1
|
Zhang L, Tian Y, Zhang L, Zhang H, Yang J, Wang Y, Lu N, Guo W, Wang L. A comprehensive review on the plant sources, pharmacological activities and pharmacokinetic characteristics of Syringaresinol. Pharmacol Res 2024; 212:107572. [PMID: 39742933 DOI: 10.1016/j.phrs.2024.107572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/09/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Syringaresinol, a phytochemical constituent belonging to lignan, is formed from two sinapyl alcohol units linked via a β-β linkage, which can be found in a wide variety of cereals and medicinal plants. Medical researches revealed that Syringaresinol possesses a broad spectrum of biological activities, including anti-inflammatory, anti-oxidation, anticancer, antibacterial, antiviral, neuroprotection, and vasodilation effects. These pharmacological properties lay the foundation for its use in treating various diseases such as inflammatory diseases, neurodegenerative disorders, diabetes and its complication, skin disorders, cancer, cardiovascular, and cerebrovascular diseases. As the demand for natural therapeutics increases, Syringaresinol has garnered significant attention for its pharmacological properties. Despite the extensive literature that highlights the various biological activities of this molecule, the underlying mechanisms and the interrelationships between these activities are rarely addressed from a comprehensive perspective. Moreover, no thorough comprehensive summary and evaluation of Syringaresinol has been conducted to offer recommendations for potential future clinical trials and therapeutic applications of this bioactive compound. Thus, a comprehensive review on Syringaresinol is essential to advance scientific understanding, assess its therapeutic applications, ensure safety, and guide future research efforts. This will ultimately contribute to its potential integration into clinical practice and public health. This study aims to provide a comprehensive overview of Syringaresinol on its sources and biological activities to provide insights into its therapeutic potential, and to provide a basis for high-quality studies to determine the clinical efficacy of this compound. Additionally, we explored the pharmacokinetics, toxicology, and drug development aspects of Syringaresinol to guide future research efforts. The review also discussed the limitations of current research on Syringaresinol and put forward some new perspectives and challenges, which laid a solid foundation for further study on clinical application and new drug development of Syringaresinol in the future.
Collapse
Affiliation(s)
- Lei Zhang
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Yuqing Tian
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Lingling Zhang
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Huanyu Zhang
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Jinghua Yang
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Yi Wang
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Na Lu
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China.
| | - Wei Guo
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China.
| | - Liang Wang
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China.
| |
Collapse
|
2
|
Čermáková K, Gregor J, Kráľ M, Karlukova E, Navrátil V, Reiberger R, Albiñana CB, Bechynský V, Majer P, Konvalinka J, Machara A, Kožíšek M. The evaluation of DNA-linked inhibitor antibody and AlphaScreen assays for high-throughput screening of compounds targeting the cap-binding domain in influenza a polymerase. Eur J Pharm Sci 2024; 205:106990. [PMID: 39674552 DOI: 10.1016/j.ejps.2024.106990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
The PB2 subunit of the influenza virus polymerase complex is essential for viral replication, primarily through a mechanism known as cap-snatching. In this process, PB2 binds to the 5' cap structure of host pre-mRNAs, enabling the viral polymerase to hijack the host transcriptional machinery. This binding facilitates the cleavage and integration of the capped RNA fragment into viral mRNA, thereby promoting efficient viral replication. Inhibiting the PB2-cap interaction is therefore crucial, as it directly disrupts the viral replication cycle. Consequently, targeting PB2 with specific inhibitors is a promising strategy for antiviral drug development against influenza. However, there are currently no available methods for the high-throughput screening of potential inhibitors. The development of new inhibitor screening methods of potential PB2 binders is the focus of this study. In this study, we present two novel methods, DIANA and AlphaScreen, for screening influenza PB2 cap-binding inhibitors and evaluate their effectiveness compared to the established differential scanning fluorimetry (DSF) technique. Using a diverse set of substrates and compounds based on the previously described PB2 binder pimodivir, we thoroughly assessed the capabilities of these new methods. Our findings demonstrate that both DIANA and AlphaScreen are highly effective for PB2 inhibitor screening, offering distinct advantages over traditional techniques such as isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR). These advantages include improved scalability, reduced sample requirements, and the capacity for label-free detection. Notably, DIANA's ability to determine Ki values from a single-well measurement significantly enhances its practicality and efficiency in inhibitor screening. This research represents a significant step forward in the development of more efficient and scalable screening strategies, helping advance efforts in the discovery of antiviral drugs against influenza.
Collapse
Affiliation(s)
- Kateřina Čermáková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 166 10, Prague 6, Czech Republic; First Faculty of Medicine, Charles University, Kateřinská 1660, 121 08, Prague 2, Czech Republic
| | - Jiří Gregor
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 166 10, Prague 6, Czech Republic; First Faculty of Medicine, Charles University, Kateřinská 1660, 121 08, Prague 2, Czech Republic
| | - Michal Kráľ
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 166 10, Prague 6, Czech Republic; First Faculty of Medicine, Charles University, Kateřinská 1660, 121 08, Prague 2, Czech Republic
| | - Elena Karlukova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 166 10, Prague 6, Czech Republic
| | - Václav Navrátil
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 166 10, Prague 6, Czech Republic
| | - Róbert Reiberger
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 166 10, Prague 6, Czech Republic; Faculty of Science, Charles University, Hlavova 8, 128 00, Prague 2, Czech Republic
| | - Carlos Berenguer Albiñana
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 166 10, Prague 6, Czech Republic
| | - Vít Bechynský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 166 10, Prague 6, Czech Republic
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 166 10, Prague 6, Czech Republic
| | - Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 166 10, Prague 6, Czech Republic; Faculty of Science, Charles University, Hlavova 8, 128 00, Prague 2, Czech Republic
| | - Aleš Machara
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 166 10, Prague 6, Czech Republic.
| | - Milan Kožíšek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 166 10, Prague 6, Czech Republic.
| |
Collapse
|
3
|
Chakraborty S, Chauhan A. Fighting the flu: a brief review on anti-influenza agents. Biotechnol Genet Eng Rev 2024; 40:858-909. [PMID: 36946567 DOI: 10.1080/02648725.2023.2191081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023]
Abstract
The influenza virus causes one of the most prevalent and lethal infectious viral diseases of the respiratory system; the disease progression varies from acute self-limiting mild fever to disease chronicity and death. Although both the preventive and treatment measures have been vital in protecting humans against seasonal epidemics or sporadic pandemics, there are several challenges to curb the influenza virus such as limited or poor cross-protection against circulating virus strains, moderate protection in immune-compromised patients, and rapid emergence of resistance. Currently, there are four US-FDA-approved anti-influenza drugs to treat flu infection, viz. Rapivab, Relenza, Tamiflu, and Xofluza. These drugs are classified based on their mode of action against the viral replication cycle with the first three being Neuraminidase inhibitors, and the fourth one targeting the viral polymerase. The emergence of the drug-resistant strains of influenza, however, underscores the need for continuous innovation towards development and discovery of new anti-influenza agents with enhanced antiviral effects, greater safety, and improved tolerability. Here in this review, we highlighted commercially available antiviral agents besides those that are at different stages of development including under clinical trials, with a brief account of their antiviral mechanisms.
Collapse
Affiliation(s)
| | - Ashwini Chauhan
- Department of Microbiology, Tripura University, Agartala, India
| |
Collapse
|
4
|
Tang C, Carrera Montoya J, Fritzlar S, Flavel M, Londrigan SL, Mackenzie JM. Polyphenol rich sugarcane extract (PRSE) has potential antiviral activity against influenza A virus in vitro. Virology 2024; 590:109969. [PMID: 38118269 DOI: 10.1016/j.virol.2023.109969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/22/2023]
Abstract
Influenza A virus (IAV) is one of the major global public health concerns but the emerging resistance of IAV to currently available antivirals requires the need to identify potential alternatives. Polyphenol rich sugarcane extract (PRSE) is an extract prepared from the sugarcane plant Saccharum Officinarum. Herein we aimed to determine if PRSE had antiviral activity against IAV. We showed that treatment of IAV-infected cells with PRSE results in a dose-dependent inhibition of virus infection at concentrations that were non-cytotoxic. PRSE treatment limited the early stages of infection, reducing viral genome replication, mRNA transcription and viral protein expression. PRSE did not affect the ability of IAV to bind sialic acid or change the morphology of viral particles. Additionally, PRSE treatment attenuated the replication of multiple IAV strains of the H3N2 and H1N1 subtype. In conclusion, we show that PRSE displays antiviral activity against a broad range of IAV strains, in vitro.
Collapse
Affiliation(s)
- Caolingzhi Tang
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, VIC, 3000, Australia
| | - Julio Carrera Montoya
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, VIC, 3000, Australia
| | - Svenja Fritzlar
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, VIC, 3000, Australia
| | - Matthew Flavel
- The Product Makers (Australia) Pty Ltd, Keysborough, VIC, 3173, Australia
| | - Sarah L Londrigan
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, VIC, 3000, Australia.
| | - Jason M Mackenzie
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, VIC, 3000, Australia.
| |
Collapse
|
5
|
Meseko C, Sanicas M, Asha K, Sulaiman L, Kumar B. Antiviral options and therapeutics against influenza: history, latest developments and future prospects. Front Cell Infect Microbiol 2023; 13:1269344. [PMID: 38094741 PMCID: PMC10716471 DOI: 10.3389/fcimb.2023.1269344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023] Open
Abstract
Drugs and chemotherapeutics have helped to manage devastating impacts of infectious diseases since the concept of 'magic bullet'. The World Health Organization estimates about 650,000 deaths due to respiratory diseases linked to seasonal influenza each year. Pandemic influenza, on the other hand, is the most feared health disaster and probably would have greater and immediate impact on humanity than climate change. While countermeasures, biosecurity and vaccination remain the most effective preventive strategies against this highly infectious and communicable disease, antivirals are nonetheless essential to mitigate clinical manifestations following infection and to reduce devastating complications and mortality. Continuous emergence of the novel strains of rapidly evolving influenza viruses, some of which are intractable, require new approaches towards influenza chemotherapeutics including optimization of existing anti-infectives and search for novel therapies. Effective management of influenza infections depend on the safety and efficacy of selected anti-infective in-vitro studies and their clinical applications. The outcomes of therapies are also dependent on understanding diversity in patient groups, co-morbidities, co-infections and combination therapies. In this extensive review, we have discussed the challenges of influenza epidemics and pandemics and discoursed the options for anti-viral chemotherapies for effective management of influenza virus infections.
Collapse
Affiliation(s)
- Clement Meseko
- Regional Centre for Animal Influenza, National Veterinary Research Institute, Vom, Nigeria
| | - Melvin Sanicas
- Medical and Clinical Development, Clover Biopharmaceuticals, Boston, MA, United States
| | - Kumari Asha
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Lanre Sulaiman
- Regional Centre for Animal Influenza, National Veterinary Research Institute, Vom, Nigeria
| | - Binod Kumar
- Department of Antiviral Research, Institute of Advanced Virology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
6
|
Ganter B, Zickler M, Huchting J, Winkler M, Lüttjohann A, Meier C, Gabriel G, Beck S. T-705-Derived Prodrugs Show High Antiviral Efficacies against a Broad Range of Influenza A Viruses with Synergistic Effects When Combined with Oseltamivir. Pharmaceutics 2023; 15:1732. [PMID: 37376180 DOI: 10.3390/pharmaceutics15061732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Emerging influenza A viruses (IAV) bear the potential to cause pandemics with unpredictable consequences for global human health. In particular, the WHO has declared avian H5 and H7 subtypes as high-risk candidates, and continuous surveillance of these viruses as well as the development of novel, broadly acting antivirals, are key for pandemic preparedness. In this study, we sought to design T-705 (Favipiravir) related inhibitors that target the RNA-dependent RNA polymerase and evaluate their antiviral efficacies against a broad range of IAVs. Therefore, we synthesized a library of derivatives of T-705 ribonucleoside analogues (called T-1106 pronucleotides) and tested their ability to inhibit both seasonal and highly pathogenic avian influenza viruses in vitro. We further showed that diphosphate (DP) prodrugs of T-1106 are potent inhibitors of H1N1, H3N2, H5N1, and H7N9 IAV replication. Importantly, in comparison to T-705, these DP derivatives achieved 5- to 10-fold higher antiviral activity and were non-cytotoxic at the therapeutically active concentrations. Moreover, our lead DP prodrug candidate showed drug synergy with the neuraminidase inhibitor oseltamivir, thus opening up another avenue for combinational antiviral therapy against IAV infections. Our findings may serve as a basis for further pre-clinical development of T-1106 prodrugs as an effective countermeasure against emerging IAVs with pandemic potential.
Collapse
Affiliation(s)
- Benedikt Ganter
- Organic Chemistry, Department of Chemistry, Faculty of Sciences, Hamburg University, 20146 Hamburg, Germany
| | - Martin Zickler
- Department for Viral Zoonoses-One Health, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Johanna Huchting
- Organic Chemistry, Department of Chemistry, Faculty of Sciences, Hamburg University, 20146 Hamburg, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 22525 Hamburg, Germany
| | - Matthias Winkler
- Organic Chemistry, Department of Chemistry, Faculty of Sciences, Hamburg University, 20146 Hamburg, Germany
| | - Anna Lüttjohann
- Department for Viral Zoonoses-One Health, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Chris Meier
- Organic Chemistry, Department of Chemistry, Faculty of Sciences, Hamburg University, 20146 Hamburg, Germany
- German Center for Infection Research (DZIF), 38124 Braunschweig, Germany
| | - Gülsah Gabriel
- Department for Viral Zoonoses-One Health, Leibniz Institute of Virology, 20251 Hamburg, Germany
- German Center for Infection Research (DZIF), 38124 Braunschweig, Germany
- Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Sebastian Beck
- Department for Viral Zoonoses-One Health, Leibniz Institute of Virology, 20251 Hamburg, Germany
| |
Collapse
|
7
|
Weng L, Li L, Yang H, Ji L, Wu M, Wu Y, Chen Z, Zhang X, Li B. Catechol derivatives interact with bovine serum albumin: Correlation of non-covalent interactions and antioxidant activity. Int J Biol Macromol 2023:125321. [PMID: 37307981 DOI: 10.1016/j.ijbiomac.2023.125321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023]
Abstract
The interactions of catechol derivatives with model transportation protein-bovine serum albumin (BSA) were deciphered by the multispectral techniques, molecular docking and multifunctional wavefunction (Multiwfn). The representative catechol derivatives caffeic acid (CA) and 1-monocaffeoyl glycerol (1-MCG) with an (E)-but-2-enoic acid and a 2,3-dihydroxypropyl(E)-but-2-enoate side chain, respectively, were chosen in present study. The interaction results revealed the extra non-polar interactions and abundant binding sites facilitate the easier and stronger binding of 1-MCG-BSA. The α-helix content of BSA decreased and the hydrophilicity around Tyr and Trp changed due to the different interaction between catechol and BSA. The H2O2-damaged RAW 264.7, HaCat and SH-SY5Y were applied to investigate the anti-ROS properties of the catechol-BSA complexes. The results illuminated that the 2,3-dihydroxypropyl(E)-but-2-enoate side chain of 1-MCG facilitated the preferable biocompatibility and antioxidant property of its binding complex. These results revealed that the interaction of catechol-BSA binding complexes could influence their biocompatibility and antioxidant properties.
Collapse
Affiliation(s)
- Longmei Weng
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Lin Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China; School of Chemical Engineering and Energy Technology, Dongguan University of Technology, College Road 1, Dongguan 523808, China
| | - Haitao Yang
- Fujian Medical University, Fujian Provincial Hospital, Fuzhou 350013, China
| | - Lili Ji
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Ming Wu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Yi Wu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Zhiyi Chen
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Xia Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China.
| | - Bing Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
8
|
Liao Y, Ye Y, Liu M, Liu Z, Wang J, Li B, Huo L, Zhuang Y, Chen L, Chen J, Gao Y, Ning X, Li S, Liu S, Song G. Identification of N- and C-3-Modified Laudanosoline Derivatives as Novel Influenza PA N Endonuclease Inhibitors. J Med Chem 2023; 66:188-219. [PMID: 36521178 DOI: 10.1021/acs.jmedchem.2c00857] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Influenza PAN inhibitors are of particular importance in current efforts to develop a new generation of antiviral drugs due to the growing emergence of highly pathogenic influenza viruses and the resistance to existing antiviral inhibitors. Herein, we design and synthesize a set of 1,3-cis-N-substituted-1,2,3,4-tetrahydroisoquinoline derivatives to enhance their potency by further exploiting the pockets 3 and 4 in the PAN endonuclease based on the hit d,l-laudanosoline. Particularly, the lead compound 35 exhibited potent and broad anti-influenza virus effects with EC50 values ranging from 0.43 to 1.12 μM in vitro and good inhibitory activity in a mouse model. Mechanistic studies demonstrated that 35 could bind tightly to the PAN endonuclease of RNA-dependent RNA polymerase, thus blocking the viral replication to exert antiviral activity. Overall, our study might establish the importance of 1,2,3,4-tetrahydroisoquinoline-6,7-diol-based derivatives for the development of novel PAN inhibitors of influenza viruses.
Collapse
Affiliation(s)
- Yixian Liao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yilu Ye
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Mingjian Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Zhihao Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Jinshen Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Baixi Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Lijian Huo
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yilian Zhuang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Liye Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Jianxin Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yongfeng Gao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyun Ning
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Sumei Li
- College of Basic Medicine and Public Hygiene, Jinan University, Guangzhou 510632, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.,State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou 510515, China
| | - Gaopeng Song
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
9
|
Huang Y, Li Y, Chen Z, Chen L, Liang J, Zhang C, Zhang Z, Yang J. Nisoldipine Inhibits Influenza A Virus Infection by Interfering with Virus Internalization Process. Viruses 2022; 14:v14122738. [PMID: 36560742 PMCID: PMC9785492 DOI: 10.3390/v14122738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
Influenza virus infections and the continuing spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are global public health concerns. As there are limited therapeutic options available in clinical practice, the rapid development of safe, effective and globally available antiviral drugs is crucial. Drug repurposing is a therapeutic strategy used in treatments for newly emerging and re-emerging infectious diseases. It has recently been shown that the voltage-dependent Ca2+ channel Cav1.2 is critical for influenza A virus entry, providing a potential target for antiviral strategies. Nisoldipine, a selective Ca2+ channel inhibitor, is commonly used in the treatment of hypertension. Here, we assessed the antiviral potential of nisoldipine against the influenza A virus and explored the mechanism of action of this compound. We found that nisoldipine treatment could potently inhibit infection with multiple influenza A virus strains. Mechanistic studies further revealed that nisoldipine impaired the internalization of the influenza virus into host cells. Overall, our findings demonstrate that nisoldipine exerts antiviral effects against influenza A virus infection and could serve as a lead compound in the design and development of new antivirals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jie Yang
- Correspondence: ; Tel.: +86-020-6164-8590
| |
Collapse
|
10
|
Świerczyńska M, Mirowska-Guzel DM, Pindelska E. Antiviral Drugs in Influenza. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19053018. [PMID: 35270708 PMCID: PMC8910682 DOI: 10.3390/ijerph19053018] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 11/30/2022]
Abstract
Flu is a serious health, medical, and economic problem, but no therapy is yet available that has satisfactory results and reduces the occurrence of these problems. Nearly 20 years after the registration of the previous therapy, baloxavir marboxil, a drug with a new mechanism of action, recently appeared on the market. This is a promising step in the fight against the influenza virus. This article presents the possibilities of using all available antiviral drugs specific for influenza A and B. We compare all currently recommended anti-influenza medications, considering their mechanisms of action, administration, indications, target groups, effectiveness, and safety profiles. We demonstrate that baloxavir marboxil presents a similar safety and efficacy profile to those of drugs already used in the treatment of influenza. Further research on combination therapy is highly recommended and may have promising results.
Collapse
Affiliation(s)
- Magdalena Świerczyńska
- Centre for Preclinical Research and Technology CePT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
| | - Dagmara M. Mirowska-Guzel
- Centre for Preclinical Research and Technology CePT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
- Correspondence: ; Tel.: +48-22-116-6160; Fax: +48-22-116-6202
| | - Edyta Pindelska
- Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-093 Warsaw, Poland;
| |
Collapse
|
11
|
Chen W, Shao J, Ying Z, Du Y, Yu Y. Approaches for discovery of small-molecular antivirals targeting to influenza A virus PB2 subunit. Drug Discov Today 2022; 27:1545-1553. [PMID: 35247593 DOI: 10.1016/j.drudis.2022.02.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 11/03/2022]
Abstract
Influenza is an acute respiratory infectious disease caused by influenza virus, leading to huge morbidity and mortality in humans worldwide. Despite the availability of antivirals in the clinic, the emergence of resistant strains calls for antivirals with novel mechanisms of action. The PB2 subunit of the influenza A virus polymerase is a promising target because of its vital role in the 'cap-snatching' mechanism. In this review, we summarize the technologies and medicinal chemistry strategies for hit identification, hit-to-lead and lead-to-candidate optimization, and current challenges in PB2 inhibitor development, as well as offering insights for the fight against drug resistance.
Collapse
Affiliation(s)
- Wenteng Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jiaan Shao
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China
| | - Zhimin Ying
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yushen Du
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China(1)
| | - Yongping Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
12
|
Liu X, Liang J, Yu Y, Han X, Yu L, Chen F, Xu Z, Chen Q, Jin M, Dong C, Zhou HB, Lan K, Wu S. Discovery of Aryl Benzoyl Hydrazide Derivatives as Novel Potent Broad-Spectrum Inhibitors of Influenza A Virus RNA-Dependent RNA Polymerase (RdRp). J Med Chem 2022; 65:3814-3832. [PMID: 35212527 DOI: 10.1021/acs.jmedchem.1c01257] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Influenza A viruses possess a high antigenic shift, and the approved anti-influenza drugs are extremely limited, which makes the development of novel anti-influenza drugs for the clinical treatment and prevention of influenza outbreaks imperative. Herein, we report a series of novel aryl benzoyl hydrazide analogs as potent anti-influenza agents. Particularly, analogs 10b, 10c, 10g, 11p, and 11q exhibited potent inhibitory activity against the avian H5N1 flu strain with EC50 values ranging from 0.009 to 0.034 μM. Moreover, compound 11q exhibited nanomolar antiviral effects against both the H1N1 virus and Flu B virus and possessed good oral bioavailability and inhibitory activity against influenza A virus in a mouse model. Preliminary mechanistic studies suggested that these compounds exert anti-influenza virus effects mainly by interacting with the PB1 subunit of RNA-dependent RNA polymerase (RdRp). These results revealed that 11q has the potential to become a potent clinical candidate to combat seasonal influenza and influenza pandemics.
Collapse
Affiliation(s)
- Xinjin Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jinsen Liang
- Frontier Science Center for Immunology and Metabolism, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Yongshi Yu
- Frontier Science Center for Immunology and Metabolism, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Xin Han
- Frontier Science Center for Immunology and Metabolism, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Lei Yu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Feifei Chen
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhichao Xu
- Frontier Science Center for Immunology and Metabolism, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Qi Chen
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Mengyu Jin
- Frontier Science Center for Immunology and Metabolism, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Chune Dong
- Frontier Science Center for Immunology and Metabolism, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Hai-Bing Zhou
- Frontier Science Center for Immunology and Metabolism, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ke Lan
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shuwen Wu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
13
|
Yang J, Liu S. Influenza Virus Entry inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1366:123-135. [DOI: 10.1007/978-981-16-8702-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Sette-DE-Souza PH, Costa MJF, Araújo FAC, Alencar EN, Amaral-Machado L. Two phytocompounds from Schinopsis brasiliensis show promising antiviral activity with multiples targets in Influenza A virus. AN ACAD BRAS CIENC 2021; 93:e20210964. [PMID: 34817041 DOI: 10.1590/0001-3765202120210964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/24/2021] [Indexed: 01/02/2023] Open
Abstract
Influenza A virus, the main flu agent, affects billions of people worldwide. Conventional treatments still present limitations related to drug-resistance and severe side effects. As a result, natural product-derived molecules have been increasingly investigated as prospect drug candidates. Therefore, the aim of this study was to investigate the possible anti-flu activity and to evaluate the toxicity and pharmacokinetic parameters, by in silico approaches, of the Schinopsis brasiliensis Engl. phytochemical compounds. Nine phytocompounds and six antiviral drugs (Amantadine, Umifenovir, Favipiravir, Nitazoxanide, Oseltamivir, Zanamivir) were selected for the analyses against four Influenza A proteins: neuraminidase, polymerase basic protein 2, hemagglutinin and M2 ion channel protein. The molecular docking, the predicted antiviral activity, the predicted toxicity and the pharmacokinetics investigations were conducted. The obtained results demonstrated that Syringaresinol and Cycloartenone display promising in silico antiviral activity (binding energy < 5.0 and ≥ 9.0 kcal/mol) and safety (low toxicity than commercial anti-flu drugs). Overall, this study corroborated the hypothesis that S. brasiliensis barks extract has a biological activity against Influenza A virus. Additionally, Syringaresinol and Cycloartenone have multiple targets in Influenza A virus and showed themselves as the most promising phytocompounds to be isolated and considered for the therapeutic arsenal against the flu.
Collapse
Affiliation(s)
- Pedro Henrique Sette-DE-Souza
- Universidade de Pernambuco, Faculdade de Odontologia, Rua Cicero Monteiro de Melo, s/n, São Cristóvão, 56503-146 Arcoverde, PE, Brazil.,Universidade de Pernambuco, Programa de Pós-Graduação em Saúde e Desenvolvimento Socioambiental (PPGSDS), Rua Capitão Pedro Rodrigues, 105, São José, 55294-902 Garanhuns, PE, Brazil.,Universidade de Pernambuco, Programa de Pós-Graduação em Odontologia, Av. General, Newton Cavalcanti, 1650, Tabatinga, 54756-220 Camaragibe, PE, Brazil
| | - Moan J F Costa
- Universidade de Pernambuco, Faculdade de Odontologia, Rua Cicero Monteiro de Melo, s/n, São Cristóvão, 56503-146 Arcoverde, PE, Brazil
| | - Fábio A C Araújo
- Universidade de Pernambuco, Faculdade de Odontologia, Rua Cicero Monteiro de Melo, s/n, São Cristóvão, 56503-146 Arcoverde, PE, Brazil.,Universidade de Pernambuco, Programa de Pós-Graduação em Odontologia, Av. General, Newton Cavalcanti, 1650, Tabatinga, 54756-220 Camaragibe, PE, Brazil
| | - Everton N Alencar
- Universidade Federal do Rio Grande do Norte, Departamento de Farmácia, Rua General Gustavo Cordeiro de Faria, s/n, Petrópolis, 59012-570 Natal, RN, Brazil
| | - Lucas Amaral-Machado
- Universidade Federal do Rio Grande do Norte, Departamento de Farmácia, Rua General Gustavo Cordeiro de Faria, s/n, Petrópolis, 59012-570 Natal, RN, Brazil
| |
Collapse
|
15
|
Zong K, Xu L, Hou Y, Zhang Q, Che J, Zhao L, Li X. Virtual Screening and Molecular Dynamics Simulation Study of Influenza Polymerase PB2 Inhibitors. Molecules 2021; 26:6944. [PMID: 34834044 PMCID: PMC8623395 DOI: 10.3390/molecules26226944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 11/21/2022] Open
Abstract
Influenza A virus is the main cause of worldwide epidemics and annual influenza outbreaks in humans. In this study, a virtual screen was performed to identify compounds that interact with the PB2 cap-binding domain (CBD) of influenza A polymerase. A virtual screening workflow based on Glide docking was used to screen an internal database containing 8417 molecules, and then the output compounds were selected based on solubility, absorbance, and structural fingerprints. Of the 16 compounds selected for biological evaluation, six compounds were identified that rescued cells from H1N1 virus-mediated death at non-cytotoxic concentrations, with EC50 values ranging from 2.5-55.43 μM, and that could bind to the PB2 CBD of H1N1, with Kd values ranging from 0.081-1.53 μM. Molecular dynamics (MD) simulations of the docking complexes of our active compounds revealed that each compound had its own binding characteristics that differed from those of VX-787. Our active compounds have novel structures and unique binding modes with PB2 proteins, and are suitable to serve as lead compounds for the development of PB2 inhibitors. An analysis of the MD simulation also helped us to identify the dominant amino acid residues that play a key role in binding the ligand to PB2, suggesting that we should focus on increasing and enhancing the interaction between inhibitors and these major amino acids during lead compound optimization to obtain more active PB2 inhibitors.
Collapse
Affiliation(s)
- Keli Zong
- Chemical Engineering and Environmental Engineering, College of Chemistry, Liaoning Shihua University, Fushun 113001, China;
| | - Lei Xu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China;
| | - Yuxin Hou
- Tianjin Children Hospital, Tianjin Medical University, Tianjing 300074, China;
| | - Qian Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jinjing Che
- Chemical Engineering and Environmental Engineering, College of Chemistry, Liaoning Shihua University, Fushun 113001, China;
| | - Lei Zhao
- Chemical Engineering and Environmental Engineering, College of Chemistry, Liaoning Shihua University, Fushun 113001, China;
| | - Xingzhou Li
- Chemical Engineering and Environmental Engineering, College of Chemistry, Liaoning Shihua University, Fushun 113001, China;
| |
Collapse
|
16
|
Liu Z, Gu S, Zhu X, Liu M, Cao Z, Qiu P, Li S, Liu S, Song G. Discovery and optimization of new 6, 7-dihydroxy-1, 2, 3, 4-tetrahydroisoquinoline derivatives as potent influenza virus PA N inhibitors. Eur J Med Chem 2021; 227:113929. [PMID: 34700269 DOI: 10.1016/j.ejmech.2021.113929] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/24/2022]
Abstract
Annual unpredictable efficacy of vaccines, coupled with emerging drug resistance, underlines the development of new antiviral drugs to treat influenza infections. The N-terminal domain of the PA (PAN) endonuclease is both highly conserved across influenza strains and serotypes and is indispensable for the viral lifecycle, making it an attractive target for new antiviral therapies. Here, we describe the discovery of a new class of PAN inhibitors derived from recently identified, highly active hits for PAN endonuclease inhibition. By use of structure-guided design and systematic SAR exploration, the hits were elaborated through a fragment growing strategy, giving rise to a series of 1, 3-cis-2-substituted-1-(3, 4-dihydroxybenzyl)-6, 7-dihydroxy-1, 2, 3, 4-tetrahydroisoquinoline-3-carboxylic acid derivatives as potent PAN inhibitors. This approach ultimately resulted in the development of a new lead compound 13e, which exhibited an EC50 value of 4.50 μM against H1N1 influenza virus in MDCK cells.
Collapse
Affiliation(s)
- Zhihao Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Shuyin Gu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiang Zhu
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Mingjian Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenqing Cao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Pengsen Qiu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Sumei Li
- Department of Human Anatomy, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Shuwen Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Gaopeng Song
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
17
|
Bioprinted Multi-Cell Type Lung Model for the Study of Viral Inhibitors. Viruses 2021; 13:v13081590. [PMID: 34452455 PMCID: PMC8402746 DOI: 10.3390/v13081590] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
Influenza A virus (IAV) continuously causes epidemics and claims numerous lives every year. The available treatment options are insufficient and the limited pertinence of animal models for human IAV infections is hampering the development of new therapeutics. Bioprinted tissue models support studying pathogenic mechanisms and pathogen-host interactions in a human micro tissue environment. Here, we describe a human lung model, which consisted of a bioprinted base of primary human lung fibroblasts together with monocytic THP-1 cells, on top of which alveolar epithelial A549 cells were printed. Cells were embedded in a hydrogel consisting of alginate, gelatin and collagen. These constructs were kept in long-term culture for 35 days and their viability, expression of specific cell markers and general rheological parameters were analyzed. When the models were challenged with a combination of the bacterial toxins LPS and ATP, a release of the proinflammatory cytokines IL-1β and IL-8 was observed, confirming that the model can generate an immune response. In virus inhibition assays with the bioprinted lung model, the replication of a seasonal IAV strain was restricted by treatment with an antiviral agent in a dose-dependent manner. The printed lung construct provides an alveolar model to investigate pulmonary pathogenic biology and to support development of new therapeutics not only for IAV, but also for other viruses.
Collapse
|
18
|
Giacchello I, Musumeci F, D'Agostino I, Greco C, Grossi G, Schenone S. Insights into RNA-dependent RNA Polymerase Inhibitors as Antiinfluenza Virus Agents. Curr Med Chem 2021; 28:1068-1090. [PMID: 31942843 DOI: 10.2174/0929867327666200114115632] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/21/2019] [Accepted: 12/22/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Influenza is a seasonal disease that affects millions of people every year and has a significant economic impact. Vaccines are the best strategy to fight this viral pathology, but they are not always available or administrable, prompting the search for antiviral drugs. RNA-dependent RNA polymerase (RdRp) recently emerged as a promising target because of its key role in viral replication and its high conservation among viral strains. DISCUSSION This review presents an overview of the most interesting RdRp inhibitors that have been discussed in the literature since 2000. Compounds already approved or in clinical trials and a selection of inhibitors endowed with different scaffolds are described, along with the main features responsible for their activity. RESULTS RdRp inhibitors are emerging as a new strategy to fight viral infections and the importance of this class of drugs has been confirmed by the FDA approval of baloxavir marboxil in 2018. Despite the complexity of the RdRp machine makes the identification of new compounds a challenging research topic, it is likely that in the coming years, this field will attract the interest of a number of academic and industrial scientists because of the potential strength of this therapeutic approach.
Collapse
Affiliation(s)
- Ilaria Giacchello
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Francesca Musumeci
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Ilaria D'Agostino
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Chiara Greco
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Giancarlo Grossi
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Silvia Schenone
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| |
Collapse
|
19
|
Yang J, Zhang B, Huang Y, Liu T, Zeng B, Chai J, Wu J, Xu X. Antiviral activity and mechanism of ESC-1GN from skin secretion of hylarana guentheri against influenza a virus. J Biochem 2021; 169:757-765. [PMID: 33624755 DOI: 10.1093/jb/mvab019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/13/2021] [Indexed: 11/13/2022] Open
Abstract
Development of new and effective anti-influenza drugs is critical for prophylaxis and treatment of influenza A virus infection. A wide range of amphibian skin secretions have been identified to show antiviral activity. Our previously reported ESC-1GN, a peptide from the skin secretion of Hylarana guentheri, displayed good antimicrobial and anti-inflammatory effects. Here, we found that ESC-1GN possessed significant antiviral effects against influenza A viruses. Moreover, ESC-1GN could inhibit the entry of divergent H5N1 and H1N1 virus strains with the IC50 values from 1.29 to 4.59 μM. Mechanism studies demonstrated that ESC-1GN disrupted membrane fusion activity of influenza A viruses by interaction with HA2 subunit. The results of site-directed mutant assay and molecular docking revealed that E105, N50 and the residues around them on HA2 subunit could form hydrogen bonds with amino acid on ESC-1GN, which were critical for ESC-1GN binding to HA2 and inhibiting the entry of influenza A viruses. Altogether, these not only suggest that ESC-1GN maybe represent a new type of excellent template designing drugs against influenza A viruses, but also it may shed light on the immune mechanism and survival strategy of H. guentheri against viral pathogens.
Collapse
Affiliation(s)
- Jie Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Bei Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yingna Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Teng Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Baishuang Zeng
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jingwei Chai
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiena Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xueqing Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
20
|
Wang X, Zhong Y, Ding M. Repositioning Drugs to the Mitochondrial Fusion Protein 2 by Three-Tunnel Deep Neural Network for Alzheimer's Disease. Front Genet 2021; 12:638330. [PMID: 33659028 PMCID: PMC7917248 DOI: 10.3389/fgene.2021.638330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/08/2021] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative dementia in the elderly. Although there is no effective drug to treat AD, proteins associated with AD have been discovered in related studies. One of the proteins is mitochondrial fusion protein 2 (Mfn2), and its regulation presumably be related to AD. However, there is no specific drug for Mfn2 regulation. In this study, a three-tunnel deep neural network (3-Tunnel DNN) model is constructed and trained on the extended Davis dataset. In the prediction of drug-target binding affinity values, the accuracy of the model is up to 88.82% and the loss value is 0.172. By ranking the binding affinity values of 1,063 approved drugs and small molecular compounds in the DrugBank database, the top 15 drug molecules are recommended by the 3-Tunnel DNN model. After removing molecular weight <200 and topical drugs, a total of 11 drug molecules are selected for literature mining. The results show that six drugs have effect on AD, which are reported in references. Meanwhile, molecular docking experiments are implemented on the 11 drugs. The results show that all of the 11 drug molecules could dock with Mfn2 successfully, and 5 of them have great binding effect.
Collapse
Affiliation(s)
- Xun Wang
- College of Computer Science and Technology, China University of Petroleum, Shandong, China
| | - Yue Zhong
- College of Computer Science and Technology, China University of Petroleum, Shandong, China
| | - Mao Ding
- Department of Neurology Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
21
|
Terrier O, Slama-Schwok A. Anti-Influenza Drug Discovery and Development: Targeting the Virus and Its Host by All Possible Means. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:195-218. [PMID: 34258742 DOI: 10.1007/978-981-16-0267-2_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Infections by influenza virus constitute a major and recurrent threat for human health. Together with vaccines, antiviral drugs play a key role in the prevention and treatment of influenza virus infection and disease. Today, the number of antiviral molecules approved for the treatment of influenza is relatively limited, and their use is threatened by the emergence of viral strains with resistance mutations. There is therefore a real need to expand the prophylactic and therapeutic arsenal. This chapter summarizes the state of the art in drug discovery and development for the treatment of influenza virus infections, with a focus on both virus-targeting and host cell-targeting strategies. Novel antiviral strategies targeting other viral proteins or targeting the host cell, some of which are based on drug repurposing, may be used in combination to strengthen our therapeutic arsenal against this major pathogen.
Collapse
Affiliation(s)
- Olivier Terrier
- CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Anny Slama-Schwok
- Sorbonne Université, Centre de Recherche Saint-Antoine, INSERM U938, Biologie et Thérapeutique du Cancer, Paris, France.
| |
Collapse
|
22
|
Design, synthesis and in vitro anti-influenza A virus evaluation of novel quinazoline derivatives containing S-acetamide and NH-acetamide moieties at C-4. Eur J Med Chem 2020; 206:112706. [DOI: 10.1016/j.ejmech.2020.112706] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 11/20/2022]
|
23
|
Liu T, Dai C, Sang H, Chen F, Huang Y, Liao H, Liu S, Zhu Q, Yang J. Discovery of dihydropyrrolidones as novel inhibitors against influenza A virus. Eur J Med Chem 2020; 199:112334. [PMID: 32408213 DOI: 10.1016/j.ejmech.2020.112334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/24/2020] [Accepted: 04/13/2020] [Indexed: 12/20/2022]
Abstract
More effective prophylactic and therapeutic strategies to combat influenza viruses are urgently required worldwide because the conventional anti-influenza drugs are facing drug resistance. Here, dihydropyrrolidones (DHPs), the products of an efficient multi-components reaction, were found to possess good activities against influenza A virus (IAV). Primary structure-activity relationship indicated that the activities of DHPs were greatly influenced by substituents and four of them had IC50 values lower than 10 μM (DHPs 5-2, 8, 14 and 19: IC50 = 3.11-9.23 μM). The activities against multiple IAV strains and mechanism of DHPs were further investigated by using 5-2 (IC50 = 3.11 μM). It was found that 5-2 possessed antiviral effects against all the investigated subtypes of IAVs with the IC50 values from 3.11 to 7.13 μM. Moreover, 5-2 showed very low cytotoxicity with CC50 > 400 μM. Results of mechanism study indicated that 5-2 could efficiently inhibit replication of IAV, up-regulate the expression of key antiviral cytokines IFN-β and antiviral protein MxA, and suppress the production of the NDAPH oxidase NOX1 in MDCK cells. These results indicated that 5-2 could be used as a potential inhibitor against wide subtypes of IAVs.
Collapse
Affiliation(s)
- Teng Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chenshu Dai
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Huiting Sang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Fangzhao Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yingna Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hui Liao
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qiuhua Zhu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Jie Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
24
|
Chen KK, Minakuchi M, Wuputra K, Ku CC, Pan JB, Kuo KK, Lin YC, Saito S, Lin CS, Yokoyama KK. Redox control in the pathophysiology of influenza virus infection. BMC Microbiol 2020; 20:214. [PMID: 32689931 PMCID: PMC7370268 DOI: 10.1186/s12866-020-01890-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/01/2020] [Indexed: 01/07/2023] Open
Abstract
Triggered in response to external and internal ligands in cells and animals, redox homeostasis is transmitted via signal molecules involved in defense redox mechanisms through networks of cell proliferation, differentiation, intracellular detoxification, bacterial infection, and immune reactions. Cellular oxidation is not necessarily harmful per se, but its effects depend on the balance between the peroxidation and antioxidation cascades, which can vary according to the stimulus and serve to maintain oxygen homeostasis. The reactive oxygen species (ROS) that are generated during influenza virus (IV) infection have critical effects on both the virus and host cells. In this review, we outline the link between viral infection and redox control using IV infection as an example. We discuss the current state of knowledge on the molecular relationship between cellular oxidation mediated by ROS accumulation and the diversity of IV infection. We also summarize the potential anti-IV agents available currently that act by targeting redox biology/pathophysiology.
Collapse
Affiliation(s)
- Ker-Kong Chen
- School of Dentistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Densitory, Kaohisung University Hospital, Kaohisung, 807, Taiwan
| | - Moeko Minakuchi
- Waseda Research Institute for Science and Engineering, Waseca University, Shinjuku, Tokyo, 162-8480, Japan
| | - Kenly Wuputra
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chia-Chen Ku
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Jia-Bin Pan
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Kung-Kai Kuo
- Department Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Ying-Chu Lin
- School of Dentistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Shigeo Saito
- Waseda Research Institute for Science and Engineering, Waseca University, Shinjuku, Tokyo, 162-8480, Japan
- Saito Laboratory of Cell Technology Institute, Yalta, Tochigi, 329-1471, Japan
| | - Chang-Shen Lin
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan.
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.
| | - Kazunari K Yokoyama
- Waseda Research Institute for Science and Engineering, Waseca University, Shinjuku, Tokyo, 162-8480, Japan.
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan.
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
| |
Collapse
|
25
|
Tian Y, Sang H, Liu M, Chen F, Huang Y, Li L, Liu S, Yang J. Dihydromyricetin is a new inhibitor of influenza polymerase PB2 subunit and influenza-induced inflammation. Microbes Infect 2020; 22:254-262. [DOI: 10.1016/j.micinf.2020.05.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022]
|
26
|
Chen F, Yang L, Zhai L, Huang Y, Chen F, Duan W, Yang J. Methyl brevifolincarboxylate, a novel influenza virus PB2 inhibitor from Canarium Album (Lour.) Raeusch. Chem Biol Drug Des 2020; 96:1280-1291. [PMID: 32519462 DOI: 10.1111/cbdd.13740] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 04/08/2020] [Accepted: 05/31/2020] [Indexed: 12/18/2022]
Abstract
Methyl brevifolincarboxylate (MBC) was isolated from ethyl acetate extract of Canarium album (Lour.) Raeusch. The structure was identified, and the effect on influenza A virus infection was evaluated. MBC exhibited inhibitory activity against influenza virus A/Puerto Rico/8/34 (H1N1) and A/Aichi/2/68 (H3N2) with IC50 values of 27.16 ± 1.39 μM and 33.41 ± 2.34 μM. Mechanism studies indicated that MBC inhibited the replication of influenza A virus by targeting PB2 cap-binding domain. Our results demonstrated MBC was a potent PB2 cap-binding inhibitor and represented as a new type of promising lead compound for the development of anti-influenza virus drugs from natural products.
Collapse
Affiliation(s)
- Fangzhao Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Luoping Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Lingyan Zhai
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yingna Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Feimin Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Wenjun Duan
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jie Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Huang Q, Zhong Y, Li J, Ye Y, Wu W, Chen L, Feng M, Yang J, Liu S. Kinase inhibitor roscovitine as a PB2 cap-binding inhibitor against influenza a virus replication. Biochem Biophys Res Commun 2020; 526:1143-1149. [PMID: 32327257 PMCID: PMC7152910 DOI: 10.1016/j.bbrc.2020.04.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 04/09/2020] [Indexed: 11/30/2022]
Abstract
In this study, we examined the impact of roscovitine, a cyclin-dependent kinase inhibitor (CDKI) that has entered phase I and II clinical trials, on influenza A viruses (IAVs) and its antiviral mechanism. The results illustrated that roscovitine inhibited multiple subtypes of influenza strains dose-dependently, including A/WSN/1933(H1N1), A/Aichi/2/68 (H3N2) and A/FM1/47 (H1N1) with IC50 value of 3.35 ± 0.39, 7.01 ± 1.84 and 5.99 ± 1.89 μM, respectively. Moreover, roscovitine suppressed the gene transcription and genome replication steps in the viral life cycle. Further mechanistic studies indicated that roscovitine reduced viral polymerase activity and bound specifically to the viral PB2cap protein by fluorescence polarization assay (FP) and surface plasmon resonance (SPR). Therefore, we believed roscovitine, as a PB2cap inhibitor, was a prospective antiviral agent to be developed as therapeutic treatment against influenza A virus infection. Roscovitine possesses antiviral activities against different subtypes of influenza A viruses. Roscovitine suppresses the gene transcription and genome replication steps in the viral life cycle. Roscovitine exerts its anti-influenza activity through specific binding to the PB2cap protein.
Collapse
Affiliation(s)
- Qi Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Yingyuan Zhong
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Jingyan Li
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Yilu Ye
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Wenjiao Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Lizhu Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Mingkai Feng
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Jie Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China; State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
28
|
Liao Y, Ye Y, Li S, Zhuang Y, Chen L, Chen J, Cui Z, Huo L, Liu S, Song G. Synthesis and SARs of dopamine derivatives as potential inhibitors of influenza virus PA N endonuclease. Eur J Med Chem 2020; 189:112048. [PMID: 31954881 DOI: 10.1016/j.ejmech.2020.112048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 10/25/2022]
Abstract
Currently, influenza PAN endonuclease has become an attractive target for development of new drugs to treat influenza infections. Herein we report the discovery of new PAN endonuclease inhibitors derived from a chelating agent dopamine moiety. A series of dopamine amide derivatives and their conformationally constrained 1,2,3,4-tetrahydroisoquinoline-6,7-diol-based analogs were elaborated and assayed against influenza virus A/WSN/33 (H1N1). Most compounds exhibited moderate to excellent antiviral activities, generating a preliminary SARs. Among them, compounds 14 and 19 showed stronger anti-IAV activity compared with the reference Peramivir. Moreover, 14 and 19 demonstrated a concentration-dependent inhibition of PAN endonuclease based on both FRET assay and SPR assay. Docking studies were also performed to elucidate the binding mode of 14 and 19 with the PAN protein and to identify amino acids involved in their mechanism of action, which were well consistent with the biological data. This finding was beneficial to laying the foundation for the rational development of more effective PAN endonuclease inhibitors.
Collapse
Affiliation(s)
- Yixian Liao
- College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Yilu Ye
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Sumei Li
- Department of Human Anatomy, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yilian Zhuang
- College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Liye Chen
- College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Jianxin Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zining Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Lijian Huo
- College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Shuwen Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Gaopeng Song
- College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
29
|
Chen F, Yang L, Huang Y, Chen Y, Sang H, Duan W, Yang J. Isocorilagin, isolated from Canarium album (Lour.) Raeusch, as a potent neuraminidase inhibitor against influenza A virus. Biochem Biophys Res Commun 2019; 523:183-189. [PMID: 31843192 DOI: 10.1016/j.bbrc.2019.12.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 12/07/2019] [Indexed: 12/17/2022]
Abstract
Canarium album (Lour.) Raeusch (C. album) as a normally medicinal and edible plant has been used widely in Asian countries and is considered a source of phytochemicals that are beneficial to human health. Here, we showed at the first time isocorilagin, a polyphenolic compound isolated from C. album, displayed antiviral activity against diverse strains of influenza A virus (IAV), including A/Puerto Rico/8/34 (H1N1), A/Aichi/2/68 (H3N2) and NA-H274Y (H1N1) with IC50 value of 9.19 ± 1.99, 23.72 ± 2.51 and 4.64 ± 3.01 μM, respectively. Further mechanistic studies revealed that it clearly inhibited neuraminidase activity of IAV and directly influenced the virus release. The molecular docking studies presented isocorilagin could bind to the highly conserved residues in the active sites of NA, implying that isocorilagin may be effective against various influenza strains and not susceptible to produce drug resistance. Taken together, the results strongly suggest that isocorilagin has potential to be an effective, safe and affordable neuraminidase inhibitor against a diverse panel of IAV strains. More importantly, our work expands the biological activities of C. album extracts and provide a new option for the development of anti-influenza drug.
Collapse
Affiliation(s)
- Fangzhao Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Luoping Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yingna Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Huiting Sang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wenjun Duan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Jie Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
30
|
Yang J, Huang Y, Liu S. Investigational antiviral therapies for the treatment of influenza. Expert Opin Investig Drugs 2019; 28:481-488. [PMID: 31018720 DOI: 10.1080/13543784.2019.1606210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Influenza viral ribonucleoprotein complexes (vRNPs) play a key role in viral transcription and replication; hence, the recent development of novel anti-influenza drugs targeting vRNPs has garnered widespread interest. AREAS COVERED We discuss the function of the constituents of vRNPs and summarize those vRNPs-targeted synthetic drugs that are in preclinical and early clinical development. EXPERT OPINION vRNPs contain high-value drug targets; such targets include the subunits PA, PB1, PB2, and NP. Developing a new generation of antiviral therapies with strategies that utilize existing drugs, natural compounds originated from new resources and novel drug combinations may open up new therapeutic approaches to influenza.
Collapse
Affiliation(s)
- Jie Yang
- a Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou , China
| | - Yingna Huang
- a Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou , China
| | - Shuwen Liu
- a Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou , China.,b State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology , Southern Medical University , Guangzhou , China
| |
Collapse
|
31
|
Niu T, Zhao X, Jiang J, Yan H, Li Y, Tang S, Li Y, Song D. Evolution and Biological Evaluation of Matrinic Derivatives with Amantadine Fragments As New Anti-Influenza Virus Agents. Molecules 2019; 24:E921. [PMID: 30845734 PMCID: PMC6429159 DOI: 10.3390/molecules24050921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 11/17/2022] Open
Abstract
A series of novel tricyclic matrinic derivatives with 11-adamantyl substitution were designed, synthesized, and evaluated for their activities against Influenza A H3N2 virus, based on the privileged structure strategy. Structure-activity relationship (SAR) analysis indicated that the introduction of an 11-adamantyl might be helpful for the potency. Among them, compounds 9f and 9j exhibited the promising anti-H3N2 activities with IC50 values of 7.2 μM and 10.2 μM, respectively, better than that of lead 1. Their activities were further confirmed at the protein level. Moreover, compound 9f displayed a high pharmacokinetic (PK) stability profile in whole blood and a safety profile in vivo. In primary mechanism, compound 9f could inhibit the virus replication cycle at early stage by targeting M2 protein, consistent with that of the parent amantadine. This study provided powerful information for further strategic optimization to develop these compounds into a new class of anti-influenza agents.
Collapse
Affiliation(s)
- Tianyu Niu
- Beijing Key Laboratory of Anti-infective Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 10005, China.
| | - Xiaoqiang Zhao
- Beijing Key Laboratory of Anti-infective Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 10005, China.
| | - Jing Jiang
- Beijing Key Laboratory of Anti-infective Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 10005, China.
| | - Haiyan Yan
- Beijing Key Laboratory of Anti-infective Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 10005, China.
| | - Yinghong Li
- Beijing Key Laboratory of Anti-infective Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 10005, China.
| | - Sheng Tang
- Beijing Key Laboratory of Anti-infective Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 10005, China.
| | - Yuhuan Li
- Beijing Key Laboratory of Anti-infective Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 10005, China.
| | - Danqing Song
- Beijing Key Laboratory of Anti-infective Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 10005, China.
| |
Collapse
|
32
|
Wang J, Chen F, Liu Y, Liu Y, Li K, Yang X, Liu S, Zhou X, Yang J. Spirostaphylotrichin X from a Marine-Derived Fungus as an Anti-influenza Agent Targeting RNA Polymerase PB2. JOURNAL OF NATURAL PRODUCTS 2018; 81:2722-2730. [PMID: 30516983 DOI: 10.1021/acs.jnatprod.8b00656] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A new spirocyclic γ-lactam, named spirostaphylotrichin X (1), and three related known spirostaphylotrichins (2-4) were isolated from the marine-derived fungus Cochliobolus lunatus SCSIO41401. Their structures were determined by spectroscopic analyses. Spirostaphylotrichin X (1) displayed obvious inhibitory activities against multiple influenza virus strains, with IC50 values from 1.2 to 5.5 μM. Investigation of the mechanism showed that 1 inhibited viral polymerase activity and interfered with the production of progeny viral RNA. Homogeneous time-resolved fluorescence, surface plasmon resonance assays, and a molecular docking study revealed that 1 could inhibit polymerase PB2 protein activity by binding to the highly conserved region of the cap-binding domain of PB2. These results suggest that 1 inhibits the replication of influenza A virus by interfering with the activity of PB2 protein and that 1 represents a new type of potential lead compound for the development of anti-influenza therapeutics.
Collapse
Affiliation(s)
- Jianjiao Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica , South China Sea Institute of Oceanology, Chinese Academy of Sciences , Guangzhou 510301 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Feimin Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , People's Republic of China
| | - Yunhao Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica , South China Sea Institute of Oceanology, Chinese Academy of Sciences , Guangzhou 510301 , People's Republic of China
| | - Yuxuan Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica , South China Sea Institute of Oceanology, Chinese Academy of Sciences , Guangzhou 510301 , People's Republic of China
| | - Kunlong Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica , South China Sea Institute of Oceanology, Chinese Academy of Sciences , Guangzhou 510301 , People's Republic of China
| | - Xiliang Yang
- Department of Pharmacy, Medical College , Wuhan University of Science and Technology , Wuhan 430065 , People's Republic of China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , People's Republic of China
- State Key Laboratory of Organ Failure Research , Southern Medical University , Guangzhou 510515 , People's Republic of China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica , South China Sea Institute of Oceanology, Chinese Academy of Sciences , Guangzhou 510301 , People's Republic of China
- State Key Laboratory of Organ Failure Research , Southern Medical University , Guangzhou 510515 , People's Republic of China
| | - Jie Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , People's Republic of China
| |
Collapse
|