1
|
Jiménez-Jiménez FJ, Alonso-Navarro H, Salgado-Cámara P, García-Martín E, Agúndez JAG. Antioxidant Therapies in the Treatment of Multiple Sclerosis. Biomolecules 2024; 14:1266. [PMID: 39456199 PMCID: PMC11506420 DOI: 10.3390/biom14101266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Several studies have proposed a potential role for oxidative stress in the development of multiple sclerosis (MS). For this reason, it seems tentative to think that treatment with antioxidant substances could be useful in the treatment of this disease. In this narrative review, we provide a summary of the current findings on antioxidant treatments, both in experimental models of MS, especially in experimental autoimmune encephalomyelitis (EAE) and in the cuprizone-induced demyelination model, and clinical trials in patients diagnosed with MS. Practically all the antioxidants tested in experimental models of MS have shown improvement in clinical parameters, in delaying the evolution of the disease, and in improving histological and biochemical parameters, including decreased levels of markers of inflammation and oxidative stress in the central nervous system and other tissues. Only a few clinical trials have been carried out to investigate the potential efficacy of antioxidant substances in patients with MS, most of them in the short term and involving a short series of patients, so the results of these should be considered inconclusive. In this regard, it would be desirable to design long-term, randomized, multicenter clinical trials with a long series of patients, assessing several antioxidants that have demonstrated efficacy in experimental models of MS.
Collapse
Grants
- PI18/00540 Fondo de Investigación Sanitaria, Instituto de Salud Carlos, Madrid, Spain
- PI21/01683 Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Madrid, Spain
- IB20134 Junta de Extremadura, Mérida, Spain
- GR21073 Junta de Extremadura, Mérida, Spain
Collapse
Affiliation(s)
| | - Hortensia Alonso-Navarro
- Section of Neurology, Hospital Universitario del Sureste, E28500 Arganda del Rey, Spain; (H.A.-N.); (P.S.-C.)
| | - Paula Salgado-Cámara
- Section of Neurology, Hospital Universitario del Sureste, E28500 Arganda del Rey, Spain; (H.A.-N.); (P.S.-C.)
| | - Elena García-Martín
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| | - José A. G. Agúndez
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| |
Collapse
|
2
|
Ackun-Farmmer MA, Jewell CM. Delivery route considerations for designing antigen-specific biomaterial strategies to combat autoimmunity. ADVANCED NANOBIOMED RESEARCH 2023; 3:2200135. [PMID: 36938103 PMCID: PMC10019031 DOI: 10.1002/anbr.202200135] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Disease modifying drugs and biologics used to treat autoimmune diseases, although promising, are non-curative. As the field moves towards development of new approaches to treat autoimmune disease, antigen-specific therapies immunotherapies (ASITs) have emerged. Despite clinical approval of ASITs for allergies, clinical trials using soluble ASITs for autoimmunity have been largely unsuccessful. A major effort to address this shortcoming is the use of biomaterials to harness the features unique to specific delivery routes. This review focuses on biomaterials being developed for delivery route-specific strategies to induce antigen-specific responses in autoimmune diseases such as multiple sclerosis, type 1 diabetes, rheumatoid arthritis, and celiac disease. We first discuss the delivery strategies used in ongoing and completed clinical trials in autoimmune ASITs. Next, we highlight pre-clinical biomaterial approaches from the most recent 3 years in the context of these same delivery route considerations. Lastly, we provide discussion on the gaps remaining in biomaterials development and comment on the need to consider delivery routes in the process of designing biomaterials for ASITs.
Collapse
Affiliation(s)
- Marian A Ackun-Farmmer
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- US Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, 21201, USA
- Robert E. Fischell Institute for Biomedical Devices, College Park, MD, 20742, USA
- Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD, 21201, USA
| |
Collapse
|
3
|
Mechrez G, Mani KA, Saha A, Lachman O, Luria N, Molad O, Kotliarevski L, Zelinger E, Smith E, Yaakov N, Stone DS, Reches M, Dombrovsky A. Platform for Active Vaccine Formulation Using a Two-Mode Enhancement Mechanism of Epitope Presentation by Pickering Emulsion. ACS APPLIED BIO MATERIALS 2022; 5:3859-3869. [PMID: 35913405 PMCID: PMC9382630 DOI: 10.1021/acsabm.2c00410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The efficiency of epitope-based vaccination (subunit vaccines) is tightly correlated with heterogeneity and the high density of epitope presentation, which maximizes the potential antigenic determinants. Here, we developed a two-mode platform for intensifying the epitope presentation of subunit vaccines. The two-mode epitope presentation enhancement includes a covalent attachment of high concentrations of SARS-CoV-2-S1 peptide epitope to the surface of virus-like-particles (VLPs) and the subsequent assembly of VLP/epitope conjugates on the oil droplet surface at an oil/water interface of an emulsion as Pickering stabilizers. The resultant emulsions were stable for weeks in ambient conditions, and our platform was challenged using the epitope of the SARS-CoV-2-S1 peptide that served as a model epitope in this study. In vivo assays showed that the αSARS-CoV-2-S1 immunoglobulin G (IgG) titers of the studied mouse antisera, developed against the SARS-CoV-2-S1 peptide under different epitope preparation conditions, showed an order of magnitude higher IgG titers in the studied VLP-based emulsions than epitopes dissolved in water and epitopes administered with an adjuvant, thereby confirming the efficacy of the formulation. This VLP-based Pickering emulsion platform is a fully synthetic approach that can be readily applied for vaccine development to a wide range of pathogens.
Collapse
Affiliation(s)
- Guy Mechrez
- Department of Food Science, Institute of Postharvest and Food Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel
| | - Karthik Ananth Mani
- Department of Food Science, Institute of Postharvest and Food Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel.,Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Abhijit Saha
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.,Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
| | - Oded Lachman
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel
| | - Neta Luria
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel
| | - Ori Molad
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.,Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel
| | - Liliya Kotliarevski
- Department of Food Science, Institute of Postharvest and Food Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel.,Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Einat Zelinger
- The Interdepartmental Equipment Unit, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Elisheva Smith
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel
| | - Noga Yaakov
- Department of Food Science, Institute of Postharvest and Food Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel
| | | | - Meital Reches
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Aviv Dombrovsky
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel
| |
Collapse
|
4
|
Song JY, Griffin JD, Larson NR, Christopher MA, Middaugh CR, Berkland CJ. Synthetic Cationic Autoantigen Mimics Glatiramer Acetate Persistence at the Site of Injection and Is Efficacious Against Experimental Autoimmune Encephalomyelitis. Front Immunol 2021; 11:603029. [PMID: 33537031 PMCID: PMC7848024 DOI: 10.3389/fimmu.2020.603029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022] Open
Abstract
A synthetic peptide, K-PLP, consisting of 11-unit poly-lysine (K11) linked via polyethylene glycol (PEG) to proteolipid protein epitope (PLP) was synthesized, characterized, and evaluated for efficacy in ameliorating experimental autoimmune encephalomyelitis (EAE) induced by PLP. K-PLP was designed to mimic the cationic nature of the relapsing-remitting multiple sclerosis treatment, glatiramer acetate (GA). With a pI of ~10, GA is able to form visible aggregates at the site of injection via electrostatic interactions with the anionic extracellular matrix. Aggregation further facilitates the retention of GA at the site of injection and draining lymph nodes, which may contribute to its mechanism of action. K-PLP with a pI of ~11, was found to form visible aggregates in the presence of glycosaminoglycans and persist at the injection site and draining lymph nodes in vivo, similar to GA. Additionally, EAE mice treated with K-PLP showed significant inhibition of clinical symptoms compared to free poly-lysine and to PLP, which are the components of K-PLP. The ability of the poly-lysine motif to retain PLP at the injection site, which increased the local exposure of PLP to immune cells may be an important factor affecting drug efficacy.
Collapse
Affiliation(s)
- Jimmy Y Song
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - J Daniel Griffin
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States.,Department of Bioengineering, University of Kansas, Lawrence, KS, United States
| | - Nicholas R Larson
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Matthew A Christopher
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - C Russell Middaugh
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Cory J Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States.,Department of Bioengineering, University of Kansas, Lawrence, KS, United States.,Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
5
|
Apley KD, Griffin JD, Johnson SN, Berkland CJ, DeKosky BJ. Tetrameric Fluorescent Antigen Arrays for Single-Step Identification of Antigen-Specific B Cells. J Vis Exp 2020:10.3791/61827. [PMID: 33165322 PMCID: PMC10604357 DOI: 10.3791/61827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Fluorescent antigen production is a critical step in the identification of antigen-specific B cells. Here, we detailed the preparation, purification, and the use of four-arm, fluorescent PEG-antigen conjugates to selectively identify antigen-specific B cells through avid engagement with cognate B cell receptors. Using modular click chemistry and commercially available fluorophore kit chemistries, we demonstrated the versatility of preparing customized fluorescent PEG-conjugates by creating distinct arrays for proteolipid protein (PLP139-151) and insulin, which are important autoantigens in murine models of multiple sclerosis and type 1 diabetes, respectively. Assays were developed for each fluorescent conjugate in its respective disease model using flow cytometry. Antigen arrays were compared to monovalent autoantigen to quantify the benefit of multimerization onto PEG backbones. Finally, we illustrated the utility of this platform by isolating and assessing anti-insulin B cell responses after antigen stimulation ex vivo. Labeling insulin-specific B cells enabled the amplified detection of changes to co-stimulation (CD86) that were otherwise dampened in aggregate B cell analysis. Together, this report enables the production and use of fluorescent antigen arrays as a robust tool for probing B cell populations.
Collapse
Affiliation(s)
- Kyle D Apley
- Department of Pharmaceutical Chemistry, University of Kansas
| | | | | | - Cory J Berkland
- Department of Pharmaceutical Chemistry, University of Kansas; Bioengineering Graduate Program, University of Kansas; Department of Chemical and Petroleum Engineering, University of Kansas
| | - Brandon J DeKosky
- Department of Pharmaceutical Chemistry, University of Kansas; Bioengineering Graduate Program, University of Kansas; Department of Chemical and Petroleum Engineering, University of Kansas;
| |
Collapse
|
6
|
Griffin JD, Song JY, Sestak JO, DeKosky BJ, Berkland CJ. Linking autoantigen properties to mechanisms of immunity. Adv Drug Deliv Rev 2020; 165-166:105-116. [PMID: 32325104 PMCID: PMC7572523 DOI: 10.1016/j.addr.2020.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 02/06/2023]
Abstract
Antigen-specific immunotherapies (ASIT) present compelling potential for introducing precision to the treatment of autoimmune diseases where nonspecific, global immunosuppression is currently the only treatment option. Central to ASIT design is the delivery of autoantigen, which parallels allergy desensitization approaches. Clinical success in tolerizing allergen-specific responses spans longer than a century, but autoimmune ASITs have yet to see an FDA-approved breakthrough. Allergens and autoantigens differ substantially in physicochemical properties, and these discrepancies influence the nature of their interactions with the immune system. Approved allergen-specific immunotherapies are typically administered as water soluble, neutrally charged protein fractions from 10 to 70 kDa. Conversely, autoantigens are native proteins that exhibit wide-ranging sizes, solubilities, and charges that render them susceptible to immunogenicity. To translate the success of allergen hyposensitization to ASIT, delivery strategies may be necessary to effectively format autoantigens, guide biodistribution, and engage appropriate immune mechanisms.
Collapse
Affiliation(s)
- J Daniel Griffin
- Bioengineering Graduate Program, University of Kansas, Lawrence, KS, United States of America; Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States of America
| | - Jimmy Y Song
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States of America; Bioengineering Graduate Program, University of Kansas, Lawrence, KS, United States of America
| | - Joshua O Sestak
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States of America; Orion BioScience, Inc, Omaha, NE, United States of America
| | - Brandon J DeKosky
- Bioengineering Graduate Program, University of Kansas, Lawrence, KS, United States of America; Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States of America; Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS, United States of America
| | - Cory J Berkland
- Bioengineering Graduate Program, University of Kansas, Lawrence, KS, United States of America; Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States of America; Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS, United States of America.
| |
Collapse
|
7
|
Griffin JD, Song JY, Huang A, Sedlacek AR, Flannagan KL, Berkland CJ. Antigen-specific immune decoys intercept and exhaust autoimmunity to prevent disease. Biomaterials 2019; 222:119440. [PMID: 31450159 DOI: 10.1016/j.biomaterials.2019.119440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/31/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022]
Abstract
Relapsing-remitting patterns of many autoimmune diseases such as multiple sclerosis (MS) are perpetuated by a recurring circuit of adaptive immune cells that amplify in secondary lymphoid organs (SLOs) and traffic to compartments where antigen is abundant to elicit damage. Some of the most effective immunotherapies impede the migration of immune cells through this circuit, however, broadly suppressing immune cell migration can introduce life-threatening risks for patients. We developed antigen-specific immune decoys (ASIDs) to mimic tissues targeted in autoimmunity and selectively intercept autoimmune cells to preserve host tissue. Using Experimental Autoimmune Encephalomyelitis (EAE) as a model, we conjugated autoantigen PLP139-151 to a microporous collagen scaffold. By subcutaneously implanting ASIDs after induction but prior to the onset of symptoms, mice were protected from paralysis. ASID implants were rich with autoimmune cells, however, reactivity to cognate antigen was substantially diminished and apoptosis was prevalent. ASID-implanted mice consistently exhibited engorged spleens when disease normally peaked. In addition, splenocyte antigen-presenting cells were highly activated in response to PLP rechallenge, but CD3+ and CD19 + effector subsets were significantly decreased, suggesting exhaustion. ASID-implanted mice never developed EAE relapse symptoms even though the ASID material had long since degraded, suggesting exhausted autoimmune cells did not recover functionality. Together, data suggested ASIDs were able to sequester and exhaust immune cells in an antigen-specific fashion, thus offering a compelling approach to inhibit the migration circuit underlying autoimmunity.
Collapse
Affiliation(s)
- J Daniel Griffin
- Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA
| | - Jimmy Y Song
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Aric Huang
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Alexander R Sedlacek
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS, USA
| | - Kaitlin L Flannagan
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS, USA
| | - Cory J Berkland
- Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA; Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA; Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
8
|
Griffin JD, Leon MA, Salash JR, Shao M, Hartwell BL, Pickens CJ, Sestak JO, Berkland C. Acute B-Cell Inhibition by Soluble Antigen Arrays Is Valency-Dependent and Predicts Immunomodulation in Splenocytes. Biomacromolecules 2019; 20:2115-2122. [PMID: 30995843 DOI: 10.1021/acs.biomac.9b00328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Antigen valency plays a fundamental role in directing the nature of an immune response to be stimulatory or tolerogenic. Soluble antigen arrays (SAgAs) are an antigen-specific immunotherapy that combats autoimmunity through the multivalent display of autoantigen. Although mechanistic studies have shown SAgAs to induce T- and B-cell anergy, the effect of SAgA valency has never been experimentally tested. Here, SAgAs of discrete antigen valencies were synthesized by click chemistry and evaluated for acute B-cell signaling inhibition as well as downstream immunomodulatory effects in splenocytes. Initial studies using the Raji B-cell line demonstrated SAgA valency dictated the extent of calcium flux. Lower valency constructs elicited the largest reductions in B-cell activation. In splenocytes from mice with experimental autoimmune encephalomyelitis, the same valency-dependent effects were evident in the downregulation of the costimulatory marker CD86. The reduction of calcium flux observed in Raji B-cells correlated strongly with downregulation in splenocyte CD86 expression after 72 h. Here, a thorough analysis of SAgA antigenic valency illustrates that low, but not monovalent, presentation of autoantigen was ideal for eliciting the most potent immunomodulatory effects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Cory Berkland
- Orion BioScience , Omaha , Nebraska 68198 , United States
| |
Collapse
|