1
|
Alkhaldi O, Abusulieh S, Abusara OH, Sunoqrot S. Development of Mitoxantrone-Loaded Quercetin Nanoparticles for Breast Cancer Therapy with Potential for Synergism with Bioactive Natural Products. Int J Pharm 2024; 665:124674. [PMID: 39245083 DOI: 10.1016/j.ijpharm.2024.124674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/23/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Nanoparticle (NP)-based drug delivery systems have caused a paradigm shift in cancer treatment by enabling drug targeting, sustaining drug release, and reducing systemic toxicity of chemotherapy. Here we developed a novel NP formulation for the anticancer drug mitoxantrone (MTZ) by loading it into an emerging nanomaterial derived from the plant polyphenol quercetin (QCT). QCT was partially oxidized to produce amphiphilic oxQCT which was co-assembled with poly(ethylene glycol) (PEG) and MTZ by nanoprecipitation to form MTZ NPs. The optimal NPs exhibited an average diameter of 128 nm, a polydispersity index of 0.22, and a drug loading efficiency of 76%. While only a small fraction of the loaded drug was released at physiologic pH, a significantly higher fraction was released at acidic pH. The anticancer activity of MTZ NPs was assessed in MCF-7 and MDA-MB-231 breast cancer cell lines, alone and in combination with the bioactive natural products curcumin (CUR) and thymoquinone (TQ). In cell viability assays, MTZ NPs were slightly less potent than free MTZ, most likely due to their sustained release properties, but their cytotoxicity was greatly enhanced in the presence of TQ (in MCF-7 cells) as well as CUR (in MDA-MB-231 cells). The results were corroborated by apoptosis assays such as mitochondrial membrane potential measurement, acridine orange/ethidium bromide staining, in addition to caspase activity assays. The assays revealed that the NPs' proapoptotic effect was enhanced in the presence of CUR or TQ, depending on the cell line. Our work presents a promising nanocarrier platform for MTZ with the potential to enhance its bioactivity against breast cancer when combined with bioactive natural products.
Collapse
Affiliation(s)
- Otrujja Alkhaldi
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Samah Abusulieh
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Osama H Abusara
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Suhair Sunoqrot
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan.
| |
Collapse
|
2
|
Gao Y, Huo S, Chen C, Du S, Xia R, Liu J, Chen D, Diao Z, Han X, Yin Z. Gold nanorods as biocompatible nano-agents for the enhanced photothermal therapy in skin disorders. J Biomed Res 2024; 38:1-17. [PMID: 39375931 DOI: 10.7555/jbr.38.20240119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Abstract
Rod-shaped gold nanomaterials, known as gold nanorods (GNRs), may undergo specific surface alterations, because of their straightforward surface chemistry. This feature makes them appropriate for use as functional and biocompatible nano-formulations. By optimizing the absorption of longitudinally localized surface plasmon resonance (LSPR) in the near-infrared (NIR) region, which corresponds to the NIR bio-tissue window, GNRs with appropriate modifications may improve the results of photothermal treatment (PTT). In dermatology, potential noninvasive uses of GNRs to enhance wound healing, manage infections, combat cutaneous malignancies, and remodel skin tissues via PTT have attracted research attention in recent years. In this review, the basic properties of GNRs, such as shape, size, optical performance, photothermal efficiency, and metabolism, are discussed firstly. Then, the disadvantages of using these particles in photodynamic therapy (PDT) are proposed. Next, biological applications of GNRs-based PTT are summarized in detail. Finally, the limitations and future perspectives of this research are summarized, providing a comprehensive outlook for prospective GNRs with PTT.
Collapse
Affiliation(s)
- Yamei Gao
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shaohu Huo
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, Anhui 230022, China
| | - Chao Chen
- Industrialization of Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Shiyu Du
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Ruiyuan Xia
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jian Liu
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Dandan Chen
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ziyue Diao
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xin Han
- Industrialization of Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Zhiqiang Yin
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
3
|
Alsamarat R, Sunoqrot S. A Glucose Oxidase-Curcumin Composite Nanoreactor for Multimodal Synergistic Cancer Therapy. ACS APPLIED BIO MATERIALS 2024; 7:4611-4621. [PMID: 38920441 DOI: 10.1021/acsabm.4c00479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Glucose oxidase (GOx) selectively oxidizes β-d-glucose into gluconic acid and hydrogen peroxide; thus, it has emerged as a promising anticancer agent by tumor starvation and oxidative therapy. Here, we developed a nanoscale platform or "nanoreactor" that incorporates GOx and the bioactive natural product curcumin (CUR) to achieve a multimodal anticancer nanocomposite. The composite nanoreactor was formed by loading CUR in biodegradable polymeric nanoparticles (NPs) of poly(ethylene glycol)-b-poly(ε-caprolactone) (PEG-PCL). Prime-coating of the NPs with an iron(III)-tannic acid complex enabled facile immobilization of GOx on the NP surface. The NPs were monodisperse with a hydrodynamic diameter of 122 nm and a partially negative surface charge. The NPs were also associated with an excellent CUR loading efficiency and sustained release up to 96 h, which was accelerated by surface-immobilized GOx and followed supercase II transport. Viability assays were conducted on two model cancer cell lines, MCF-7 and MDA-MB-231 cells, as well as human dermal fibroblasts as a representative normal cell line. The assays revealed significantly improved potency of CUR in the composite nanoreactor, with up to 6000- and 1280-fold increase in MCF-7 and MDA-MB-231 cells, respectively, and lower toxicity toward normal cells. The NPs were also able to promote intracellular reactive oxygen species (ROS) generation and dissipation of the mitochondrial membrane potential, providing important clues on the mechanism of action of the nanoreactor. Further investigation of caspase-3 activity revealed that the nanoreactor had no effect or inhibited caspase-3 levels, signifying a caspase-independent mechanism of inducing apoptosis. Our findings present a promising nanocarrier platform that combines therapeutic agents with distinct mechanisms of action acting in synergy for more effective cancer therapy.
Collapse
Affiliation(s)
- Rama Alsamarat
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Suhair Sunoqrot
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| |
Collapse
|
4
|
Liu J, Hu X, Yu G, Wang Q, Gu L, Shen J, Zhao Q, Sun H, Wang S, Guo Z, Zhao Y, Ma H. Doxorubicin-based ENO1 targeted drug delivery strategy enhances therapeutic efficacy against colorectal cancer. Biochem Pharmacol 2024; 224:116220. [PMID: 38641307 DOI: 10.1016/j.bcp.2024.116220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Alpha-enolase (ENO1), a multifunctional protein with carcinogenic properties, has emerged as a promising cancer biomarker because of its differential expression in cancer and normal cells. On the basis of this characteristic, we designed a cell-targeting peptide that specifically targets ENO1 and connected it with the drug doxorubicin (DOX) by aldehyde-amine condensation. A surface plasmon resonance (SPR) assay showed that the affinity for ENO1 was stronger (KD = 2.5 µM) for the resulting cell-targeting drug, DOX-P, than for DOX. Moreover, DOX-P exhibited acid-responsive capabilities, enabling precise release at the tumor site under the guidance of the homing peptide and alleviating DOX-induced cardiotoxicity. An efficacy experiment confirmed that, the targeting ability of DOX-P toward ENO1 demonstrated superior antitumor activity against colorectal cancer than that of DOX, while reducing its toxicity to cardiomyocytes. Furthermore, in vivo metabolic distribution results indicated low accumulation of DOX-P in nontumor sites, further validating its targeting ability. These results showed that the ENO1-targeted DOX-P peptide has great potential for application in targeted drug-delivery systems for colorectal cancer therapy.
Collapse
Affiliation(s)
- Jun Liu
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing 100700, China
| | - Xiaoyu Hu
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing 100700, China
| | - Guanghao Yu
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing 100700, China
| | - Qingrong Wang
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing 100700, China
| | - Liwei Gu
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing 100700, China
| | - Jianying Shen
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing 100700, China
| | - Qinghe Zhao
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing 100700, China
| | - Hao Sun
- Nanjing Agricultural University, Nanjing 210009, China
| | - Shi Wang
- Nanjing Agricultural University, Nanjing 210009, China
| | - Zhongyuan Guo
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing 100700, China; College of Pharmacy, Henan University of Chinese Medicine, Henan Zhengzhou 450046, China
| | - Yu Zhao
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing 100700, China.
| | - Hai Ma
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing 100700, China.
| |
Collapse
|
5
|
Zakaria ZZ, Mahmoud NN, Benslimane FM, Yalcin HC, Al Moustafa AE, Al-Asmakh M. Developmental Toxicity of Surface-Modified Gold Nanorods in the Zebrafish Model. ACS OMEGA 2022; 7:29598-29611. [PMID: 36061724 PMCID: PMC9434790 DOI: 10.1021/acsomega.2c01313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND nanotechnology is one of the fastest-growing areas, and it is expected to have a substantial economic and social impact in the upcoming years. Gold particles (AuNPs) offer an opportunity for wide-ranging applications in diverse fields such as biomedicine, catalysis, and electronics, making them the focus of great attention and in parallel necessitating a thorough evaluation of their risk for humans and ecosystems. Accordingly, this study aims to evaluate the acute and developmental toxicity of surface-modified gold nanorods (AuNRs), on zebrafish (Danio rerio) early life stages. METHODS in this study, zebrafish embryos were exposed to surface-modified AuNRs at concentrations ranging from 1 to 20 μg/mL. Lethality and developmental endpoints such as hatching, tail flicking, and developmental delays were assessed until 96 h post-fertilization (hpf). RESULTS we found that AuNR treatment decreases the survival rate in embryos in a dose-dependent manner. Our data showed that AuNRs caused mortality with a calculated LC50 of EC50,24hpf of AuNRs being 9.1 μg/mL, while a higher concentration of AuNRs was revealed to elicit developmental abnormalities. Moreover, exposure to high concentrations of the nanorods significantly decreased locomotion compared to untreated embryos and caused a decrease in all tested parameters for cardiac output and blood flow analyses, leading to significantly elevated expression levels of cardiac failure markers ANP/NPPA and BNP/NPPB. CONCLUSIONS our results revealed that AuNR treatment at the EC50 induces apoptosis significantly through the P53, BAX/BCL-2, and CASPASE pathways as a suggested mechanism of action and toxicity modality.
Collapse
Affiliation(s)
- Zain Zaki Zakaria
- Department
of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 122104, Qatar
- Biomedical
Research Center, Qatar University, PO Box 2713, Doha 122104, Qatar
| | - Nouf N. Mahmoud
- Department
of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 122104, Qatar
- Faculty
of Pharmacy, Al-Zaytoonah University of
Jordan, Amman 11733, Jordan
| | | | - Huseyin C. Yalcin
- Biomedical
Research Center, Qatar University, PO Box 2713, Doha 122104, Qatar
| | - Ala-Eddin Al Moustafa
- Biomedical
Research Center, Qatar University, PO Box 2713, Doha 122104, Qatar
- College
of Medicine, QU Health, Qatar University, PO Box 2713, Doha 122104, Qatar
| | - Maha Al-Asmakh
- Department
of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 122104, Qatar
- Biomedical
Research Center, Qatar University, PO Box 2713, Doha 122104, Qatar
| |
Collapse
|
6
|
Antibacterial and Antibiofilm Activity of Mercaptophenol Functionalized-Gold Nanorods Against a Clinical Isolate of Methicillin-Resistant Staphylococcus aureus. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02294-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractGold nanorods (AuNRs) were synthesized by the seed-mediated wet chemical method using a binary surfactant system. AuNRs were stabilized with polyethylene glycol, then functionalized with 4-mercaptophenol (4-MPH) ligand by surface ligand exchange. The surface-functionalized AuNRs (4-MPH-AuNRs) exhibited a typical UV–vis spectrum of AuNRs with a slightly shifted longitudinal peak. Furthermore, 4-MPH-AuNRs demonstrated a similar Fourier-Transformed Infrared spectrum to 4-MPH and a fading of the thiol band, which suggests a successful functionalization through thiol-gold binding. The antibacterial and antibiofilm activities of 4-MPH-AuNRs were evaluated against a clinical isolate of Methicillin-Resistant Staphylococcus aureus (MRSA). The results indicate that 4-MPH-AuNRs exhibit a bactericidal activity with a minimum inhibitory concentration (MIC) of ~ 6.25 $$\upmu$$
μ
g/mL against a planktonic suspension of MRSA. Furthermore, 4-MPH-AuNRs resulted in a 1.8–2.9 log-cycle reduction of MRSA biofilm viable count over a concentration range of 100–6.0 $$\upmu$$
μ
g/mL. The bacterial uptake of the surface-modified nanorods was investigated by inductively coupled plasma-optical emission spectroscopy (ICP-OES) and scanning electron microscopy (SEM) imaging; the results reveal that the nanorods were internalized into the bacterial cells after 6 h (h) of exposure. SEM imaging revealed a significant accumulation of the nanorods at the bacterial cell wall and a possible cellular internalization. Thus, 4-MPH-AuNRs can be considered a potential antibacterial agent, particularly against MRSA strain biofilms.
Collapse
|
7
|
Sunoqrot S, Niazi M, Al-Natour MA, Jaber M, Abu-Qatouseh L. Loading of Coal Tar in Polymeric Nanoparticles as a Potential Therapeutic Modality for Psoriasis. ACS OMEGA 2022; 7:7333-7340. [PMID: 35252723 PMCID: PMC8892641 DOI: 10.1021/acsomega.1c07267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/04/2022] [Indexed: 05/07/2023]
Abstract
Coal tar (CT) is a commonly used therapeutic agent in psoriasis treatment. CT formulations currently in clinical use have limitations such as toxicity and skin staining properties, leading to patient nonadherence. The purpose of this study was to develop a nanoparticle (NP) formulation for CT based on biocompatible poly(lactide-co-glycolide) (PLGA). CT was entrapped in PLGA NPs by nanoprecipitation, and the resulting NPs were characterized using dynamic light scattering and high-performance liquid chromatography (HPLC) to determine the particle size and CT loading efficiency, respectively. In vitro biocompatibility of the NPs was examined in human dermal fibroblasts. Permeation, washability, and staining experiments were carried out using skin-mimetic Strat-M membranes in Franz diffusion cells. The optimal CT-loaded PLGA NPs achieved 92% loading efficiency and were 133 nm in size with a polydispersity index (PDI) of 0.10 and a zeta potential of -40 mV, promoting colloidal stability during storage. CT NPs significantly reduced the cytotoxicity of crude CT in human dermal fibroblasts, maintaining more than 75% cell viability at the highest concentration tested, whereas an equivalent concentration of CT was associated with 28% viability. Permeation studies showed that only a negligible amount of CT NPs could cross the Strat-M membrane after 24 h, with 97% of the applied dose found accumulated within the membrane. The superiority of CT NPs was further demonstrated by the notably diminished staining ability and enhanced washability compared to those of crude CT. Our findings present a promising CT nanoformulation that can overcome its limitations in the treatment of psoriasis and other skin disorders.
Collapse
Affiliation(s)
- Suhair Sunoqrot
- Faculty
of Pharmacy, Al-Zaytoonah University of
Jordan, Amman 11733, Jordan
| | - Mohammad Niazi
- Faculty
of Pharmacy, Al-Zaytoonah University of
Jordan, Amman 11733, Jordan
- Faculty
of Pharmacy and Medical Sciences, University
of Petra, Amman 11196, Jordan
| | | | - Malak Jaber
- Faculty
of Pharmacy and Medical Sciences, University
of Petra, Amman 11196, Jordan
| | - Luay Abu-Qatouseh
- Faculty
of Pharmacy and Medical Sciences, University
of Petra, Amman 11196, Jordan
| |
Collapse
|
8
|
Mahmoud NN, Zakaria ZZ, Kheraldine H, Gupta I, Vranic S, Al-Asmakh M, Al Moustafa AE. The Effect of Surface-Modified Gold Nanorods on the Early Stage of Embryonic Development and Angiogenesis: Insight into the Molecular Pathways. Int J Mol Sci 2021; 22:11036. [PMID: 34681694 PMCID: PMC8537453 DOI: 10.3390/ijms222011036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022] Open
Abstract
Gold nanorods have been implicated in several biomedical applications. Herein, the effect of two surface-modified gold nanorods on the early stages of embryogenesis and angiogenesis was investigated using avian embryos at three days and their chorioallantoic membrane (CAM) at five days of incubation. We found that gold nanorods (GNR) modified with PEGylated phospholipid moiety show a high mortality rate in embryos after four days of exposure compared to GNR modified with PEGylated cholesterol moiety. Meanwhile, our data revealed that surface modified-GNR significantly inhibit the formation of new blood vessels in the treated CAM model after 48 h of exposure. Moreover, we report that surface-modified GNR significantly deregulate the expression of several genes implicated in cell proliferation, invasion, apoptosis, cellular energy metabolism, and angiogenesis. On the other hand, our data point out that GNR treatments can modulate the expression patterns of JNK1/2/3, NF-KB/p38, and MAPK, which could be the main molecular pathways of the nanorods in our experimental models.
Collapse
Affiliation(s)
- Nouf N. Mahmoud
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
- College of Medicine, QU Health, Qatar University, Doha 2713, Qatar;
| | - Zain Zaki Zakaria
- Biomedical Research Center, Qatar University, Doha 2713, Qatar; (Z.Z.Z.); (H.K.); (M.A.-A.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar;
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - Hadeel Kheraldine
- Biomedical Research Center, Qatar University, Doha 2713, Qatar; (Z.Z.Z.); (H.K.); (M.A.-A.)
| | - Ishita Gupta
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar;
| | - Semir Vranic
- College of Medicine, QU Health, Qatar University, Doha 2713, Qatar;
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar;
| | - Maha Al-Asmakh
- Biomedical Research Center, Qatar University, Doha 2713, Qatar; (Z.Z.Z.); (H.K.); (M.A.-A.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar;
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, Doha 2713, Qatar;
- Biomedical Research Center, Qatar University, Doha 2713, Qatar; (Z.Z.Z.); (H.K.); (M.A.-A.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar;
| |
Collapse
|
9
|
Abu-Dahab R, Mahmoud NN, Abdallah M, Hamadneh L, Hikmat S, Zaza R, Abuarqoub D, Khalil EA. Cytotoxicity and Cellular Death Modality of Surface-Decorated Gold Nanorods against a Panel of Breast Cancer Cell Lines. ACS OMEGA 2021; 6:15903-15910. [PMID: 34179634 PMCID: PMC8223419 DOI: 10.1021/acsomega.1c01386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/26/2021] [Indexed: 05/05/2023]
Abstract
Herein, the antiproliferative effect of surface-decorated gold nanorods (GNRs) was investigated against three different breast cancer cell lines. The results indicate that the cell lines exhibited different biological responses and death modalities toward the treatment. The cell lines exhibited similar cellular uptake of the nanoparticles; however, MDA-MB-231 demonstrated the highest cytotoxicity compared to other cell lines upon treatment with GNRs. The expression of the CDH1 gene, which is involved in cell adhesion and metastasis, was dramatically increased in treated MDA-MB-231 cells compared to other cell lines. Early apoptosis and late apoptosis are the dominant cellular death modalities of MDA-MB-231 cells upon treatment with GNRs.
Collapse
Affiliation(s)
- Rana Abu-Dahab
- School
of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Nouf N. Mahmoud
- Faculty
of Pharmacy, Al-Zaytoonah University of
Jordan, Amman 11733, Jordan
| | - Maha Abdallah
- School
of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Lama Hamadneh
- Faculty
of Pharmacy, Al-Zaytoonah University of
Jordan, Amman 11733, Jordan
| | - Suhair Hikmat
- Faculty
of Pharmacy, Al-Zaytoonah University of
Jordan, Amman 11733, Jordan
| | - Rand Zaza
- Cell
Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Duaa Abuarqoub
- Cell
Therapy Center, The University of Jordan, Amman 11942, Jordan
- Department
of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical
Sciences, University of Petra, Amman 11196, Jordan
| | - Enam A. Khalil
- School
of Pharmacy, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
10
|
Liao S, Yue W, Cai S, Tang Q, Lu W, Huang L, Qi T, Liao J. Improvement of Gold Nanorods in Photothermal Therapy: Recent Progress and Perspective. Front Pharmacol 2021; 12:664123. [PMID: 33967809 PMCID: PMC8100678 DOI: 10.3389/fphar.2021.664123] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/24/2021] [Indexed: 02/05/2023] Open
Abstract
Cancer is a life-threatening disease, and there is a significant need for novel technologies to treat cancer with an effective outcome and low toxicity. Photothermal therapy (PTT) is a noninvasive therapeutic tool that transports nanomaterials into tumors, absorbing light energy and converting it into heat, thus killing tumor cells. Gold nanorods (GNRs) have attracted widespread attention in recent years due to their unique optical and electronic properties and potential applications in biological imaging, molecular detection, and drug delivery, especially in the PTT of cancer and other diseases. This review summarizes the recent progress in the synthesis methods and surface functionalization of GNRs for PTT. The current major synthetic methods of GNRs and recently improved measures to reduce toxicity, increase yield, and control particle size and shape are first introduced, followed by various surface functionalization approaches to construct a controlled drug release system, increase cell uptake, and improve pharmacokinetics and tumor-targeting effect, thus enhancing the photothermal effect of killing the tumor. Finally, a brief outlook for the future development of GNRs modification and functionalization in PTT is proposed.
Collapse
Affiliation(s)
- Shengnan Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wang Yue
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuning Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weitong Lu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lingxiao Huang
- Department of Radiation Biology, Radiation Oncology Key Laboratory of Sichuan Province, Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Tingting Qi
- Department of Radiation Biology, Radiation Oncology Key Laboratory of Sichuan Province, Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Development of gold nanorods for cancer treatment. J Inorg Biochem 2021; 220:111458. [PMID: 33857697 DOI: 10.1016/j.jinorgbio.2021.111458] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 02/06/2023]
Abstract
There has been growing interest in the application of gold nanorods (GNRs) to tumor therapy due to the unique properties they possess. In the past, GNRs were not used in clinical treatments as they lacked stability in vivo and were characterized by potential toxicity. Despite these issues, the significant potential for utilizing GNRs to conduct safe and effective treatments for tumors cannot be ignored. Therefore, it remains crucial to thoroughly investigate the mechanisms behind the toxicity of GNRs in order to provide the means of overcoming obstacles to its full application in the future. This review presents the toxic effects of GNRs, the factors affecting toxicity and the methods to improve biocompatibility, all of which are presently being studied. Finally, we conclude by briefly discussing the current research status of GNRs and provide additional perspective on the challenges involved along with the course of development for GNRs in the future.
Collapse
|
12
|
Dahabiyeh LA, Mahmoud NN, Al-Natour MA, Safo L, Kim DH, Khalil EA, Abu-Dahab R. Phospholipid-Gold Nanorods Induce Energy Crisis in MCF-7 Cells: Cytotoxicity Evaluation Using LC-MS-Based Metabolomics Approach. Biomolecules 2021; 11:364. [PMID: 33673519 PMCID: PMC7997200 DOI: 10.3390/biom11030364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/19/2022] Open
Abstract
Phospholipid-modified gold nanorods (phospholipid-GNRs) have demonstrated drastic cytotoxicity towards MCF-7 breast cancer cells compared to polyethylene glycol-coated GNRs (PEG-GNRs). In this study, the mechanism of cytotoxicity of phospholipid-GNRs towards MCF-7 cells was investigated using mass spectrometry-based global metabolic profiling and compared to PEGylated counterparts. The results showed that when compared to PEG-GNRs, phospholipid-GNRs induced significant and more pronounced impact on the metabolic profile of MCF-7 cells. Phospholipid-GNRs significantly decreased the levels of metabolic intermediates and end-products associated with cellular energy metabolisms resulting in dysfunction in TCA cycle, a reduction in glycolytic activity, and imbalance of the redox state. Additionally, phospholipid-GNRs disrupted several metabolism pathways essential for the normal growth and proliferation of cancer cells including impairment in purine, pyrimidine, and glutathione metabolisms accompanied by lower amino acid pools. On the other hand, the effects of PEG-GNRs were limited to alteration of glycolysis and pyrimidine metabolism. The current work shed light on the importance of metabolomics as a valuable analytical approach to explore the molecular effects of GNRs with different surface chemistry on cancer cell and highlights metabolic targets that might serve as promising treatment strategy in cancer.
Collapse
Affiliation(s)
- Lina A. Dahabiyeh
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Nouf N. Mahmoud
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Mohammad A. Al-Natour
- Department of Pharmaceutics and Pharmaceutical Technology, The Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan;
| | - Laudina Safo
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (L.S.); (D.-H.K.)
| | - Dong-Hyun Kim
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (L.S.); (D.-H.K.)
| | - Enam A. Khalil
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Rana Abu-Dahab
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| |
Collapse
|
13
|
Interaction of gold nanorods with cell culture media: Colloidal stability, cytotoxicity and cellular death modality. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Rasekholghol A, Fazaeli Y, Moradi Dehaghi S, Ashtari P, Kardan M, Feizi S, Samiee Matin M. CdTe quantum dots on gold-198 nano particles: introducing a novel theranostic agent. RADIOCHIM ACTA 2020. [DOI: 10.1515/ract-2020-0047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
The influence of coating a CdTe quantum dots (QDs) layer on the 198Au nanoparticles (NPs) in biodistribution of 198Au nanoparticles was investigated. The 198Au nanoparticles were prepared by irradiating the highly pure metallic gold in Tehran research nuclear reactor and subsequently 198Au-NPs were synthesized and subjected to surface modification with cysteamine and CdTe QDs to form an adduct. The prepared nanomaterials were characterized with X-ray diffraction, radio thin layer chromatography, transmission electron microscopy, and scanning electron microscopy. In-vivo biodistribution and tumor avidity studies were performed by intravenously injecting of cysteamine@198AuNPs: CdTe QDs nanocomposite into rats. The %ID/g (percent of the initial dose per gram tissue weight) in dissected organs and Fibrosarcoma tumor specimens was then measured. The hydrophilicity of the cysteamine@198AuNPs was increased by surface modification with CdTe QDs. Rapid excretion from body and high tumor uptake for cysteamine@198AuNPs: CdTe QDs revealed that this radiotracer could potentially be used in nuclear medicine as a theranostic agent.
Collapse
Affiliation(s)
- Ariam Rasekholghol
- Department of Chemistry , Islamic Azad University , Tehran North Branch , Tehran , Islamic Republic of Iran
| | - Yousef Fazaeli
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI) , Moazzen Blvd., Rajaeeshahr , P.O. Box 31485-498 , Karaj , Islamic Republic of Iran
| | - Shahram Moradi Dehaghi
- Department of Chemistry , Islamic Azad University , Tehran North Branch , Tehran , Islamic Republic of Iran
| | - Parviz Ashtari
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI) , Moazzen Blvd., Rajaeeshahr , P.O. Box 31485-498 , Karaj , Islamic Republic of Iran
| | - Mohammadreza Kardan
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI) , Moazzen Blvd., Rajaeeshahr , P.O. Box 31485-498 , Karaj , Islamic Republic of Iran
| | - Shahzad Feizi
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI) , Moazzen Blvd., Rajaeeshahr , P.O. Box 31485-498 , Karaj , Islamic Republic of Iran
| | - Milad Samiee Matin
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI) , Moazzen Blvd., Rajaeeshahr , P.O. Box 31485-498 , Karaj , Islamic Republic of Iran
| |
Collapse
|
15
|
Hamed R, Mahmoud NN, Alnadi SH, Alkilani AZ, Hussein G. Diclofenac diethylamine nanosystems-loaded bigels for topical delivery: development, rheological characterization, and release studies. Drug Dev Ind Pharm 2020; 46:1705-1715. [PMID: 32892653 DOI: 10.1080/03639045.2020.1820038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The objective of this study was to develop novel topical drug delivery systems of the nonsteroidal anti-inflammatory drug diclofenac diethylamine (DDEA). Toward this objective, DDEA was loaded into two nanosystems, the oil in water (O/W) nanoemulsion (DDEA-NE) and the gold nanorods (GNR) that were conjugated to DDEA, forming DDEA-GNR. The DDEA-NE and DDEA-GNR were characterized in terms of particle size, zeta potential, morphology, thermodynamic stability, DDEA loading efficiency, and UV-Vis spectroscopy. These nanosystems were then incorporated into the biphasic gel-based formulations (bigels) for topical delivery. The rheological characterization and release studies of the DDEA NE- and DDEA GNR-incorporated bigels were performed and compared to those of DDEA traditional bigel. DDEA-NE exhibited a droplet size 15.2 ± 1.5 nm and zeta potential -0.37 ± 0.06 mV. The particle size of GNR was approximately 66 nm × 17 nm with an aspect ratio of approximately 3.8. The bigels showed composition-dependent viscoelastic properties, which in turn play a vital role in determining the rate and mechanism of DDEA release from the bigels. Bigels showed a controlled-release pattern where 61.6, 91.7, and 50.0% of the drug was released from DDEA traditional bigel, DDEA NE-incorporated bigel, and DDEA GNR-incorporated bigel, respectively, after 24 h. The ex vivo permeation studies showed that the amount of DDEA permeated through excised skin was relatively low, between 2.7% and 18.2%. The results suggested that the incorporation of the nanosystems NE and GNR into bigels can potentially improve the topical delivery of DDEA.
Collapse
Affiliation(s)
- Rania Hamed
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Nouf N Mahmoud
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Sabreen Hassan Alnadi
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Ahlam Zaid Alkilani
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa, Jordan
| | - Ghaid Hussein
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa, Jordan
| |
Collapse
|
16
|
Yin H, Du B, Chen Y, Song N, Li Z, Li J, Luo F, Tan H. Dual-encapsulated biodegradable 3D scaffold from liposome and waterborne polyurethane for local drug control release in breast cancer therapy. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:2220-2237. [PMID: 32663417 DOI: 10.1080/09205063.2020.1796230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Compared with the traditional chemotherapy by injection, local release of drugs in the lesion area is a more efficient and less harmful treatment for solid tumors. However, the selection of appropriate drug carrier and controlled release of chemotherapy drugs are still great challenges. Herein, a kind of dual-encapsulated three-dimensional (3D) scaffold is designed for local drug release via blending the paclitaxel (PTX) loaded phospholipid liposomes with waterborne polyurethane (PU) by freeze-drying. The controlled release of paclitaxel is carried out through two simultaneous procedures. First, liposomes encapsulated in polyurethane scaffold can slowly release by water absorption and degradation of polyurethane. Then paclitaxel encapsulated in liposomes can also be released into water. Compared with the polyurethane scaffold which directly encapsulated paclitaxel, dual-encapsulated scaffold has slower initial release amount and maintain higher concentration of paclitaxel in later stage. Moreover, the protection of the phospholipid layer can prevent paclitaxel from being quickly decomposed and cleared, which could greatly improve the bioavailability and therapeutic effect of paclitaxel. Cell experiment results can be seen that dual-encapsulated scaffold not only has higher inhibition rate to the breast cancer MCF7 cells, but also has less damage to normal tissue cells. It provides a more effective platform for the local drug therapy in the treatment of tumors.[Formula: see text].
Collapse
Affiliation(s)
- Hang Yin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Bohong Du
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Yue Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Nijia Song
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, China
| | - Zhen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Jiehua Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Feng Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| |
Collapse
|