1
|
Mathers A, Fulem M. Drug-polymer compatibility prediction via COSMO-RS. Int J Pharm 2024; 664:124613. [PMID: 39179010 DOI: 10.1016/j.ijpharm.2024.124613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 08/26/2024]
Abstract
In this work, the solid-liquid equilibrium (SLE) curve for ten active pharmaceutical ingredients (APIs) with the polymer polyvinylpyrrolidone (PVP) K12 was purely predicted using the Conductor-like Screening Model for Real Solvents (COSMO-RS). In particular, two COSMO-RS-based strategies were followed (i.e., a traditional approach and an expedited approach), and their performances were compared. The veracity of the predicted SLE curves was assessed via a comparison with their respective SLE dataset that was obtained using the step-wise dissolution (S-WD) method. Overall, the COSMO-RS-based API-PVP K12 SLE curves were in satisfactory agreement with the S-WD-based data points. Of the twenty predicted SLE curves, only two were found to be in strong disagreement with the corresponding experimental values (both modeled using the expedited approach). Hence, it was recommended to use the traditional approach when predicting the API-polymer SLE curve. At the present moment, COSMO-RS may be an effective computational tool for the expeditious screening of API-polymer compatibility, particularly in the case of promising novel APIs, for which experimental datasets are likely limited or non-existent.
Collapse
Affiliation(s)
- Alex Mathers
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Michal Fulem
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
2
|
Zhang C, Li B, Bai Y, Liu Y, Zhang Y, Zhang J. Polymers Enhance Chlortetracycline Hydrochloride Solubility. Int J Mol Sci 2024; 25:10591. [PMID: 39408919 PMCID: PMC11477051 DOI: 10.3390/ijms251910591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Chlortetracycline hydrochloride (CTC) is a broad-spectrum tetracycline antibiotic with a wide range of antibacterial activities. Due to low solubility, poor stability, and low bioavailability, clinical preparation development is limited. We sought to improve these solubility and dissolution rates by preparing solid dispersions. A hydrophilic polymer was selected as the carrier, and a solid dispersion was prepared using a medium grinding method, with samples characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), powder X-ray diffraction (PXRD), Fourier-transform infrared spectroscopy (FT-IR), and particle size distribution (PSD). To maximize CTC solubility and stability, different polymer types and optimal drug-to-polymer ratios were screened. The solubility of optimized povidone K30 (PVPK30) (1/0.75, w/w)-, hydroxypropyl-β-cyclodextrin (HP-β-CD) (1/2, w/w)-, and gelatin (1/1, w/w)-based solid dispersions was 6.25-, 7.7-, and 3.75-fold higher than that of pure CTC powder, respectively. Additionally, in vitro dissolution studies showed that the gelatin-based solid dispersion had a higher initial dissolution rate. SEM and PS analyses confirmed that this dispersion had smaller and more uniform particles than PVPK30 and HP-β-CD dispersions. Therefore, successful solid polymer dispersion preparations improved the CTC solubility, dissolution rates, and stability, which may have potential as drug delivery systems.
Collapse
Affiliation(s)
- Chao Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Anning District, Lanzhou 730070, China; (C.Z.); (Y.L.)
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Qilihe District, Lanzhou 730050, China; (B.L.); (Y.B.)
| | - Bing Li
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Qilihe District, Lanzhou 730050, China; (B.L.); (Y.B.)
| | - Yubin Bai
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Qilihe District, Lanzhou 730050, China; (B.L.); (Y.B.)
| | - Yangling Liu
- College of Veterinary Medicine, Gansu Agricultural University, Anning District, Lanzhou 730070, China; (C.Z.); (Y.L.)
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Qilihe District, Lanzhou 730050, China; (B.L.); (Y.B.)
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Anning District, Lanzhou 730070, China; (C.Z.); (Y.L.)
| | - Jiyu Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Anning District, Lanzhou 730070, China; (C.Z.); (Y.L.)
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Qilihe District, Lanzhou 730050, China; (B.L.); (Y.B.)
| |
Collapse
|
3
|
Wang H, Luan Y, Li M, Wu S, Zhang S, Xue J. Crystallization and intermolecular hydrogen bonding in carbamazepine-polyvinyl pyrrolidone solid dispersions: An experiment and molecular simulation study on drug content variation. Int J Pharm 2024; 666:124769. [PMID: 39341386 DOI: 10.1016/j.ijpharm.2024.124769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/08/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
The choice of drug content is a critical factor as far as the solid dispersion is concerned. This investigation aims to build the relationship between the drug content, intermolecular hydrogen bonding and the crystalline of the carbamazepine-polyvinyl pyrrolidone solid dispersion. In this work, the microstructural changes of solid dispersions were investigated using experimental characterization combined with molecular simulation. Experimental investigations demonstrated that increasing the drug content enhances the intermolecular hydrogen bonding between drugs, resulting in the crystalline phase of the drug emerged in the solid dispersion. This negatively affects the solubility and stability of solid dispersions. Molecular simulations were then used to analyze the changes of intermolecular hydrogen bonding at different drug content in the system. It revealed a tenfold increase in drug-drug hydrogen bonding concentration as drug content elevated from 10% to 50%, while the drug-excipient hydrogen bonding concentration decreased by 45%. The correlation analysis proves the significant relationships among the drug content, intermolecular hydrogen bonding, and crystallinity of solid dispersion. Using polynomial fitting analysis, the quantitative relationships between the drug content and crystalline properties were investigated. This study will offer valuable insights into the impact of drug content on the performance of solid dispersion.
Collapse
Affiliation(s)
- Huaqi Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yajie Luan
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Mengke Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Sizhu Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Sidian Zhang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China.
| | - Jiajia Xue
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
4
|
Zografi G, Newman A, Shalaev E. Structural Features of the Glassy State and Their Impact on the Solid-State Properties of Organic Molecules in Pharmaceutical Systems. J Pharm Sci 2024:S0022-3549(24)00186-2. [PMID: 38768756 DOI: 10.1016/j.xphs.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
This paper reviews the structure and properties of amorphous active pharmaceutical ingredients (APIs), including small molecules and proteins, in the glassy state (below the glass transition temperature, Tg). Amorphous materials in the neat state and formulated with excipients as miscible amorphous mixtures are included, and the role of absorbed water in affecting glass structure and stability has also been considered. We defined the term "structure" to indicate the way the various molecules in a glass interact with each other and form distinctive molecular arrangements as regions or domains of varying number of molecules, molecular packing, and density. Evidence is presented to suggest that such systems generally exist as heterogeneous structures made up of high-density domains surrounded by a lower density arrangement of molecules, termed the microstructure. It has been shown that the method of preparation and the time frame for handling and storage can give rise to variable glass structures and varying physical properties. Throughout this paper, examples are given of theoretical, computer simulation, and experimental studies which focus on the nature of intermolecular interactions, the size of heterogeneous higher density domains, and the impact of such systems on the relative physical and chemical stability of pharmaceutical systems.
Collapse
Affiliation(s)
- George Zografi
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, United States
| | - Ann Newman
- Seventh Street Development Group LLC, Kure Beach, NC, United States.
| | | |
Collapse
|
5
|
Wu J, Mooter GVD. The influence of hydrogen bonding between different crystallization tendency drugs and PVPVA on the stability of amorphous solid dispersions. Int J Pharm 2023; 646:123440. [PMID: 37742824 DOI: 10.1016/j.ijpharm.2023.123440] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/13/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Amorphous solid dispersion (ASD) is one of the formulation strategies for drugs displaying low solubility and low oral bioavailability. In this study, high drug-loaded ASDs of drugs with different crystallization tendencies were prepared by spray drying. The aim was to investigate the influence of hydrogen bonding between the drug and the model polymer PVPVA on the physical stability of ASDs containing drugs with different crystallization tendencies. From the 60-day stability study results, the intermolecular hydrogen bonding has a considerable stabilizing effect on the ASDs of the drug with a moderate crystallization tendency. Nimesulide (hydrogen bond donor) can maintain the amorphous form for a longer time than Fenofibrate (no-hydrogen bond donor) during storage. In the ASDs with fast crystallization tendency drugs (naproxen and caffeine), intermolecular hydrogen bonds are not very effective in preventing drug crystallization, and the effect on the stability of ASD is relatively weak. However, for drugs with a slow tendency to crystallize (indomethacin and miconazole), the ASDs remained in an amorphous state during the monitored storage period, making it impossible to compare the effect of intermolecular hydrogen bonds on the stability of this type of ASDs. It also reveals that intermolecular hydrogen bonds can increase the drug loading capacity of ASDs. The relationship between drug loading and ASD stability was further analyzed by the state diagram. This study clearly pointed out that the physical stability of ASDs of drugs with different crystallization tendencies is affected to a different extent by intermolecular hydrogen bonds.
Collapse
Affiliation(s)
- Jingya Wu
- Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49 b921, 3000 Leuven, Belgium
| | - Guy Van den Mooter
- Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49 b921, 3000 Leuven, Belgium.
| |
Collapse
|
6
|
Saha SK, Joshi A, Singh R, Dubey K. Review of industrially recognized polymers and manufacturing processes for amorphous solid dispersion based formulations. Pharm Dev Technol 2023; 28:678-696. [PMID: 37427544 DOI: 10.1080/10837450.2023.2233595] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
Evolving therapeutic landscape through combinatorial chemistry and high throughput screening have resulted in an increased number of poorly soluble drugs. Drug delivery strategies quickly adapted to convert these drugs into successful therapies. Amorphous solid dispersion (ASD) technology is widely employed as a drug delivery strategy by pharmaceutical industries to overcome the challenges associated with these poorly soluble drugs. The development of ASD formulation requires an understanding of polymers and manufacturing techniques. A review of US FDA-approved ASD-based products revealed that only a limited number of polymers and manufacturing technologies are employed by pharmaceutical industries. This review provides a comprehensive guide for the selection and overview of polymers and manufacturing technologies adopted by pharmaceutical industries for ASD formulation. The various employed polymers with their underlying mechanisms for solution-state and solid-state stability are discussed. ASD manufacturing techniques, primarily implemented by pharmaceutical industries for commercialization, are presented in Quality by Design (QbD) format. An overview of novel excipients and progress in manufacturing technologies are also discussed. This review provides insights to the researchers on the industrially accepted polymers and manufacturing technology for ASD formulation that has translated these challenging drugs into successful therapies.
Collapse
Affiliation(s)
- Sumit Kumar Saha
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
- Formulation Research and Development - Orals, Sun Pharmaceuticals Industries Limited, Gurugram, India
| | | | - Romi Singh
- Formulation Research and Development - Orals, Sun Pharmaceuticals Industries Limited, Gurugram, India
| | - Kiran Dubey
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
7
|
Li J, Wang Y, Yu D. Effects of Additives on the Physical Stability and Dissolution of Polymeric Amorphous Solid Dispersions: a Review. AAPS PharmSciTech 2023; 24:175. [PMID: 37603110 DOI: 10.1208/s12249-023-02622-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Polymeric amorphous solid dispersion (ASD) is a popular approach for enhancing the solubility of poorly water-soluble drugs. However, achieving both physical stability and dissolution performance in an ASD prepared with a single polymer can be challenging. Therefore, a secondary excipient can be added. In this paper, we review three classes of additives that can be added internally to ASDs: (i) a second polymer, to form a ternary drug-polymer-polymer ASD, (ii) counterions, to facilitate in situ salt formation, and (iii) surfactants. In an ASD prepared with a combination of polymers, each polymer exerts a unique function, such as a stabilizer in the solid state and a crystallization inhibitor during dissolution. In situ salt formation in ASD usually leads to substantial increases in the glass transition temperature, contributing to improved physical stability. Surfactants can enhance the wettability of ASD particles, thereby promoting rapid drug release. However, their potential adverse effects on physical stability and dissolution, resulting from enhanced molecular mobility and competitive molecular interaction with the polymer, respectively, warrant careful consideration. Finally, we discuss the impact of magnesium stearate and inorganic salts, excipients added externally upon downstream processing, on the solid-state stability as well as the dissolution of ASD tablets.
Collapse
Affiliation(s)
- Jinghan Li
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Yihan Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, 20 North Pine Street, Baltimore, Maryland, 21201, USA
| | - Dongyue Yu
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey, 08540, USA.
| |
Collapse
|
8
|
Zhang J, Guo M, Luo M, Cai T. Advances in the development of amorphous solid dispersions: The role of polymeric carriers. Asian J Pharm Sci 2023; 18:100834. [PMID: 37635801 PMCID: PMC10450425 DOI: 10.1016/j.ajps.2023.100834] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/26/2023] [Accepted: 07/23/2023] [Indexed: 08/27/2023] Open
Abstract
Amorphous solid dispersion (ASD) is one of the most effective approaches for delivering poorly soluble drugs. In ASDs, polymeric materials serve as the carriers in which the drugs are dispersed at the molecular level. To prepare the solid dispersions, there are many polymers with various physicochemical and thermochemical characteristics available for use in ASD formulations. Polymer selection is of great importance because it influences the stability, solubility and dissolution rates, manufacturing process, and bioavailability of the ASD. This review article provides a comprehensive overview of ASDs from the perspectives of physicochemical characteristics of polymers, formulation designs and preparation methods. Furthermore, considerations of safety and regulatory requirements along with the studies recommended for characterizing and evaluating polymeric carriers are briefly discussed.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
| | - Minshan Guo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Minqian Luo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ting Cai
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
9
|
Rosiak N, Tykarska E, Cielecka-Piontek J. Amorphous Pterostilbene Delivery Systems Preparation-Innovative Approach to Preparation Optimization. Pharmaceutics 2023; 15:pharmaceutics15041231. [PMID: 37111715 PMCID: PMC10145601 DOI: 10.3390/pharmaceutics15041231] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The aim of our research was to improve the solubility and antioxidant activity of pterostilbene (PTR) by developing a novel amorphous solid dispersion (ASD) with Soluplus® (SOL). DSC analysis and mathematical models were used to select the three appropriate PTR and SOL weight ratios. The amorphization process was carried out by a low-cost and green approach involving dry milling. An XRPD analysis confirmed the full amorphization of systems in 1:2 and 1:5 weight ratios. One glass transition (Tg) observed in DSC thermograms confirmed the complete miscibility of the systems. The mathematical models indicated strong heteronuclear interactions. SEM micrographs suggest dispersed PTR within the SOL matrix and a lack of PTR crystallinity, and showed that after the amorphization process, PTR-SOL systems had a smaller particle size and larger surface area compared with PTR and SOL. An FT-IR analysis confirmed that hydrogen bonds were responsible for stabilizing the amorphous dispersion. HPLC studies showed no decomposition of PTR after the milling process. PTR's apparent solubility and antioxidant activity after introduction into ASD increased compared to the pure compound. The amorphization process improved the apparent solubility by ~37-fold and ~28-fold for PTR-SOL, 1:2 and 1:5 w/w, respectively. The PTR-SOL 1:2 w/w system was preferred due to it having the best solubility and antioxidant activity (ABTS: IC50 of 56.389 ± 0.151 µg·mL-1 and CUPRAC: IC0.5 of 82.52 ± 0.88 µg·mL-1).
Collapse
Affiliation(s)
- Natalia Rosiak
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland
| | - Ewa Tykarska
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, 6 Grunwaldzka St., 60-780 Poznan, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland
| |
Collapse
|
10
|
Chen Q, Ji Y. Thermodynamic Mechanism of Physical Stability of Amorphous Pharmaceutical Formulations. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c02953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Qiao Chen
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing211189, People’s Republic of China
| | - Yuanhui Ji
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing211189, People’s Republic of China
| |
Collapse
|
11
|
Gao D, Zhu D, Zhou X, Dong S, Chen Y. Inhomogeneous Phase Significantly Reduces Oral Bioavailability of Felodipine/PVPVA Amorphous Solid Dispersion. Mol Pharm 2023; 20:409-418. [PMID: 36529939 DOI: 10.1021/acs.molpharmaceut.2c00695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Inhomogeneity is a key factor that significantly influences the dissolution behavior of amorphous solid dispersion (ASD). However, the underlying mechanisms of the effects of inhomogeneous phase on the dissolution characteristics as well as the bioavailability of ASDs are still unclear. In this study, two types of felodipine/PVPVA based ASDs with 30 wt % drug loading but different homogeneity were prepared: homogeneous "30 wt % ASD" prepared by spray drying, as well as inhomogeneous "30 wt % PM" prepared by physically mixing the sprayed dried 70 wt % ASD with PVPVA. We aimed to investigate (1) drug-polymer interaction mechanism and "apparent" interaction strength within the two ASDs and (2) dissolution mechanism as well as in vivo performance of the two ASDs. DSC thermogram revealing a single Tg in 30 wt % ASD confirmed its homogeneous phase. 1H NMR, FT-IR, and DVS studies collectively proved that strong hydrogen bonding interactions formed between felodipine and PVPVA in ASDs. Moreover, homogeneous "30 wt % ASD" has more numbers of interacting drug-polymer pairs, and thus exhibits stronger "apparent" interaction strength comparing with that of inhomogeneous "30 wt % PM". Unexpectedly,in the in vitro dissolution studies, inhomogeneous "30 wt % PM" showed much faster dissolution and also generated drug concentration ∼4.4 times higher than that of homogeneous "30 wt % ASD". However, drug precipitate recrystallized much slower in homogeneous "30 wt % ASD", presumably because much more polymer coprecipitated with amorphous drug in this system, which helps inhibiting drug crystallization. Surprisingly, homogeneous "30 wt % ASD" showed a significantly higher bioavailability in the in vivo pharmacokinetic studies, with the maximum plasma concentrations (Cmax) and the area under the curve (AUC) values of about 2.7 and 2.3 times higher than those of inhomogeneous "30 wt % PM". The above findings indicated that the amorphous state of drug precipitate contributes significantly to increase bioavailability of ASDs, while traditional in vitro dissolution studies, for instance, if we only compare the dissolved drug in solution or the capability of an ASD to generate supersaturation, are inadequate to predict in vivo performance of ASDs. In conclusion, the phase behavior of ASDs directly impact the formation of drug-polymer interaction, which controls not only drug supersaturation in solution but also drug crystallization in precipitate, and ultimately affect the in vivo performance of ASDs.
Collapse
Affiliation(s)
- Di Gao
- School of Pharmacy, Minzu University of China, 100081 Beijing, China
| | - Dan Zhu
- School of Pharmacy, Minzu University of China, 100081 Beijing, China
| | - Xue Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610000 Chengdu, China
| | - Shuai Dong
- School of Pharmacy, Minzu University of China, 100081 Beijing, China
| | - Yuejie Chen
- School of Pharmacy, Minzu University of China, 100081 Beijing, China.,Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, 100081 Beijing, China
| |
Collapse
|
12
|
Gumireddy A, Bookwala M, Zhou D, Wildfong PLD, Buckner IS. Investigating and Comparing the Applicability of the R3m Molecular Descriptor and Solubility Parameter Estimation Approaches in Predicting Dispersion Formation Potential of APIs in a Random Co-Polymer Polyvinylpyrrolidone Vinyl Acetate and its Homopolymer. J Pharm Sci 2023; 112:318-327. [PMID: 36351478 DOI: 10.1016/j.xphs.2022.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 11/07/2022]
Abstract
Evaluation of different amorphous solid dispersion carrier matrices is enabled by active pharmaceutical ingredient (API) structure-based predictions. This study compares the utility of Hansen Solubility Parameters with the R3m molecular descriptor for identifying dispersion polymers based on the structure of the drug molecule. Twelve API-polymer combinations (4 APIs and 3 interrelated polymers) were used to test each approach. Co-solidified mixtures containing 75% API were prepared by melt-quenching. Phase behavior was evaluated and classified using differential scanning calorimetry, powder X-ray diffraction, polarized light microscopy, and hot stage microscopy. Observations of dispersion behavior were compared to predictions made using the Hansen Solubility Parameter and R3m. The solubility parameter approach misclassified the dispersion behavior of 1 API-polymer combination and also did not produce definite predictions in 3 out of 12 of the API-polymer combinations. In contrast, R3m classifications of dispersion behavior were correct in all but two cases, with one misclassification and one ambiguous prediction. The solubility parameters best classify dispersion behavior when specific drug-polymer intermolecular interactions are present, but may be less useful otherwise. Ultimately, these two methods are most effectively used together, as they are based on distinct features of the same molecular structure.
Collapse
Affiliation(s)
- Ashwini Gumireddy
- Duquense University, School of Pharmacy, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA
| | - Mustafa Bookwala
- Duquense University, School of Pharmacy, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA
| | - Deliang Zhou
- Drug Product Development, Research and Development, AbbVie Inc., Abbott Park, IL, USA
| | - Peter L D Wildfong
- Duquense University, School of Pharmacy, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA
| | - Ira S Buckner
- Duquense University, School of Pharmacy, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
Shi F, Li R, Wang W, Yu X, Zhu F, Huang Y, Wang J, Zhang Z. Carboxymethyl starch as a solid dispersion carrier to enhance the dissolution and bioavailability of piperine and 18 β-glycyrrhetinic acid. Drug Dev Ind Pharm 2023; 49:30-41. [PMID: 36803327 DOI: 10.1080/03639045.2023.2182120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
OBJECTIVE To investigate the applicability of carboxymethyl starch (CMS) as a carrier to prepare solid dispersions (SDs) of piperine (PIP) and 18β-glycyrrhetinic acid (β-GA) (PIP-CMS and β-GA-CMS SDs) and to explore the influence of drug properties on carrier selection. SIGNIFICANCE The low oral bioavailability of natural therapeutic molecules, including PIP and β-GA, severely restricts their pharmaceutical applications. Moreover, CMS, a natural polymer, is rarely reported as a carrier for SDs. METHODS PIP-CMS and β-GA-CMS SDs were prepared using the solvent evaporation method. Differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), Fourier transform infrared (FT-IR) spectroscopy, and scanning electron microscopy (SEM) were used for formulation characterization. Additionally, drug release characteristics were investigated. RESULTS In vitro dissolution studies showed that the dissolutions of PIP-CMS and β-GA-CMS SDs were 1.90-2.04 and 1.97-2.22 times higher than pure PIP and β-GA, respectively, at a drug:polymer ratio of 1:6. DSC, XRPD, FT-IR, and SEM analyses confirmed the formation of SDs in their amorphous states. Significant improvements in Cmax and AUC0-24 h of PIP-CMS and β-GA-CMS SDs (17.51 ± 8.15 μg/mL and 210.28 ± 117.13 μg·h/mL, respectively) and (32.17 ± 9.45 μg/mL and 165.36 ± 38.75 μg·h/mL, respectively) were observed in the pharmacokinetic study. Compared with weakly acidic β-GA, loading weakly basic PIP seemed to have a profound effect on stability through intermolecular forces. CONCLUSIONS Our findings showed CMS could be a promising carrier for SDs, and loading weakly basic drug may be more suitable, especially in binary SDs system.
Collapse
Affiliation(s)
- Fanli Shi
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ruilong Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Key Laboratory of Oral Drug Delivery System of Chinese Meteria Medica of State Administration of Traditional Chinese Medicine, Jiangsu Branch of China Academy of Chinese Medical Science, Nanjing, China
| | - Wenjing Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Key Laboratory of Oral Drug Delivery System of Chinese Meteria Medica of State Administration of Traditional Chinese Medicine, Jiangsu Branch of China Academy of Chinese Medical Science, Nanjing, China
| | - Xiangyu Yu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Key Laboratory of Oral Drug Delivery System of Chinese Meteria Medica of State Administration of Traditional Chinese Medicine, Jiangsu Branch of China Academy of Chinese Medical Science, Nanjing, China
| | - Fenxia Zhu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Key Laboratory of Oral Drug Delivery System of Chinese Meteria Medica of State Administration of Traditional Chinese Medicine, Jiangsu Branch of China Academy of Chinese Medical Science, Nanjing, China
| | - Yiping Huang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Key Laboratory of Oral Drug Delivery System of Chinese Meteria Medica of State Administration of Traditional Chinese Medicine, Jiangsu Branch of China Academy of Chinese Medical Science, Nanjing, China
| | - Jing Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Key Laboratory of Oral Drug Delivery System of Chinese Meteria Medica of State Administration of Traditional Chinese Medicine, Jiangsu Branch of China Academy of Chinese Medical Science, Nanjing, China
| | - Zhenhai Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Key Laboratory of Oral Drug Delivery System of Chinese Meteria Medica of State Administration of Traditional Chinese Medicine, Jiangsu Branch of China Academy of Chinese Medical Science, Nanjing, China
| |
Collapse
|
14
|
Pugliese A, Tobyn M, Hawarden LE, Abraham A, Blanc F. New Development in Understanding Drug-Polymer Interactions in Pharmaceutical Amorphous Solid Dispersions from Solid-State Nuclear Magnetic Resonance. Mol Pharm 2022; 19:3685-3699. [PMID: 36037249 PMCID: PMC9644399 DOI: 10.1021/acs.molpharmaceut.2c00479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 01/08/2023]
Abstract
Pharmaceutical amorphous solid dispersions (ASDs) represent a widely used technology to increase the bioavailability of active pharmaceutical ingredients (APIs). ASDs are based on an amorphous API dispersed in a polymer, and their stability is driven by the presence of strong intermolecular interactions between these two species (e.g., hydrogen bond, electrostatic interactions, etc.). The understanding of these interactions at the atomic level is therefore crucial, and solid-state nuclear magnetic resonance (NMR) has demonstrated itself as a very powerful technique for probing API-polymer interactions. Other reviews have also reported exciting approaches to study the structures and dynamic properties of ASDs and largely focused on the study of API-polymer miscibility and on the identification of API-polymer interactions. Considering the increased use of NMR in the field, the aim of this Review is to specifically highlight recent experimental strategies used to identify API-polymer interactions and report promising recent examples using one-dimensional (1D) and two-dimensional (2D) experiments by exploiting the following emerging approaches of very-high magnetic field and ultrafast magic angle spinning (MAS). A range of different ASDs spanning APIs and polymers with varied structural motifs is targeted to illustrate new ways to understand the mechanism of stability of ASDs to enable the design of new dispersions.
Collapse
Affiliation(s)
- Andrea Pugliese
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Michael Tobyn
- Drug
Product Development, Bristol-Myers Squibb, Moreton CH46 1QW, United Kingdom
| | - Lucy E. Hawarden
- Drug
Product Development, Bristol-Myers Squibb, Moreton CH46 1QW, United Kingdom
| | - Anuji Abraham
- Drug
Product Development, Bristol-Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Frédéric Blanc
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
- Stephenson
Institute for Renewable Energy, University
of Liverpool, Liverpool L69 7ZF, United Kingdom
| |
Collapse
|
15
|
Du Y, Su Y. 19F Solid-state NMR characterization of pharmaceutical solids. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 120:101796. [PMID: 35688018 DOI: 10.1016/j.ssnmr.2022.101796] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Solid-state NMR has been increasingly recognized as a high-resolution and versatile spectroscopic tool to characterize drug substances and products. However, the analysis of pharmaceutical materials is often carried out at natural isotopic abundance and a relatively low drug loading in multi-component systems and therefore suffers from challenges of low sensitivity. The fact that fluorinated therapeutics are well represented in pipeline drugs and commercial products offers an excellent opportunity to utilize fluorine as a molecular probe for pharmaceutical analysis. We aim to review recent advancements of 19F magic angle spinning NMR methods in modern drug research and development. Applications to polymorph screening at the micromolar level, structural elucidation, and investigation of molecular interactions at the Ångström to submicron resolution in drug delivery, stability, and quality will be discussed.
Collapse
Affiliation(s)
- Yong Du
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, United States
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, United States; Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, IN, 47907, United States; Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, United States; Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT, 06269, United States.
| |
Collapse
|
16
|
Pajzderska A, Mielcarek J, Wąsicki J. The Physical Stability of Felodipine and Its Recrystallization from an Amorphous Solid Dispersion Studied by NMR Relaxometry. AAPS PharmSciTech 2022; 23:93. [PMID: 35314906 DOI: 10.1208/s12249-022-02234-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/09/2022] [Indexed: 11/30/2022] Open
Abstract
The 1H nuclear magnetic resonance (NMR) relaxometry method was applied to investigate the physical stability of an active pharmaceutical ingredient (API) and, for the first time, its recrystallization process in an amorphous solid dispersion system (ASD). The ASD of felodipine and polyvinylpyrrolidone (PVP) was prepared using the solvent evaporation method in a mass ratio of 50:50. In the first stage of the study (250 days), the sample was stored at 0% relative humidity (RH). The recovery of magnetization was described by one-exponential function. In the second stage (300 days in 75% relative humidity), the recrystallization process of felodipine was studied, showing in the sample three components of equilibrium magnetization related to (i) crystalline felodipine, (ii) water, and (iii) felodipine and PVP remaining in the ASD. The study shows that the 1H NMR relaxometry method is a very useful tool for analysing the composition of a three-phase system mixed at the molecular level and for the investigation of recrystallization process of API in amorphous solid dispersion system.
Collapse
|
17
|
Manini G, Benali S, Mathew A, Napolitano S, Raquez JM, Goole J. Paliperidone palmitate as model of heat-sensitive drug for long-acting 3D printing application. Int J Pharm 2022; 618:121662. [PMID: 35292399 DOI: 10.1016/j.ijpharm.2022.121662] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/26/2022]
Abstract
In this work, two technologies were used to prepare long-acting implantable dosage forms in the treatment of schizophrenia. Hot-melt extrusion (HME) as well as fused deposition modelling (FDM) were used concomitantly to create personalized 3D printed implants. Different formulations were prepared using an amorphous PLA as matrix polymer and different solid-state plasticizers. Paliperidone palmitate (PP), a heat sensitive drug prescribed in the treatment of schizophrenia was chosen as model drug. After extrusion, different formulations were characterized using DSC and XRD. Then, an in vitro dissolution test was carried out to discriminate the formulation allowing a sustained drug release of PP. The formulation showing a sustained drug release of the drug was 3D printed as an implantable dosage form. By modulating the infill, the release profile was related to the proper design of tailored dosage form and not solely to the solubility of the drug. Indeed, different release profiles were achieved over 90 days using only one formulation. In addition, a stability test was performed on the 3D printed implants for 3 months. The results showed the stability of the amorphous state of PP, independently of the temperature as well as the integrity of the matrix and the drug.
Collapse
Affiliation(s)
- Giuseppe Manini
- Laboratory of Pharmaceutics and Biopharmaceutics, Université libre de Bruxelles, Campus de la Plaine, CP207, Boulevard du Triomphe, Brussels 1050, Belgium; Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, Place du Parc 23, B-7000 Mons, Belgium.
| | - Samira Benali
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, Place du Parc 23, B-7000 Mons, Belgium
| | - Allen Mathew
- Laboratory of Polymer and Soft Matter Dynamics, Experimental Soft Matter and Thermal Physics (EST), Université libre de Bruxelles (ULB), Boulevard du Triomphe, Bruxelles 1050, Belgium
| | - Simone Napolitano
- Laboratory of Polymer and Soft Matter Dynamics, Experimental Soft Matter and Thermal Physics (EST), Université libre de Bruxelles (ULB), Boulevard du Triomphe, Bruxelles 1050, Belgium
| | - Jean-Marie Raquez
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, Place du Parc 23, B-7000 Mons, Belgium
| | - Jonathan Goole
- Laboratory of Pharmaceutics and Biopharmaceutics, Université libre de Bruxelles, Campus de la Plaine, CP207, Boulevard du Triomphe, Brussels 1050, Belgium
| |
Collapse
|
18
|
Solvent influence on manufacturability, phase behavior and morphology of amorphous solid dispersions prepared via bead coating. Eur J Pharm Biopharm 2021; 167:175-188. [PMID: 34325003 DOI: 10.1016/j.ejpb.2021.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 11/21/2022]
Abstract
Bead coating or fluid-bed coating serves as an auspicious solvent-based amorphous solid dispersion (ASD) manufacturing technique in respect of minimization of potential physical stability issues. However, the impact of solvent selection on the bead coating process and its resulting pellet formulation is, to the best of our knowledge, never investigated before. This study therefore aims to investigate the influence of the solvent on the bead coating process itself (i.e. manufacturability) and on solid-state characteristics of the resulting ASDs coated onto beads. For this purpose, the drug-polymer system felodipine (FEL)-poly(vinylpyrrolidone-co-vinyl acetate) (PVP-VA) was coated onto microcrystalline cellulose (MCC) beads from acetonitrile (ACN), methanol (MeOH), ethanol (EtOH), acetone (Ac), 2-propanol (PrOH), dichloromethane (DCM) and ethyl acetate (EthAc). A drug loading screening approach with bead coating revealed analogous ability to manufacture high drug-loaded ASDs from the different organic solvents. The results show no correlation with crystallization tendency or with equilibrium solubility of the drug in the different solvents, nor with the solvent-dependent drug-polymer miscibility obtained from film casting experiments. Distinct coating morphologies were however observed for PVP-VA and FEL-PVP-VA ASDs deposited onto beads from the various solvents, which is attributed to differences in solvent evaporation kinetics.
Collapse
|
19
|
Saboo S, Bapat P, Moseson DE, Kestur US, Taylor LS. Exploring the Role of Surfactants in Enhancing Drug Release from Amorphous Solid Dispersions at Higher Drug Loadings. Pharmaceutics 2021; 13:pharmaceutics13050735. [PMID: 34067666 PMCID: PMC8156319 DOI: 10.3390/pharmaceutics13050735] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 12/20/2022] Open
Abstract
To reduce the dosage size of amorphous solid dispersion (ASD)-based formulations, it is of interest to devise formulation strategies that allow increased drug loading (DL) without compromising dissolution performance. The aim of this study was to explore how surfactant addition impacts drug release as a function of drug loading from a ternary ASD, using felodipine as a model poorly soluble compound. The addition of 5% TPGS (d-α-tocopheryl polyethylene glycol 1000 succinate, a surfactant) to felodipine-polyvinylpyrrolidone/vinyl acetate ASDs was found to facilitate rapid and congruent (i.e., simultaneous) release of drug and polymer at higher DLs relative to binary ASDs (drug and polymer only). For binary ASDs, good release was observed for DLs up to <20% DL; this increased to 35% DL with surfactant. Microstructure evolution in ASD films following exposure to 100% relative humidity was studied using atomic force microscopy coupled with nanoscale infrared imaging. The formation of discrete, spherical drug-rich domains in the presence of surfactant appeared to be linked to systems showing congruent and rapid release of drug and polymer. In contrast, a contiguous drug-rich phase was formed for systems without surfactant at higher DLs. This study supports the addition of surfactant to ASD formulations as a strategy to increase DL without compromising release. Furthermore, insights into the potential role of surfactant in altering ASD release mechanisms are provided.
Collapse
Affiliation(s)
- Sugandha Saboo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; (S.S.); (P.B.); (D.E.M.)
- Oral Formulation Sciences and Technology, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Pradnya Bapat
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; (S.S.); (P.B.); (D.E.M.)
| | - Dana E. Moseson
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; (S.S.); (P.B.); (D.E.M.)
| | - Umesh S. Kestur
- Drug Product Development, Bristol-Myers Squibb Company, One Squib Drive, New Brunswick, NJ 08903, USA;
| | - Lynne S. Taylor
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; (S.S.); (P.B.); (D.E.M.)
- Correspondence: ; Tel.: +1-765-496-6614
| |
Collapse
|
20
|
Govender R, Abrahmsén-Alami S, Folestad S, Olsson M, Larsson A. Enabling modular dosage form concepts for individualized multidrug therapy: Expanding the design window for poorly water-soluble drugs. Int J Pharm 2021; 602:120625. [PMID: 33892062 DOI: 10.1016/j.ijpharm.2021.120625] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/13/2022]
Abstract
Multidrug dosage forms (aka combination dosage forms, polypills, etc.) create value for patients through reduced pill burdens and simplified administration to improve adherence to therapy. Enhanced flexibility of multidrug dosage forms would provide further opportunities to better match emerging needs for individualized therapy. Through modular dosage form concepts, one approach to satisfy these needs is to adapt multidrug dosage forms to a wider variety of drugs, each with a variety of doses and release profiles. This study investigates and technically explores design requirements for extending the capability of modular multidrug dosage form concepts towards individualization. This builds on our recent demonstration of independent tailoring of dose and drug release, which is here extended towards poorly water-soluble drugs. The challenging design requirement of carrying higher drug loads in smaller volumes to accommodate multiple drugs at their clinical dose is here met regarding dose and release performance. With a modular concept, we demonstrate high precision (<5% RSD) in dose and release performance of individual modules containing felodipine or naproxen in Kollidon VA64 at both a wide drug loading range (5% w/w and 50% w/w drug) and a small module size (3.6 mg). In a forward-looking design-based discussion, further requirements are addressed, emphasizing that reproducible individual module performance is predictive of dosage form performance, provided the modules are designed to act independently. Therefore, efforts to incorporate progressively higher drug loads within progressively smaller module volumes will be crucial to extend the design window further towards full flexibility of future dosage forms for individualized multidrug therapy.
Collapse
Affiliation(s)
- Rydvikha Govender
- Oral Product Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, SE-43183 Gothenburg, Sweden; Pharmaceutical Technology, Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
| | - Susanna Abrahmsén-Alami
- Oral Product Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, SE-43183 Gothenburg, Sweden
| | - Staffan Folestad
- Innovation Strategies and External Liaison, Pharmaceutical Technology and Development, Operations, AstraZeneca, SE-43183 Gothenburg, Sweden
| | - Martina Olsson
- Department of Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Anette Larsson
- Pharmaceutical Technology, Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| |
Collapse
|
21
|
Stabilization mechanism of amorphous carbamazepine by transglycosylated rutin, a non-polymeric amorphous additive with a high glass transition temperature. Int J Pharm 2021; 600:120491. [PMID: 33744450 DOI: 10.1016/j.ijpharm.2021.120491] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 01/08/2023]
Abstract
α-Glycosyl rutin (Rutin-G), composed of a flavonol skeleton and sugar groups, is a promising non-polymeric additive for stabilizing amorphous drug formulations. In this study, the mechanism of the stabilization of the amorphous state of carbamazepine (CBZ) by Rutin-G was investigated. In comparison with hypromellose (HPMC), which is commonly used as a crystallization inhibitor for amorphous drugs, Rutin-G significantly stabilized amorphous CBZ. Moreover, the dissolution rate and the resultant supersaturation level of CBZ were significantly improved in the CBZ/Rutin-G spray-dried samples (SPDs) owing to the rapid dissolution property of Rutin-G. Differential scanning calorimetry measurement demonstrated a high glass transition temperature (Tg) of 186.4°C corresponding to Rutin-G. The CBZ/Rutin-G SPDs with CBZ weight ratios up to 80% showed single glass transitions, indicating the homogeneity of CBZ and Rutin-G. A solid-state NMR experiment using 13C- and 15N-labeled CBZ demonstrated the interaction between the flavonol skeleton of Rutin-G and the amide group of CBZ. A 1H-13C two-dimensional heteronuclear correlation NMR experiment and quantum mechanical calculations confirmed the presence of a possible hydrogen bond between the amino proton in CBZ and the carbonyl oxygen in the flavonol skeleton of Rutin-G. This specific hydrogen bond could contribute to the strong interaction between CBZ and Rutin-G, resulting in the high stability of amorphous CBZ in the CBZ/Rutin-G SPD. Hence, Rutin-G, a non-polymeric amorphous additive with high Tg, high miscibility with drugs, and rapid and pH-independent dissolution properties could be useful in the preparation of amorphous formulations.
Collapse
|
22
|
Kapourani A, Valkanioti V, Kontogiannopoulos KN, Barmpalexis P. Determination of the physical state of a drug in amorphous solid dispersions using artificial neural networks and ATR-FTIR spectroscopy. INTERNATIONAL JOURNAL OF PHARMACEUTICS-X 2020; 2:100064. [PMID: 33354666 PMCID: PMC7744708 DOI: 10.1016/j.ijpx.2020.100064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022]
Abstract
The objective of the present study was to evaluate the use of artificial neural networks (ANNs) in the development of a new chemometric model that will be able to simultaneously distinguish and quantify the percentage of the crystalline and the neat amorphous drug located within the drug-rich amorphous zones formed in an amorphous solid dispersion (ASD) system. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy was used, while Rivaroxaban (RIV, drug) and Soluplus® (SOL, matrix-carrier) were selected for the preparation of a suitable ASD model system. Adequate calibration and test sets were prepared by spiking different percentages of the crystalline and the amorphous drug in the ASDs (prepared by the melting - quench cooling approach), while a 24 full factorial experimental design was employed for the screening of ANN's structure and training parameters as well as spectra region selection and data preprocessing. Results showed increased prediction performance, measured based on the root mean squared error of prediction (RMSEp) for the test sample, for both the crystalline (RMSEp (crystal) = 0.86) and the amorphous (RMSEp (amorphous) = 2.14) drug. Comparison with traditional regression techniques, such as partial least square and principle component regressions, revealed the superiority of ANNs, indicating that in cases of high structural similarity between the investigated compounds (i.e., the crystalline and the amorphous forms of the same compound) the implementation of more powerful/sophisticated regression techniques, such as ANNs, is mandatory.
Collapse
Affiliation(s)
- Afroditi Kapourani
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Vasiliki Valkanioti
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Konstantinos N Kontogiannopoulos
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.,Ecoresources P.C., 15-17 Giannitson-Santaroza Str., Thessaloniki 54627, Greece
| | - Panagiotis Barmpalexis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
23
|
Sarpal K, Munson EJ. Amorphous Solid Dispersions of Felodipine and Nifedipine with Soluplus®: Drug-Polymer Miscibility and Intermolecular Interactions. J Pharm Sci 2020; 110:1457-1469. [PMID: 33359813 DOI: 10.1016/j.xphs.2020.12.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
The objective of this study was to investigate thermodynamic and kinetic miscibility for two structurally similar model compounds nifedipine (NIF) and felodipine (FEL) when formulated as amorphous solid dispersions (ASDs) with an amphiphilic polymer Soluplus®. Thermodynamic miscibility was studied via melting point depression approach for the two systems. The Flory Huggins theory was used to calculate the interaction parameter and generate the phase diagrams. It was shown that NIF was more miscible in Soluplus® than FEL. The nature of drug polymer interactions was studied by fourier transform infra-red spectroscopy (FTIR) and solid-state nuclear magnetic resonance spectroscopy (ssNMR). The data from spectroscopic analyses showed that both the drugs interacted with Soluplus® through hydrogen bonding interactions. Furthermore, 13C ssNMR data was used to get quantitative estimate of the extent of hydrogen bonding for ASDs samples. Proton relaxation measurements were carried out on ASDs in order to evaluate phase heterogeneity on two different length scales of mixing. The data suggested that better phase homogeneity in NIF:SOL systems especially for lower Soluplus® content ASDs on smaller domains. This could be explained by understanding the extent of hydrogen bonding interactions for these two systems. This study highlights the need to consider thermodynamic and kinetic mixing, when formulating ASDs with the goal of understanding phase mixing between drug and polymer.
Collapse
Affiliation(s)
- Kanika Sarpal
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
| | - Eric J Munson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA.
| |
Collapse
|
24
|
Shi Q, Li F, Yeh S, Wang Y, Xin J. Physical stability of amorphous pharmaceutical solids: Nucleation, crystal growth, phase separation and effects of the polymers. Int J Pharm 2020; 590:119925. [PMID: 33011255 DOI: 10.1016/j.ijpharm.2020.119925] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 01/03/2023]
Abstract
Compared to their crystalline forms, amorphous pharmaceutical solids present marvelous potential and advantages for effectively improving the oral bioavailability of poorly water-soluble drugs. A central issue in developing amorphous pharmaceutical solids is the stability against crystallization, which is particularly important for maintaining their advantages in solubility and dissolution rate. This review provides a comprehensive overview of recent studies focusing on the physical stability of amorphous pharmaceutical solids affected by nucleation, crystal growth, phase separation and the addition of polymers. Moreover, we highlight the novel technologies and theories in the field of amorphous pharmaceutical solids. Meanwhile, the challenges and strategies in maintaining the physical stability of amorphous pharmaceutical solids are also discussed. With a better understanding of physical stability, the more robust amorphous pharmaceutical formulations with desired pharmaceutical performance would be easier to achieve.
Collapse
Affiliation(s)
- Qin Shi
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China; Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Fang Li
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Stacy Yeh
- Department of Cancer Biology, School of Medicine, Wake Forest University, Winston Salem 27103, USA
| | - Yanan Wang
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Junbo Xin
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| |
Collapse
|
25
|
Li N, Cape JL, Mankani BR, Zemlyanov DY, Shepard KB, Morgen MM, Taylor LS. Water-Induced Phase Separation of Spray-Dried Amorphous Solid Dispersions. Mol Pharm 2020; 17:4004-4017. [PMID: 32931293 PMCID: PMC7539301 DOI: 10.1021/acs.molpharmaceut.0c00798] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Spray
drying is widely used in the manufacturing of amorphous solid
dispersion (ASD) systems due to its fast drying rate, enabling kinetic
trapping of the drug in amorphous form. Spray-drying conditions, such
as solvent composition, can have a profound impact on the properties
of spray-dried dispersions. In this study, the phase behavior of spray-dried
dispersions from methanol and methanol–water mixtures was assessed
using ritonavir and copovidone [poly(vinylpyrrolidone-co-vinyl acetate)
(PVPVA)] as dispersion components. The resultant ASDs were characterized
using differential scanning calorimetry (DSC), fluorescence spectroscopy,
X-ray photoelectron spectroscopy (XPS), as well as surface-normalized
dissolution rate (SNDR) measurements. Quaternary phase diagrams were
calculated using a four-component Flory–Huggins model. It was
found that the addition of water to the solvent system can lead to
phase separation during the spray-drying process. A 10:90 H2O/MeOH solvent system caused a minor extent of phase separation.
Phase heterogeneity in the 50 and 75% drug loading ASDs prepared from
this spray solvent can be detected using DSC but not with other techniques
used. The 25% drug loading system did not show phase heterogeneity
in solid-state characterization but exhibited a compromised dissolution
rate compared to that of the miscible ASD prepared from H2O-free solvent. This is possibly due to the formation of slow-releasing
drug-rich phases upon phase separation. ASDs prepared with a 60:40
H2O/MeOH solvent mixture showed phase heterogeneity with
all analytical methods used. The surface composition of dispersion
particles as measured by fluorescence spectroscopy and XPS showed
good agreement, suggesting surface drug enrichment of the spray-dried
ASD particles prepared from this solvent system. Calculated phase
diagrams and drying trajectories were consistent with experimental
observations, suggesting that small variations in solvent composition
may cause significant changes in ASD phase behavior during drying.
These findings should aid in spray-drying process development for
ASD manufacturing and can be applied broadly to assess the risk of
phase separation for spray-drying systems using mixed organic solvents
or other solvent-based processes.
Collapse
Affiliation(s)
- Na Li
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States.,Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road Unit 3092, Storrs, Connecticut 06269, United States
| | - Jonathan L Cape
- Research & Development, Lonza Pharma and Biotech, 1201 NW Wall Street, Suite 200, Bend, Oregon 97703, United States
| | - Bharat R Mankani
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States.,MarqMetrix Inc., Emerald Landing, 2157 N Northlake Way #240, Seattle, Washington 98103, United States
| | - Dmitry Y Zemlyanov
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kimberly B Shepard
- Research & Development, Lonza Pharma and Biotech, 1201 NW Wall Street, Suite 200, Bend, Oregon 97703, United States
| | - Michael M Morgen
- Research & Development, Lonza Pharma and Biotech, 1201 NW Wall Street, Suite 200, Bend, Oregon 97703, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
26
|
Duan P, Lamm MS, Yang F, Xu W, Skomski D, Su Y, Schmidt-Rohr K. Quantifying Molecular Mixing and Heterogeneity in Pharmaceutical Dispersions at Sub-100 nm Resolution by Spin Diffusion NMR. Mol Pharm 2020; 17:3567-3580. [DOI: 10.1021/acs.molpharmaceut.0c00592] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Pu Duan
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Matthew S. Lamm
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Fengyuan Yang
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Wei Xu
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Daniel Skomski
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Yongchao Su
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Klaus Schmidt-Rohr
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| |
Collapse
|
27
|
Lu X, Li M, Huang C, Lowinger MB, Xu W, Yu L, Byrn SR, Templeton AC, Su Y. Atomic-Level Drug Substance and Polymer Interaction in Posaconazole Amorphous Solid Dispersion from Solid-State NMR. Mol Pharm 2020; 17:2585-2598. [DOI: 10.1021/acs.molpharmaceut.0c00268] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xingyu Lu
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Mingyue Li
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Chengbin Huang
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Michael B. Lowinger
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Wei Xu
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Lian Yu
- School of Pharmacy and Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53705, United States
| | - Stephen R. Byrn
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, Indiana 47907, United States
| | - Allen C. Templeton
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Yongchao Su
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, Indiana 47907, United States
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
28
|
Sarpal K, Tower CW, Munson EJ. Investigation into Intermolecular Interactions and Phase Behavior of Binary and Ternary Amorphous Solid Dispersions of Ketoconazole. Mol Pharm 2020; 17:787-801. [PMID: 31860316 DOI: 10.1021/acs.molpharmaceut.9b00970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Conventionally, amorphous solid dispersions (ASDs) have been formulated as a binary matrix, but in recent years a new class of ASDs has emerged, where generally a second polymer is also added to the formulation. Having the presence of a second polymer necessitates a comprehensive solid-state characterization to study the intermolecular interactions and phase behavior on a molecular level. With this goal in mind, ketoconazole (KET) was selected as a model drug, and hydroxypropyl methyl cellulose (HPMC) and poly(acrylic acid) (PAA) were chosen as polymeric carriers. The binary and ternary ASDs were characterized by differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, solid-state nuclear magnetic resonance (SSNMR) spectroscopy, and powder X-ray diffraction (PXRD). The binary KET:HPMC dispersions lacked any specific interactions, whereas binary KET:PAA dispersions and ternary KET:PAA:HPMC dispersions showed evidence for ionic and hydrogen bonding interactions. The 13C SSNMR deconvolution study established a comparison for molecular interactions between the binary KET:PAA and ternary KET:PAA:HPMC dispersions, with the binary KET:PAA system showing higher prevalence of ionic and hydrogen bonds than the ternary KET:PAA:HPMC system. Moreover, individual binary and ternary ASDs were found to be homogeneous on a nanometric level, implying the presence of a second polymer did not impact the phase homogeneity. In addition, a stronger interaction in binary KET:PAA and ternary KET:HPMC:PAA systems translated to better physical stability at different storage conditions. Through this case study it is recommended that a comprehensive investigation is needed to study the impact of using two polymers in ASD formulations in terms underlying intermolecular interactions and physical stability.
Collapse
Affiliation(s)
- Kanika Sarpal
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| | - Cole W Tower
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States.,Department of Chemistry, Allegheny College, Meadville, Pennsylvania 16335, United States
| | - Eric J Munson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| |
Collapse
|