A.Z.); (P.B.)
| | - Cibele Nunes Peroni
- Biotechnology Center, Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), Cidade Universitária, 05508-000 São Paulo, SP, Brazil; (E.R.L.); (C.R.C.); (E.H.); (G.P.P.d.J.); (A.M.G.); (E.A.Z.); (P.B.)
- Correspondence: ; Tel.: +55-11-2810-5855
| |
Collapse
|
31
|
Wang C, Chang CC, Wang L, Yuan F. Inhibition of Caspases Improves Non-Viral T Cell Receptor Editing. Cancers (Basel) 2020; 12:E2603. [PMID: 32933048 PMCID: PMC7565551 DOI: 10.3390/cancers12092603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
T cell receptor (TCR) knockout is a critical step in producing universal chimeric antigen receptor T cells for cancer immunotherapy. A promising approach to achieving the knockout is to deliver the CRISPR/Cas9 system into cells using electrotransfer technology. However, clinical applications of the technology are currently limited by the low cell viability. In this study, we attempt to solve the problem by screening small molecule drugs with an immortalized human T cell line, Jurkat clone E6-1, for inhibition of apoptosis. The study identifies a few caspase inhibitors that could be used to simultaneously enhance the cell viability and the efficiency of plasmid DNA electrotransfer. Additionally, we show that the enhancement could be achieved through knockdown of caspase 3 expression in siRNA treated cells, suggesting that the cell death in electrotransfer experiments was caused mainly by caspase 3-dependent apoptosis. Finally, we investigated if the caspase inhibitors could improve TCR gene-editing with electrotransferred ribonucleoprotein, a complex of Cas9 protein and a T cell receptor-α constant (TRAC)-targeting single guide RNA (sgRNA). Our data showed that inhibition of caspases post electrotransfer could significantly increase cell viability without compromising the TCR disruption efficiency. These new findings can be used to improve non-viral T cell engineering.
Collapse
Affiliation(s)
| | | | | | - Fan Yuan
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; (C.W.); (C.-C.C.); or (L.W.)
| |
Collapse
|
32
|
Mao M, Chang CC, Pickar-Oliver A, Cervia LD, Wang L, Ji J, Liton PB, Gersbach CA, Yuan F. Redirecting Vesicular Transport to Improve Nonviral Delivery of Molecular Cargo. ADVANCED BIOSYSTEMS 2020; 4:e2000059. [PMID: 33179869 PMCID: PMC7747957 DOI: 10.1002/adbi.202000059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/06/2020] [Indexed: 01/09/2023]
Abstract
Cell engineering relies heavily on viral vectors for the delivery of molecular cargo into cells due to their superior efficiency compared to nonviral ones. However, viruses are immunogenic and expensive to manufacture, and have limited delivery capacity. Nonviral delivery approaches avoid these limitations but are currently inefficient for clinical applications. This work demonstrates that the efficiency of nonviral delivery of plasmid DNA, mRNA, Sleeping Beauty transposon, and ribonucleoprotein can be significantly enhanced through pretreatment of cells with the nondegradable sugars (NDS), such as sucrose, trehalose, and raffinose. The enhancement is mediated by the incorporation of the NDS into cell membranes, causing enlargement of lysosomes and formation of large (>500 nm) amphisome-like bodies (ALBs). The changes in subcellular structures redirect transport of cargo to ALBs rather than to lysosomes, reducing cargo degradation in cells. The data indicate that pretreatment of cells with NDS is a promising approach to improve nonviral cargo delivery in biomedical applications.
Collapse
Affiliation(s)
- Mao Mao
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Chun-Chi Chang
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Adrian Pickar-Oliver
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, 27708, USA
| | - Lisa D Cervia
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Liangli Wang
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Jing Ji
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Paloma B Liton
- Department of Ophthalmology, Duke University, Durham, NC, 27708, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, 27708, USA
- Department of Surgery, Duke University Medical Center, Durham, NC, 27708, USA
| | - Fan Yuan
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
- Department of Ophthalmology, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
33
|
Daneluz LO, Acosta IB, Nunes LS, Blodorn EB, Domingues WB, Martins AWS, Dellagostin EN, Rassier GT, Corcini CD, Fróes CN, Komninou ER, Varela AS, Campos VF. Efficiency and cell viability implications using tip type electroporation in zebrafish sperm cells. Mol Biol Rep 2020; 47:5879-5887. [PMID: 32661869 PMCID: PMC7356131 DOI: 10.1007/s11033-020-05658-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/08/2020] [Indexed: 12/26/2022]
Abstract
Sperm-mediated gene transfer (SMGT) has a potential use for zebrafish transgenesis. However, transfection into fish sperm cells still needs to be improved. The objective was to demonstrate the feasibility of tip type electroporation in zebrafish sperm, showing a protocol that provide high transfection efficiency, with minimal side-effects. Sperm was transfected with a Cy3-labelled DNA using tip type electroporation with voltages ranging from 500 to 1500 V. Sperm kinetics parameters were assessed using Computer Assisted Semen Analysis (CASA) and cell integrity, reactive oxygen species (ROS), mitochondrial functionality and transfection rate were evaluated by flow cytometry. The transfection rates were positively affected by tip type electroporation, reaching 64.9% ± 3.6 in the lowest voltage used (500 V) and 86.6% ± 1.9 in the highest (1500 V). The percentage of overall motile sperm in the electrotransfected samples was found to decrease with increasing field strength (P < 0.05). Increase in the sperm damaged plasma membrane was observed with increasing field strength (P < 0.05). ROS and sperm mitochondrial functionality did not present a negative response after the electroporation (P > 0.05). Overall results indicate that tip type electroporation enhances the internalization of exogenous DNA into zebrafish sperm cells with minimal harmful effects to sperm cells.
Collapse
Affiliation(s)
- Larissa O Daneluz
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Izani B Acosta
- ReproPel, Programa de Pós-Graduação em Veterinária, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil.,Laboratório de Reprodução Animal, Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Instituto de Ciências Biológicas - Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Leandro S Nunes
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Eduardo B Blodorn
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - William B Domingues
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Amanda W S Martins
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Eduardo N Dellagostin
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Gabriela T Rassier
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Carine D Corcini
- ReproPel, Programa de Pós-Graduação em Veterinária, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Charles N Fróes
- Laboratório de Ictiologia, Faculdade de Zootecnia - Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Eliza R Komninou
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil.,ReproPel, Programa de Pós-Graduação em Veterinária, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Antônio S Varela
- ReproPel, Programa de Pós-Graduação em Veterinária, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil.,Laboratório de Reprodução Animal, Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Instituto de Ciências Biológicas - Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Vinicius F Campos
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
34
|
Induction of a local muscular dystrophy using electroporation in vivo: an easy tool for screening therapeutics. Sci Rep 2020; 10:11301. [PMID: 32647247 PMCID: PMC7347864 DOI: 10.1038/s41598-020-68135-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/09/2020] [Indexed: 01/19/2023] Open
Abstract
Intramuscular injection and electroporation of naked plasmid DNA (IMEP) has emerged as a potential alternative to viral vector injection for transgene expression into skeletal muscles. In this study, IMEP was used to express the DUX4 gene into mouse tibialis anterior muscle. DUX4 is normally expressed in germ cells and early embryo, and silenced in adult muscle cells where its pathological reactivation leads to Facioscapulohumeral muscular dystrophy. DUX4 encodes a potent transcription factor causing a large deregulation cascade. Its high toxicity but sporadic expression constitutes major issues for testing emerging therapeutics. The IMEP method appeared as a convenient technique to locally express DUX4 in mouse muscles. Histological analyses revealed well delineated muscle lesions 1-week after DUX4 IMEP. We have therefore developed a convenient outcome measure by quantification of the damaged muscle area using color thresholding. This method was used to characterize lesion distribution and to assess plasmid recirculation and dose–response. DUX4 expression and activity were confirmed at the mRNA and protein levels and through a quantification of target gene expression. Finally, this study gives a proof of concept of IMEP model usefulness for the rapid screening of therapeutic strategies, as demonstrated using antisense oligonucleotides against DUX4 mRNA.
Collapse
|
35
|
Wang Y, Chang CC, Wang L, Yuan F. Enhancing Cell Viability and Efficiency of Plasmid DNA Electrotransfer Through Reducing Plasma Membrane Permeabilization. Bioelectricity 2020; 2:251-257. [PMID: 33344914 DOI: 10.1089/bioe.2020.0007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Pulsed electric field has been widely used to facilitate molecular cargo transfer into cells. However, the cell viability is often decreased when trying to increase the electrotransfer efficiency. We hypothesize that the decrease is due to electropermeabilization of cell membrane that disrupts homeostasis of intracellular microenvironment. Thus, a reduction in the membrane permeabilization may increase the cell viability. Materials and Methods Different compounds were supplemented into the pulsing buffer prior to electrotransfer for reduction of cell membrane damage. Extent of the damage was quantified by leakiness of the membrane to a fluorescent dye, calcein, preloaded into cells. At 24 hours post electrotransfer, cell viability and electrotransfer efficiency were quantified with flow cytometry. Results The cell viability could be substantially increased by supplementation of either type B gelatin or bovine serum albumin (BSA), without compromising the electrotransfer efficiency. The supplementation also decreased the amount of calcein leaking out of the cells, suggesting that the improvement in cell viability was due to the reduction in electrotransfer-induced membrane damage. Conclusion Data from the study demonstrate that type B gelatin and BSA can be used as inexpensive supplements for improving cell viability in electrotransfer.
Collapse
Affiliation(s)
- Yanhua Wang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Chun-Chi Chang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Liangli Wang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Fan Yuan
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| |
Collapse
|
36
|
Sachdev S, Feijoo Moreira S, Keehnen Y, Rems L, Kreutzer MT, Boukany PE. DNA-membrane complex formation during electroporation is DNA size-dependent. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183089. [DOI: 10.1016/j.bbamem.2019.183089] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 09/11/2019] [Accepted: 10/22/2019] [Indexed: 01/09/2023]
|
37
|
Kim NY, Son WR, Choi JY, Yu CH, Hur GH, Jeong ST, Shin YK, Hong SY, Shin S. Immunogenicity and Biodistribution of Anthrax DNA Vaccine Delivered by Intradermal Electroporation. Curr Drug Deliv 2020; 17:414-421. [PMID: 32286944 DOI: 10.2174/1567201817666200414144550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/17/2020] [Accepted: 03/07/2020] [Indexed: 01/21/2023]
Abstract
PURPOSE Anthrax is a lethal bacterial disease caused by gram-positive bacterium Bacillus anthracis and vaccination is a desirable method to prevent anthrax infections. In the present study, DNA vaccine encoding a protective antigen of Bacillus anthracis was prepared and we investigated the influence of DNA electrotransfer in the skin on the induced immune response and biodistribution. METHODS AND RESULTS The tdTomato reporter gene for the whole animal in vivo imaging was used to assess gene transfer efficiency into the skin as a function of electrical parameters. Compared to that with 25 V, the transgene expression of red fluorescent protein increased significantly when a voltage of 90 V was used. Delivery of DNA vaccines expressing Bacillus anthracis protective antigen domain 4 (PAD4) with an applied voltage of 90 V induced robust PA-D4-specific antibody responses. In addition, the in vivo fate of anthrax DNA vaccine was studied after intradermal administration into the mouse. DNA plasmids remained at the skin injection site for an appropriate period of time after immunization. Intradermal administration of DNA vaccine resulted in detection in various organs (viz., lung, heart, kidney, spleen, brain, and liver), although the levels were significantly reduced. CONCLUSION Our results offer important insights into how anthrax DNA vaccine delivery by intradermal electroporation affects the immune response and biodistribution of DNA vaccine. Therefore, it may provide valuable information for the development of effective DNA vaccines against anthrax infection.
Collapse
Affiliation(s)
| | | | | | - Chi Ho Yu
- The 4th R & D Institute Directorate, Agency for Defense Development, Daejon, Korea
| | - Gyeung Haeng Hur
- The 4th R & D Institute Directorate, Agency for Defense Development, Daejon, Korea
| | - Seong Tae Jeong
- The 4th R & D Institute Directorate, Agency for Defense Development, Daejon, Korea
| | - Young Kee Shin
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Sung Youl Hong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Sungho Shin
- Bio-MAX/N-Bio, Seoul National University, Seoul, Korea
| |
Collapse
|
38
|
Tayier B, Deng Z, Wang Y, Wang W, Mu Y, Yan F. Biosynthetic nanobubbles for targeted gene delivery by focused ultrasound. NANOSCALE 2019; 11:14757-14768. [PMID: 31348476 DOI: 10.1039/c9nr03402a] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Ultrasound-targeted microbubble destruction (UTMD) has recently drawn considerable attention in biomedicine applications due to its great potential to locally enhance gene delivery. However, conventional microbubbles have a microscale particle size and polydisperse particle size distribution, which makes it difficult for them to directly come into contact with tumor cells and to efficiently deliver therapeutic genes via ultrasound cavitation effects. In the current study, we developed a kind of novel cationic biosynthetic nanobubble (CBNB) as an ultrasonic gene delivery carrier through coating PEI on the surface of these biosynthetic nanobubbles (BNBs). The BNBs, produced from an extremely halophilic archaeon (Halobacterium NRC-1), possess a nanoscale size and can produce stable contrast signals both in vitro and in vivo. Surface modification with PEI polymer greatly increased the DNA loading capability of BNBs, leading to significantly improved gene transfection efficiency when combining with ultrasound. To our knowledge, this is the first report to apply biosynthetic bubbles as non-viral gene carriers which can effectively deliver genes into tumor cells with the aid of ultrasound cavitation. Our study provides a powerful tool for image-guided and efficient gene delivery using biosynthetic nanoscale contrast agents.
Collapse
Affiliation(s)
- Baihetiya Tayier
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China.
| | | | | | | | | | | |
Collapse
|
39
|
Ocular gene therapies in clinical practice: viral vectors and nonviral alternatives. Drug Discov Today 2019; 24:1685-1693. [PMID: 31173914 DOI: 10.1016/j.drudis.2019.05.038] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/17/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022]
Abstract
Ocular gene therapy has entered into clinical practice. Although viral vectors are currently the best option to replace and/or correct genes, the optimal method to deliver these treatments to the retinal pigment epithelial (RPE) cells and/or photoreceptor cells remains to be improved to increase transduction efficacy and reduce iatrogenic risks. Beyond viral-mediated gene replacement therapies, nonviral gene delivery approaches offer the promise of sustained fine-tuned expression of secreted therapeutic proteins that can be adapted to the evolving stage of the disease course and can address more common nongenetic retinal diseases, such as age-related macular degeneration (AMD). Here, we review current gene therapy strategies for ocular diseases, with a focus on clinical stage products.
Collapse
|
40
|
Wang L, Miller SE, Yuan F. Ultrastructural Analysis of Vesicular Transport in Electrotransfection. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2018; 24:553-563. [PMID: 30334512 PMCID: PMC6196718 DOI: 10.1017/s143192761801509x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Emerging evidence from various studies indicates that plasmid DNA (pDNA) is internalized by cells through an endocytosis-like process when it is used for electrotransfection. To provide morphological evidence of the process, we investigated ultrastructures in cells that were associated with the electrotransfected pDNA, using immunoelectron microscopy. The results demonstrate that four endocytic pathways are involved in the uptake of the pDNA, including caveolae- and clathrin-mediated endocytosis, macropinocytosis, and the clathrin-independent carrier/glycosylphosphatidylinositol-anchored protein-enriched early endosomal compartment (CLIC/GEEC) pathway. Among them, macropinocytosis is the most common pathway utilized by cells having various pDNA uptake capacities, and the CLIC/GEEC pathway is observed primarily in human umbilical vein endothelial cells. Quantitatively, the endocytic pathways are more active in easy-to-transfect cells than in hard-to-transfect ones. Taken together, our data provide ultrastructural evidence showing that endocytosis plays an important role in cellular uptake and intracellular transport of electrotransfected pDNA.
Collapse
Affiliation(s)
- Liangli Wang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Sara E. Miller
- Department of Pathology, Duke University Medical School, Durham, North Carolina 27710, USA
| | - Fan Yuan
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|