1
|
Xu P, Zhu Y, Yang R, Zhao Q, Zhao X, Wang X, Zhang T, Bao Y, Shi W, Gu P. Poria cocos polysaccharide-honeycomb manganese oxide nanoparticles as a vaccine adjuvant to induce potent immune responses. Int J Biol Macromol 2025; 286:138396. [PMID: 39643183 DOI: 10.1016/j.ijbiomac.2024.138396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/18/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
As indispensable components of vaccines, adjuvants play a critical role in inducing potent immune responses. In our previous study, we isolated and purified a water-soluble polysaccharide from Poria cocos (PCP), and found that the PCP had the potential to act as an immunostimulant to induce a balanced Th1/Th2 immune response. However, the PCP showed effective immunomodulatory activity only at high concentrations. Herein, we prepared a novel and biodegradable adjuvant system (PCP-hMnOx), in which the PCP was loaded onto the honeycomb manganese oxide nanoparticles (hMnOx). The developed PCP-hMnOx adjuvant system not only acted as an immunostimulant, but also as a delivery system to enhance antigen uptake by antigen-presenting cells (APCs), stimulate the activation of APCs and facilitate the formation of germinal center in draining lymph nodes. Furthermore, the PCP-hMnOx adjuvant system facilitated the antibody production, the activation of CD4+ and CD8+ T cells, and the generation of IFN-γ, thus inducing a robust and durable immune response with a balanced Th1/Th2 response in comparison to commercial alum adjuvant. Our results demonstrated that the PCP-hMnOx adjuvant system improved the immunomodulatory activity of the PCP, and had the potential to provide a simple, safe, and efficient nanoparticles-based strategy to induce potent immune responses.
Collapse
Affiliation(s)
- Panpan Xu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Yixuan Zhu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Runyu Yang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Qi Zhao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Xinghua Zhao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Xiao Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Tie Zhang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Yongzhan Bao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China.
| | - Pengfei Gu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
2
|
Yu R, Song Z, Jin L, Jiao L, Liu H, Zhang S, Hu Y, Sun Y, Li E, Zhao G, Liu Z, Cai T. Polyethyleneimine-modified Laminarin nanoparticles as a novel vaccine adjuvant for ovalbumin to enhance the immune responses. Int J Biol Macromol 2024; 292:139157. [PMID: 39725115 DOI: 10.1016/j.ijbiomac.2024.139157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Functional modification of drugs can significantly improve their efficacy and safety, thus enabling targeted therapy. Functional modifications based on polysaccharides can alter their molecular structure, and effectively enhance their functional properties and biological activities. Herein, we designed and synthesized cationic Laminarin (CLam) modified with polyethyleneimine (PEI) and explored its application as a vaccine adjuvant. The PEI modification resulted in a positively charged surface of CLam, which was mixed with model antigen (Ovalbumin, OVA) to form CLam/OVA nanoparticles with an optimal particle size of about 380.07 nm, a uniform distribution of the particle size and a stable system. In vitro experiments showed that the positive charge on the surface of CLam/OVA enabled it to be effectively internalized by bone marrow dendritic cells (BMDCs), promoted cell maturation, lysosomal escape, and the efficiency of antigen cross-presentation. Mechanically, CLam/OVA induces BMDC function via toll-like receptors, cytokine receptors, and chemokine-mediated signaling pathways. CLam/OVA induced stronger humoral and cellular immunity compared to the aluminum adjuvant. CLam/OVA induces higher levels of OVA-specific antibodies, generates cytotoxic T lymphocyte immune responses, and stimulates IFN-γ secretion. Overall, this study demonstrates that functionalization is critical for the rational design of polysaccharides to boost antigen-specific immune responses for more effective and long-lasting vaccination.
Collapse
Affiliation(s)
- Ruihong Yu
- Ningbo No. 2 Hospital, Ningbo 315010, Zhejiang, China; Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo 315000, Zhejiang, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Zuchen Song
- Ningbo No. 2 Hospital, Ningbo 315010, Zhejiang, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Lan Jin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Lina Jiao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Huina Liu
- Ningbo No. 2 Hospital, Ningbo 315010, Zhejiang, China; Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo 315000, Zhejiang, China
| | - Shun Zhang
- Ningbo No. 2 Hospital, Ningbo 315010, Zhejiang, China; Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo 315000, Zhejiang, China
| | - Yaoren Hu
- Ningbo No. 2 Hospital, Ningbo 315010, Zhejiang, China; Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo 315000, Zhejiang, China
| | - Yuechao Sun
- Ningbo No. 2 Hospital, Ningbo 315010, Zhejiang, China; Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo 315000, Zhejiang, China
| | - Entao Li
- Ningbo No. 2 Hospital, Ningbo 315010, Zhejiang, China; Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo 315000, Zhejiang, China
| | - Guofang Zhao
- Ningbo No. 2 Hospital, Ningbo 315010, Zhejiang, China; Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo 315000, Zhejiang, China.
| | - Zhenguang Liu
- Ningbo No. 2 Hospital, Ningbo 315010, Zhejiang, China; Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo 315000, Zhejiang, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Ting Cai
- Ningbo No. 2 Hospital, Ningbo 315010, Zhejiang, China; Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo 315000, Zhejiang, China.
| |
Collapse
|
3
|
Im SH, Chung Y, Duskunovic N, Choi H, Park SH, Chung HJ. Oligonucleotide-Linked Lipid Nanoparticles as a Versatile mRNA Nanovaccine Platform. Adv Healthc Mater 2024; 13:e2401868. [PMID: 39363681 DOI: 10.1002/adhm.202401868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/07/2024] [Indexed: 10/05/2024]
Abstract
An effective delivery platform is crucial for the development of mRNA vaccines and therapeutics. Here, a versatile platform utilizing cholesterol-modified oligonucleotides (L-oligo) that bind to the mRNA within lipid nanoparticles (LNP), and enables the effective delivery of the mRNA into target cells is introduced. mRNA incorporated into LNPs via linkage with L-oligo, termed oligonucleotide-linked LNP (lnLNP), is superior in cellular uptake and transfection efficiency in target cells in vitro and in vivo, compared to the conventional LNP formulations. It is further applied lnLNP as an mRNA vaccine platform for SARS-CoV-2, demonstrating robust induction of neutralizing activity as well as polyfunctional SARS-CoV-2-specific T-cell response in vivo. The current strategy can be versatilely applied to different LNP platforms, for vaccine and therapeutic applications against various diseases, such as infections and cancers.
Collapse
Affiliation(s)
- San Hae Im
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Youseung Chung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Nevena Duskunovic
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Heewon Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
- The Center for Epidemic Preparedness, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Hyun Jung Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| |
Collapse
|
4
|
Gu P, Zhu Y, Xu P, Zhao Q, Zhao X, Zhao K, Wang X, Zhang W, Bao Y, Shi W. Poria cocos polysaccharide-loaded Alum Pickering emulsion as vaccine adjuvant to enhance immune responses. Colloids Surf B Biointerfaces 2024; 244:114144. [PMID: 39116600 DOI: 10.1016/j.colsurfb.2024.114144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Traditional Alum adjuvants mainly elicit a Th2 humoral immune response, but fail to generate a robust Th1 cellular immune response. However, the cellular immune response is essential for vaccination against cancer and a number of chronic infectious diseases, including human immunodeficiency virus infection and tuberculosis. In our previous study, we demonstrated that the polysaccharide from Poria cocos (PCP) has the potential to serve as an immunologic stimulant, enhancing both humoral and cellular immune responses. However, this effect was only observed at high concentrations. In this study, to enhance the immune-stimulation effect of PCP and modify the type of immune response elicited by Alum adjuvant, we successfully developed a Pickering emulsion delivery system (PCP-Al-Pickering) using PCP-loaded Alhydrogel particles as the stabilizer. After optimization, the Pickering emulsion exhibited excellent storage capacity and effectively adsorbed the PCP and antigen. As an adjuvant delivery system, the PCP-Al-Pickering emulsion facilitated the antigen uptake by macrophages, increased the recruitment of cells at injection sites, improved the activation of dendritic cells in draining lymph nodes, elicited a potent and durable antibody response, and promoted the activation of CD4+ and CD8+ T cells. Importantly, the PCP-Al-Pickering emulsion adjuvant elicited a balanced Th1 and Th2 immune response, in comparison to Alum adjuvant. The PCP-Al-Pickering emulsion may serve as a safe and promising adjuvant delivery system to enhance immune responses.
Collapse
Affiliation(s)
- Pengfei Gu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Yixuan Zhu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Panpan Xu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Qi Zhao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Xinghua Zhao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Kuan Zhao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Xiao Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Wuchao Zhang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Yongzhan Bao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
5
|
He J, Zhu T, Mao N, Jiang W, Lin F, Lu X, Gao Z, Yang Y, Wang D. Cistanche deserticola polysaccharide-functionalized dendritic fibrous nano-silica as oral delivery system for H 9N 2 vaccine to promote systemic and mucosal immune response. Int J Biol Macromol 2024; 282:136690. [PMID: 39433190 DOI: 10.1016/j.ijbiomac.2024.136690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024]
Abstract
Most infectious diseases are caused by pathogens that invade the body tissues through mucosal tract. Therefore, it is essential to develop effective vaccines administered through the mucosa as a first-line of defense against major infectious diseases. Oral delivery of vaccines is currently of great interest due to its potential to elicit both mucosal and systemic immune responses, high compliance rate and non-invasive nature. However, their development is limited by the challenging gastrointestinal (GI) environment, the low permeability of the mucus barrier, and the lack of effective and safe mucosal adjuvants. Currently, nanoparticle-based strategies show significant potential for improving oral vaccine delivery systems. Herein, the dendritic fibrous nano-silica (DFNS) grafted with Cistanche deserticola polysaccharide (CDP) nanoparticles (CDP-DFNS) were developed for oral delivery of H9N2 antigen. CDP-DFNS induced the activation of macrophages, thereby enhancing antigen uptake in vitro. Additionally, CDP-DFNS/H9N2 significantly activated the dendritic cells (DCs) in Peyer's patches (PPs), and T/B cells in mesenteric lymph nodes (MLNs). Moreover, CDP-DFNS/H9N2 enhanced the HI titers and levels of H9N2-specific antibody IgG, secretory IgA (SIgA) and H9N2-specific IgA in intestinal and respiratory mucosa, as well as Th-associated cytokines. Our results indicate that CDP-DFNS could be a promising oral vaccine adjuvant delivery system.
Collapse
Affiliation(s)
- Jin He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tianyu Zhu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ningning Mao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wenming Jiang
- China Animal Health and Epidemiology Center, Qingdao, PR China
| | - Fangzhu Lin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xuanqi Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhenzhen Gao
- College of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu 212499, PR China
| | - Yang Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deyun Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
6
|
Gu X, Wang C. Advancements in nano-immunotherapy for gynecological cancers: A new frontier. Biomed Pharmacother 2024; 180:117553. [PMID: 39405913 DOI: 10.1016/j.biopha.2024.117553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 11/14/2024] Open
Abstract
Gynecological cancers rank among the leading causes of death for women worldwide. Traditional treatment methods, including surgery, chemotherapy, and radiotherapy, are commonly employed in patients with these tumors. However, the effectiveness of these approaches remains suboptimal due to issues like treatment resistance and challenges in early detection. As an alternative, immunotherapy has shown promise by offering improved anti-tumor responses and fewer side effects. In recent years, there have been significant advances in nanoparticle (NP) and nanoengineering technologies, paving the way for the development of nano-immunotherapy-an approach designed to enhance the effectiveness of immunotherapy. Thanks to the flexibility, adaptability, small size, and responsiveness of NP platforms to the tumor microenvironment (TME), nano-immunotherapy has demonstrated improved anti-tumor activity and safety. This is achieved through enhanced tumor targeting, better delivery of immune agents, and reduced toxicity and side effects. Recently, researchers have explored the application of nano-immunotherapy in treating gynecological cancers, aiming to slow tumor progression and improve patient outcomes. In this review, we provide an overview of the latest advances in nano-immunotherapy for gynecological cancers, including ovarian, cervical, and endometrial cancers. Additionally, we discuss the challenges facing the clinical translation of nano-immunotherapy from the lab to real-world applications.
Collapse
Affiliation(s)
- Xiao Gu
- Department of Oncology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang City, Liaoning Province 110022, China.
| | - Cuicui Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang City, Liaoning Province 110022, China.
| |
Collapse
|
7
|
Gu P, Zhao Q, Zhu Y, Xu P, Zhao X, Wang X, Zhang T, Bao Y, Shi W. Chinese yam polysaccharide-loaded aluminium hydroxide nanoparticles used as vaccine adjuvant to induce potent humoral and cellular immune responses. Int J Biol Macromol 2024; 281:135914. [PMID: 39370063 DOI: 10.1016/j.ijbiomac.2024.135914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/31/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024]
Abstract
Due to their safety and efficacy, aluminium salts (Alum) are considered the most important adjuvants in human vaccines. However, Alum adjuvants are unable to elicit a cellular immune response, which is vital for the prevention of various chronic infectious diseases and cancers. Herein, we isolated and purified a water-soluble polysaccharide from Chinese yam, named CYP, which was primarily composed of →4)-α-D-Glcp-(1→, →4,6)-α-D-Glcp-(1→, and α-D-Glcp-(1→. Meanwhile, we prepared aluminium hydroxide nanoparticles (Al NPs) with a nanometer-scale size and thin stick-like shape. Being an immunostimulant, the CYP was then loaded onto the Al NPs to obtain a novel adjuvant delivery system (CYP-Al NPs) that enhances the immunostimulatory activity of CYP. Our findings showed that the CYP-Al NPs facilitated macrophages activation and promoted the antigen uptake by macrophages. The in vivo experiment showed that the CYP-Al NPs, as the adjuvant to ovalbumin, promoted the activation of dendritic cells and germinal center B cells in draining lymph nodes, induced a durable and strong antibody response, especially the Th1-type IgG2a antibody response, and improved the cytotoxic T lymphocytes response. These results demonstrated that the CYP-Al NPs could generate robust humoral and cellular responses, and has the great potential to serve as an adjuvant delivery system.
Collapse
Affiliation(s)
- Pengfei Gu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Qi Zhao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Yixuan Zhu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Panpan Xu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Xinghua Zhao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Xiao Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Tie Zhang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Yongzhan Bao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
8
|
Wells K, Liu T, Zhu L, Yang L. Immunomodulatory nanoparticles activate cytotoxic T cells for enhancement of the effect of cancer immunotherapy. NANOSCALE 2024; 16:17699-17722. [PMID: 39257225 DOI: 10.1039/d4nr01780c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Cancer immunotherapy represents a promising targeted treatment by leveraging the patient's immune system or adoptive transfer of active immune cells to selectively eliminate cancer cells. Despite notable clinical successes, conventional immunotherapies face significant challenges stemming from the poor infiltration of endogenous or adoptively transferred cytotoxic T cells in tumors, immunosuppressive tumor microenvironment and the immune evasion capability of cancer cells, leading to limited efficacy in many types of solid tumors. Overcoming these hurdles is essential to broaden the applicability of immunotherapies. Recent advances in nanotherapeutics have emerged as an innovative tool to overcome these challenges and enhance the therapeutic potential of tumor immunotherapy. The unique biochemical and biophysical properties of nanomaterials offer advantages in activation of immune cells in vitro for cell therapy, targeted delivery, and controlled release of immunomodulatory agents in vivo. Nanoparticles are excellent carriers for tumor associated antigens or neoantigen peptides for tumor vaccine, empowering activation of tumor specific T cell responses. By precisely delivering immunomodulatory agents to the tumor site, immunoactivating nanoparticles can promote tumor infiltration of endogenous T cells or adoptively transferred T cells into tumors, to overcoming delivery and biological barriers in the tumor microenvironment, augmenting the immune system's ability to recognize and eliminate cancer cells. This review provides an overview of the current advances in immunotherapeutic approaches utilizing nanotechnology. With a focus on discussions concerning strategies to enhance activity and efficacy of cytotoxic T cells and explore the intersection of engineering nanoparticles and immunomodulation aimed at bolstering T cell-mediated immune responses, we introduce various nanoparticle formulations designed to deliver therapeutic payloads, tumor antigens and immunomodulatory agents for T cell activation. Diverse mechanisms through which nanoparticle-based approaches influence T cell responses by improving antigen presentation, promoting immune cell trafficking, and reprogramming immunosuppressive tumor microenvironments to potentiate anti-tumor immunity are examined. Additionally, the synergistic potential of combining nanotherapeutics with existing immunotherapies, such as immune checkpoint inhibitors and adoptive T cell therapies is explored. In conclusion, this review highlights emerging research advances on activation of cytotoxic T cells using nanoparticle agents to support the promises and potential applications of nanoparticle-based immunomodulatory agents for cancer immunotherapy.
Collapse
Affiliation(s)
- Kory Wells
- Department of Surgery, Emory University School of Medicine, Winship Cancer Institute, Clinic C, Room 4088, 1365 C Clifton Road, NE, Atlanta, GA 30322, USA.
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tongrui Liu
- Department of Surgery, Emory University School of Medicine, Winship Cancer Institute, Clinic C, Room 4088, 1365 C Clifton Road, NE, Atlanta, GA 30322, USA.
| | - Lei Zhu
- Department of Surgery, Emory University School of Medicine, Winship Cancer Institute, Clinic C, Room 4088, 1365 C Clifton Road, NE, Atlanta, GA 30322, USA.
| | - Lily Yang
- Department of Surgery, Emory University School of Medicine, Winship Cancer Institute, Clinic C, Room 4088, 1365 C Clifton Road, NE, Atlanta, GA 30322, USA.
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
9
|
Deshmukh R, Sethi P, Singh B, Shiekmydeen J, Salave S, Patel RJ, Ali N, Rashid S, Elossaily GM, Kumar A. Recent Review on Biological Barriers and Host-Material Interfaces in Precision Drug Delivery: Advancement in Biomaterial Engineering for Better Treatment Therapies. Pharmaceutics 2024; 16:1076. [PMID: 39204421 PMCID: PMC11360117 DOI: 10.3390/pharmaceutics16081076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Preclinical and clinical studies have demonstrated that precision therapy has a broad variety of treatment applications, making it an interesting research topic with exciting potential in numerous sectors. However, major obstacles, such as inefficient and unsafe delivery systems and severe side effects, have impeded the widespread use of precision medicine. The purpose of drug delivery systems (DDSs) is to regulate the time and place of drug release and action. They aid in enhancing the equilibrium between medicinal efficacy on target and hazardous side effects off target. One promising approach is biomaterial-assisted biotherapy, which takes advantage of biomaterials' special capabilities, such as high biocompatibility and bioactive characteristics. When administered via different routes, drug molecules deal with biological barriers; DDSs help them overcome these hurdles. With their adaptable features and ample packing capacity, biomaterial-based delivery systems allow for the targeted, localised, and prolonged release of medications. Additionally, they are being investigated more and more for the purpose of controlling the interface between the host tissue and implanted biomedical materials. This review discusses innovative nanoparticle designs for precision and non-personalised applications to improve precision therapies. We prioritised nanoparticle design trends that address heterogeneous delivery barriers, because we believe intelligent nanoparticle design can improve patient outcomes by enabling precision designs and improving general delivery efficacy. We additionally reviewed the most recent literature on biomaterials used in biotherapy and vaccine development, covering drug delivery, stem cell therapy, gene therapy, and other similar fields; we have also addressed the difficulties and future potential of biomaterial-assisted biotherapies.
Collapse
Affiliation(s)
- Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India;
| | - Pranshul Sethi
- Department of Pharmacology, College of Pharmacy, Shri Venkateshwara University, Gajraula 244236, India;
| | - Bhupendra Singh
- School of Pharmacy, Graphic Era Hill University, Dehradun 248002, India;
- Department of Pharmacy, S.N. Medical College, Agra 282002, India
| | | | - Sagar Salave
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India;
| | - Ravish J. Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Anand 388421, India;
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia;
| | - Gehan M. Elossaily
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia;
| | - Arun Kumar
- School of Pharmacy, Sharda University, Greater Noida 201310, India
| |
Collapse
|
10
|
Zhuo Y, Zeng H, Su C, Lv Q, Cheng T, Lei L. Tailoring biomaterials for vaccine delivery. J Nanobiotechnology 2024; 22:480. [PMID: 39135073 PMCID: PMC11321069 DOI: 10.1186/s12951-024-02758-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Biomaterials are substances that can be injected, implanted, or applied to the surface of tissues in biomedical applications and have the ability to interact with biological systems to initiate therapeutic responses. Biomaterial-based vaccine delivery systems possess robust packaging capabilities, enabling sustained and localized drug release at the target site. Throughout the vaccine delivery process, they can contribute to protecting, stabilizing, and guiding the immunogen while also serving as adjuvants to enhance vaccine efficacy. In this article, we provide a comprehensive review of the contributions of biomaterials to the advancement of vaccine development. We begin by categorizing biomaterial types and properties, detailing their reprocessing strategies, and exploring several common delivery systems, such as polymeric nanoparticles, lipid nanoparticles, hydrogels, and microneedles. Additionally, we investigated how the physicochemical properties and delivery routes of biomaterials influence immune responses. Notably, we delve into the design considerations of biomaterials as vaccine adjuvants, showcasing their application in vaccine development for cancer, acquired immunodeficiency syndrome, influenza, corona virus disease 2019 (COVID-19), tuberculosis, malaria, and hepatitis B. Throughout this review, we highlight successful instances where biomaterials have enhanced vaccine efficacy and discuss the limitations and future directions of biomaterials in vaccine delivery and immunotherapy. This review aims to offer researchers a comprehensive understanding of the application of biomaterials in vaccine development and stimulate further progress in related fields.
Collapse
Affiliation(s)
- Yanling Zhuo
- College of Intelligent Agriculture, Yulin Normal University, Yulin, 537000, China
| | - Huanxuan Zeng
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Chunyu Su
- College of Intelligent Agriculture, Yulin Normal University, Yulin, 537000, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Qizhuang Lv
- College of Intelligent Agriculture, Yulin Normal University, Yulin, 537000, China.
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin, 537000, China.
| | - Tianyin Cheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
11
|
He J, Zhu T, Jiao L, Yu L, Peng S, Wang Z, Wang D, Liu H, Zhang S, Hu Y, Sun Y, Gao G, Cai T, Liu Z. Surface-Engineered Polygonatum Sibiricum Polysaccharide CaCO 3 Microparticles as Novel Vaccine Adjuvants to Enhance Immune Response. Mol Pharm 2024; 21:3936-3950. [PMID: 39017595 DOI: 10.1021/acs.molpharmaceut.4c00295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Micro- and nanoparticles delivery systems have been widely studied as vaccine adjuvants to enhance immunogenicity and sustain long-term immune responses. Polygonatum sibiricum polysaccharide (PSP) has been widely studied as an immunoregulator in improving immune responses. In this study, we synthesized and characterized cationic modified calcium carbonate (CaCO3) microparticles loaded with PSP (PEI-PSP-CaCO3, CTAB-PSP-CaCO3), studied the immune responses elicited by PEI-PSP-CaCO3 and CTAB-PSP-CaCO3 carrying ovalbumin (OVA). Our results demonstrated that PEI-PSP-CaCO3 significantly enhanced the secretion of IgG and cytokines (IL-4, IL-6, IFN-γ, and TNF-α) in vaccinated mice. Additionally, PEI-PSP-CaCO3 induced the activation of dendritic cells (DCs), T cells, and germinal center (GC) B cells in draining lymph nodes (dLNs). It also enhanced lymphocyte proliferation, increased the ratio of CD4+/CD8+ T cells, and elevated the frequency of CD3+ CD69+ T cells in spleen lymphocytes. Therefore, PEI-PSP-CaCO3 microparticles induced a stronger cellular and humoral immune response and could be potentially useful as a vaccine delivery and adjuvant system.
Collapse
Affiliation(s)
- Jin He
- Institution of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tianyu Zhu
- Institution of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lina Jiao
- Institution of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lin Yu
- Institution of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Song Peng
- Institution of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zheng Wang
- Institution of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deyun Wang
- Institution of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Huina Liu
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, PR China
| | - Shun Zhang
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, PR China
| | - Yaoren Hu
- Department of Clinical Laboratory, Ningbo No.2 Hospital, Ningbo 315099, PR China
| | - Yuechao Sun
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, PR China
| | - Guosheng Gao
- Department of Clinical Laboratory, Ningbo No.2 Hospital, Ningbo 315099, PR China
| | - Ting Cai
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, PR China
| | - Zhenguang Liu
- Institution of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, PR China
| |
Collapse
|
12
|
Akmayan I, Oztav S, Coksu I, Abamor ES, Acar S, Ozbek T. Construction of recombinant Omp25 or EipB protein loaded PLGA nanovaccines for Brucellosis protection. NANOTECHNOLOGY 2024; 35:395707. [PMID: 38917779 DOI: 10.1088/1361-6528/ad5b66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/25/2024] [Indexed: 06/27/2024]
Abstract
Safe and effective vaccine candidates are needed to address the limitations of existing vaccines against Brucellosis, a disease responsible for substantial economic losses in livestock. The present study aimed to encapsulate recombinant Omp25 and EipB proteins, knowledged antigen properties, into PLGA nanoparticles, characterize synthesized nanoparticles with different methods, and assessed theirin vitro/in vivoimmunostimulatory activities to develop new vaccine candidates. The recombinant Omp25 and EipB proteins produced with recombinant DNA technology were encapsulated into PLGA nanoparticles by double emulsion solvent evaporation technique. The nanoparticles were characterized using FE-SEM, Zeta-sizer, and FT-IR instruments to determine size, morphology, zeta potentials, and polydispersity index values, as well as to analyze functional groups chemically. Additionally, the release profiles and encapsulation efficiencies were assessed using UV-Vis spectroscopy. After loading with recombinant proteins, O-NPs reached sizes of 221.2 ± 5.21 nm, while E-NPs reached sizes of 274.4 ± 9.51 nm. The cumulative release rates of the antigens, monitored until the end of day 14, were determined to be 90.39% for O-NPs and 56.1% for E-NPs. Following the assessment of thein vitrocytotoxicity and immunostimulatory effects of both proteins and nanoparticles on the J774 murine macrophage cells,in vivoimmunization experiments were conducted using concentrations of 16µg ml-1for each protein. Both free antigens and antigen-containing nanoparticles excessively induced humoral immunity by increasing producedBrucella-specific IgG antibody levels for 3 times in contrast to control. Furthermore, it was also demonstrated that vaccine candidates stimulated Th1-mediated cellular immunity as well since they significantly raised IFN-gamma and IL-12 cytokine levels in murine splenocytes rather than IL-4 following to immunization. Additionally, the vaccine candidates conferred higher than 90% protection from the infection according to challenge results. Our findings reveal that PLGA nanoparticles constructed with the encapsulation of recombinant Omp25 or EipB proteins possess great potential to triggerBrucella-specific humoral and cellular immune response.
Collapse
Affiliation(s)
- Ilkgul Akmayan
- Department of Molecular Biology and Genetics Faculty of Arts and Sciences, Yildiz Technical University, Esenler, 34220 Istanbul, Turkey
| | - Sedanur Oztav
- Department of Bioengineering, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, Esenler, 34220 Istanbul, Turkey
| | - Irem Coksu
- Department of Bioengineering, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, Esenler, 34220 Istanbul, Turkey
| | - Emrah Sefik Abamor
- Department of Bioengineering, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, Esenler, 34220 Istanbul, Turkey
| | - Serap Acar
- Department of Bioengineering, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, Esenler, 34220 Istanbul, Turkey
| | - Tulin Ozbek
- Department of Molecular Biology and Genetics Faculty of Arts and Sciences, Yildiz Technical University, Esenler, 34220 Istanbul, Turkey
| |
Collapse
|
13
|
Gu P, Xu P, Zhu Y, Zhao Q, Zhao X, Fan Y, Wang X, Ma N, Bao Y, Shi W. Structural characterization and adjuvant activity of a water soluble polysaccharide from Poria cocos. Int J Biol Macromol 2024; 273:133067. [PMID: 38866287 DOI: 10.1016/j.ijbiomac.2024.133067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/21/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Adjuvants, as the essential component of vaccines, are crucial in enhancing the magnitude, breadth and durability of immune responses. Unfortunately, commonly used Alum adjuvants predominantly provoke humoral immune response, but fail to evoke cellular immune response, which is crucial for the prevention of various chronic infectious diseases and cancers. Thus, it is necessary to develop effective adjuvants to simultaneously induce humoral and cellular immune response. In this work, we obtained a water soluble polysaccharide isolated and purified from Poria cocos, named as PCP, and explored the possibility of PCP as a vaccine adjuvant. The PCP, with Mw of 20.112 kDa, primarily consisted of →6)-α-D-Galp-(1→, with a small amount of →3)-β-D-Glcp-(1 → and →4)-β-D-Glcp-(1→. Our results demonstrated that the PCP promoted the activation of dendritic cells (DCs) and macrophages in vitro. As the adjuvant to ovalbumin, the PCP facilitated the activation of DCs in lymph nodes, and evoked strong antibody response with a combination of Th1 and Th2 immune responses. Moreover, compared to Alum adjuvant, the PCP markedly induced a potent cellular response, especially the cytotoxic T lymphocytes response. Therefore, we confirmed that the PCP has great potential to be an available adjuvant for simultaneously inducing humoral and cellular immune responses.
Collapse
Affiliation(s)
- Pengfei Gu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Panpan Xu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Yixuan Zhu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Qi Zhao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Xinghua Zhao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Yingsai Fan
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Xiao Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Ning Ma
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Yongzhan Bao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
14
|
Ren L, Ouyang C, Zhao S, Zheng Q, Guo W, Fan B, Zhou J, Zhang W, Hu M, Li J, Li B. A Novel Polymer Nanoparticle Polydimethyl Diallyl Ammonium Chloride as An Adjuvant Enhances the Immune Response of SARS-CoV-2 Subunit Vaccine. Adv Healthc Mater 2024; 13:e2304575. [PMID: 38436662 DOI: 10.1002/adhm.202304575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/14/2024] [Indexed: 03/05/2024]
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic caused by SARS-CoV-2 has a significant impact on global health and the economy. It has underscored the urgent need for a stable, easily produced and effective vaccine. This study presents a novel approach using SARS-CoV-2 spike (S) protein-conjugated nanoparticles (NPs) in combination with cyclic GMP-AMP (cGAMP) (S-NPs-cGAMP) as a subunit vaccine. When mice are immunized, the antiserum of S-NPs-cGAMP group exhibits a 16-fold increase in neutralizing activity against a pseudovirus, compared to S protein group. Additionally, S-NPs-cGAMP induces even higher levels of neutralizing antibodies. Remarkably, the vaccine also triggers a robust humoral immune response, as evidenced by a notable elevation in virus-specific IgG and IgM antibodies. Furthermore, after 42 days of immunization, there is an observed increase in specific immune cell populations in the spleen. CD3+CD4+ and CD3+CD8+T lymphocytes, as well as B220+CD19+ and CD3-CD49b+ NK lymphocytes, show an upward trend, indicating a positive cellular immune response. Moreover, the S-NPs-cGAMP demonstrates promising results against the Delta strain and exhibits good cross-neutralization potential against other variants. These findings suggest that pDMDAAC NPs is potential adjuvant and could serve as a versatile platform for future vaccine development.
Collapse
MESH Headings
- Animals
- Nanoparticles/chemistry
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/chemistry
- COVID-19 Vaccines/pharmacology
- COVID-19 Vaccines/administration & dosage
- Mice
- SARS-CoV-2/immunology
- Vaccines, Subunit/immunology
- Vaccines, Subunit/chemistry
- Vaccines, Subunit/administration & dosage
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- COVID-19/prevention & control
- COVID-19/immunology
- Female
- Antibodies, Neutralizing/immunology
- Mice, Inbred BALB C
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Adjuvants, Immunologic/chemistry
- Adjuvants, Immunologic/pharmacology
- Humans
- Immunity, Humoral/drug effects
- Adjuvants, Vaccine/chemistry
- Adjuvants, Vaccine/pharmacology
- Quaternary Ammonium Compounds/chemistry
- Quaternary Ammonium Compounds/pharmacology
- Polymers/chemistry
Collapse
Affiliation(s)
- Lili Ren
- School of Pharmacy, Nanjing Tech University, Nanjing, 211816, China
| | | | - Shuqing Zhao
- School of Pharmacy, Nanjing Tech University, Nanjing, 211816, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Qiqi Zheng
- School of Pharmacy, Nanjing Tech University, Nanjing, 211816, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Weilu Guo
- School of Pharmacy, Nanjing Tech University, Nanjing, 211816, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
- Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, P. R. China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinzhu Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Wei Zhang
- School of Pharmacy, Nanjing Tech University, Nanjing, 211816, China
| | - Mi Hu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
- Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, P. R. China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
- Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, P. R. China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
15
|
Wu J, Wang X, Wang Y, Xun Z, Li S. Application of PLGA in Tumor Immunotherapy. Polymers (Basel) 2024; 16:1253. [PMID: 38732722 PMCID: PMC11085488 DOI: 10.3390/polym16091253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Biodegradable polymers have been extensively researched in the field of biomedicine. Polylactic-co-glycolic acid (PLGA), a biodegradable polymer material, has been widely used in drug delivery systems and has shown great potential in various medical fields, including vaccines, tissue engineering such as bone regeneration and wound healing, and 3D printing. Cancer, a group of diseases with high mortality rates worldwide, has recently garnered significant attention in the field of immune therapy research. In recent years, there has been growing interest in the delivery function of PLGA in tumor immunotherapy. In tumor immunotherapy, PLGA can serve as a carrier to load antigens on its surface, thereby enhancing the immune system's ability to attack tumor cells. Additionally, PLGA can be used to formulate tumor vaccines and immunoadjuvants, thereby enhancing the efficacy of tumor immunotherapy. PLGA nanoparticles (NPs) can also enhance the effectiveness of tumor immunotherapy by regulating the activity and differentiation of immune cells, and by improving the expression and presentation of tumor antigens. Furthermore, due to the diverse physical properties and surface modifications of PLGA, it has a wider range of potential applications in tumor immunotherapy through the loading of various types of drugs or other innovative substances. We aim to highlight the recent advances and challenges of plga in the field of oncology therapy to stimulate further research and development of innovative PLGA-based approaches, and more effective and personalized cancer therapies.
Collapse
Affiliation(s)
- Jiashuai Wu
- Innovation Institute, China Medical University, Shenyang 110122, China; (J.W.); (X.W.)
| | - Xiaopeng Wang
- Innovation Institute, China Medical University, Shenyang 110122, China; (J.W.); (X.W.)
| | - Yunduan Wang
- School of Intelligent Medicine, China Medical University, Shenyang 110122, China;
| | - Zhe Xun
- Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Health Science Institute, China Medical University, Shenyang 110122, China
| | - Shuo Li
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, China
| |
Collapse
|
16
|
Xu T, Hong A, Zhang X, Xu Y, Wang T, Zheng Q, Wei T, He Q, Ren Z, Qin T. Preparation and adjuvanticity against PCV 2 of Viola philippica polysaccharide loaded in Chitosan-Gold nanoparticle. Vaccine 2024; 42:2608-2620. [PMID: 38472066 DOI: 10.1016/j.vaccine.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
The present Porcine circovirus type 2 virus (PCV2) vaccine adjuvants suffer from numerous limitations, such as adverse effects, deficient cell-mediated immune responses, and inadequate antibody production. In this study, we explored the potential of a novel nanoparticle (CS-Au NPs) based on gold nanoparticles (Au NPs) and chitosan (CS) that modified Viola philippica polysaccharide (VPP) as efficient adjuvants for PCV2 vaccine. The characterization demonstrated that CS-Au-VPP NPs had a mean particle size of 507.42 nm and a zeta potential value of -21.93 mV. CS-Au-VPP NPs also exhibited good dispersion and a stable structure, which did not alter the polysaccharide properties. Additionally, the CS-Au-VPP NPs showed easy absorption and utilization by the organism. To investigate their immune-enhancing potential, mice were immunized with a mixture of CS-Au-VPP NPs and PCV2 vaccine. The evaluation of relevant immunological indicators, including specific IgG antibodies and their subclasses, cytokines, and T cell subpopulations, confirmed their immune-boosting effects. The in vivo experiments revealed that the medium-dose CS-Au-VPP NPs significantly elevated the levels of specific IgG antibodies and their subclasses, cytokines, and T cell subpopulations in PCV2-immunized mice. These findings suggest that CS-Au-VPP NPs can serve as a promising vaccine adjuvant due to their stable structure and immunoenhancement capabilities.
Collapse
Affiliation(s)
- Ting Xu
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Ancan Hong
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Xueli Zhang
- Fujian Key Laboratory of Chinese Traditional and Western Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yizhou Xu
- Fujian Key Laboratory of Chinese Traditional and Western Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Tao Wang
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Qiang Zheng
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Tiantian Wei
- Fujian Key Laboratory of Chinese Traditional and Western Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Qiuyue He
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Zhe Ren
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Tao Qin
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
17
|
Hartmeier PR, Ostrowski SM, Busch EE, Empey KM, Meng WS. Lymphatic distribution considerations for subunit vaccine design and development. Vaccine 2024; 42:2519-2529. [PMID: 38494411 DOI: 10.1016/j.vaccine.2024.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/30/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
Subunit vaccines are an important platform for controlling current and emerging infectious diseases. The lymph nodes are the primary site generating the humoral response and delivery of antigens to these sites is critical to effective immunization. Indeed, the duration of antigen exposure within the lymph node is correlated with the antibody response. While current licensed vaccines are typically given through the intramuscular route, injecting vaccines subcutaneously allows for direct access to lymphatic vessels and therefore can enhance the transfer of antigen to the lymph nodes. However, protein subunit antigen uptake into the lymph nodes is inefficient, and subunit vaccines require adjuvants to stimulate the initial immune response. Therefore, formulation strategies have been developed to enhance the exposure of subunit proteins and adjuvants to the lymph nodes by increasing lymphatic uptake or prolonging the retention at the injection site. Given that lymph node exposure is a crucial consideration in vaccine design, in depth analyses of the pharmacokinetics of antigens and adjuvants should be the focus of future preclinical and clinical studies. This review will provide an overview of formulation strategies for targeting the lymphatics and prolonging antigen exposure and will discuss pharmacokinetic evaluations which can be applied toward vaccine development.
Collapse
Affiliation(s)
- Paul R Hartmeier
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Sarah M Ostrowski
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA 15213, USA
| | - Emelia E Busch
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Kerry M Empey
- Center for Clinical Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, PA 15213, USA; Department of Immunology, School of Medicine University of Pittsburgh, PA 15213, USA
| | - Wilson S Meng
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA 15219, USA.
| |
Collapse
|
18
|
Zhang Y, Song Z, Zhang Z, Zhang T, Gu P, Feng Z, Xu S, Yang Y, Wang D, Liu Z. Preparation and characterization of pickering emulsion stabilized by lovastatin nanoparticles for vaccine adjuvants. Int J Pharm 2024; 653:123901. [PMID: 38368969 DOI: 10.1016/j.ijpharm.2024.123901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/11/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
While research on mevalonate inhibitors as vaccine adjuvants has made great progress to enhance the effectiveness of the vaccine, co delivery of lovastatin and antigens (OVA) remains an enormous challenge. Here, we encapsulated lovastatin into PLGA nanoparticles. PLGA loading lovastatin was further emulsified with squalene to prepare Pickering emulsion. The emulsification conditions of Pickering emulsion were optimized, and the optimal preparation conditions were obtained. After loading lovastatin and OVA, the size and zeta potential of LS-PPAS/OVA was 1043.33 nm and -22.07 mv, the adsorption rate of OVA was 63.34 %. The adsorbing of LS-PLGA nanoparticles on the surface of squalene in Pickering emulsions was demonstrated by Fluorescent confocal microscopy. After immunization, LS-PPAS enhanced the activation of dendritic cells in lymph nodes, further study found LS-PPAS not only elicited elevated levels of OVA-specific IgG and its subtypes, but also promoted the secretion of TNF-α, IFN-γ, and IL-6 in serum as a marker of cellular immunity. Importantly, LS-PPAS showed sufficient security through monitoring levels of biochemical parameters in serum and pathological observation of organ following vaccinations. LS-PPAS may act as a promising vaccine carrier to produce strong humoral and cellular immunity with acceptable safety.
Collapse
Affiliation(s)
- Yue Zhang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zuchen Song
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhimin Zhang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tao Zhang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing 102206, PR China
| | - Pengfei Gu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zian Feng
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shuwen Xu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yang Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhenguang Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
19
|
He J, Zhu T, Mao N, Cai G, Gu P, Song Z, Lu X, Yang Y, Wang D. Cistanche deserticola polysaccharide-functionalized dendritic fibrous nano-silica as oral vaccine adjuvant delivery enhancing both the mucosal and systemic immunity. Int J Biol Macromol 2024; 262:129982. [PMID: 38354941 DOI: 10.1016/j.ijbiomac.2024.129982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/24/2024] [Accepted: 02/03/2024] [Indexed: 02/16/2024]
Abstract
Oral vaccines are a safe and convenient alternative to injected vaccines and have great potential to prevent major infectious diseases. However, the harsh gastrointestinal (GI) environment, mucus barriers, low immunogenicity, and lack of effective and safe mucosal adjuvants are the major challenges for oral vaccine delivery. In recent years, nanoparticle-based strategies have become attractive for improving oral vaccine delivery. Here, the dendritic fibrous nano-silica (DFNS) grafted with Cistanche deserticola polysaccharide (CDP) nanoparticles (CDP-DFNS) were prepared and investigated how to impact the immune responses. CDP-DFNS facilitated the antigen uptake in mouse bone marrow-derived dendritic cells (BMDCs), and induce the activation of DCs in vitro. Furthermore, in vivo experiments, the result showed that the uptake efficiency by Peyer's patches (PPs) of CDP-DFNS/BSA was the best. And CDP-DFNS/BSA then significantly activated the DCs in lamina propria (LP), and T/B cells in PPs and mesenteric lymph nodes (MLNs). Moreover, the memory T cell responses in later period of vaccination was stronger than other groups. In addition, CDP-DFNS/BSA enhanced BSA-specific antibody IgG, IgA production, and SIgA secretion, was effective at inducing a strong mixed Th1/Th2 response and mucosal antibody responses. These results indicated that CDP-DFNS deserves further consideration as an oral vaccine adjuvant delivery system.
Collapse
Affiliation(s)
- Jin He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tianyu Zhu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ningning Mao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Gaofeng Cai
- Collage of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Pengfei Gu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Zuchen Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xuanqi Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yang Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deyun Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
20
|
Hassan M, Abdelnabi HA, Mohsin S. Harnessing the Potential of PLGA Nanoparticles for Enhanced Bone Regeneration. Pharmaceutics 2024; 16:273. [PMID: 38399327 PMCID: PMC10892810 DOI: 10.3390/pharmaceutics16020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Recently, nanotechnologies have become increasingly prominent in the field of bone tissue engineering (BTE), offering substantial potential to advance the field forward. These advancements manifest in two primary ways: the localized application of nanoengineered materials to enhance bone regeneration and their use as nanovehicles for delivering bioactive compounds. Despite significant progress in the development of bone substitutes over the past few decades, it is worth noting that the quest to identify the optimal biomaterial for bone regeneration remains a subject of intense debate. Ever since its initial discovery, poly(lactic-co-glycolic acid) (PLGA) has found widespread use in BTE due to its favorable biocompatibility and customizable biodegradability. This review provides an overview of contemporary advancements in the development of bone regeneration materials using PLGA polymers. The review covers some of the properties of PLGA, with a special focus on modifications of these properties towards bone regeneration. Furthermore, we delve into the techniques for synthesizing PLGA nanoparticles (NPs), the diverse forms in which these NPs can be fabricated, and the bioactive molecules that exhibit therapeutic potential for promoting bone regeneration. Additionally, we addressed some of the current concerns regarding the safety of PLGA NPs and PLGA-based products available on the market. Finally, we briefly discussed some of the current challenges and proposed some strategies to functionally enhance the fabrication of PLGA NPs towards BTE. We envisage that the utilization of PLGA NP holds significant potential as a potent tool in advancing therapies for intractable bone diseases.
Collapse
Affiliation(s)
| | | | - Sahar Mohsin
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
21
|
Wang Y, Qiu F, Zheng Q, Hong A, Wang T, Zhang J, Lin L, Ren Z, Qin T. Preparation, characterization and immune response of chitosan‑gold loaded Myricaria germanica polysaccharide. Int J Biol Macromol 2024; 257:128670. [PMID: 38070794 DOI: 10.1016/j.ijbiomac.2023.128670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/27/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
In this study, a novel nano-drug delivery system (CS-Au NPs) based on gold nanoparticles (Au NPs) and chitosan (CS) that modified Myricaria germanica polysaccharide (MGP) was developed to enhance immune responses. At a MGP to CS Au ratio of 5:1, CS-Au-MGP NPs had a loading capacity of 78.27 %. The structure of CS-Au-MGP NPs were characterized by Transmission electron microscope, TEM-energy dispersive spectroscopy mapping, Fourier transform infrared spectroscopy, X-ray photoelectron spectrometer, particle size and zeta-potential distribution analysis. Under weakly acidic conditions, in vitro CS-Au-MGP NPs release was most effective. In vivo showed that co-immunization with CS-Au-MGP NPs and PCV2 significantly increased the organ index of the thymus, spleen, and liver in mice. Additionally, CS-Au-MGP NPs significantly increased the levels of IgG, IgG1, and IgG2a antibodies, as well as IFN-γ and IL-6 levels. Furthermore, the CS-Au-MGP NPs promoted proliferation of spleen T and B lymphocytes, increased the number of CD3+, CD4+, and CD8+ cells, and increased the CD4+/CD8+ T cell ratio. Meanwhile, CS-Au-MGP NPs remarkably TLR2/IRAK4 pathway activation and mRNA levels of cytokines (IFN-γ and IL-6). These results indicated that CS-Au-MGP NPs could enhance the immune activity, and it could be potentially used as an MGP delivery system for the induction of strong immune responses.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Fuan Qiu
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Qiang Zheng
- Fujian Key Laboratory of Chinese Traditional and Western Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Ancan Hong
- Fujian Key Laboratory of Chinese Traditional and Western Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Tao Wang
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Junwen Zhang
- Non-human Primate Laboratory Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350013, PR China
| | - Lifan Lin
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Zhe Ren
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Tao Qin
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
22
|
Joshi D, Shah S, Chbib C, Uddin MN. Potential of DPD ((S)-4,5-dihydroxy-2,3-pentanedione) Analogs in Microparticulate Formulation as Vaccine Adjuvants. Pharmaceuticals (Basel) 2024; 17:184. [PMID: 38399399 PMCID: PMC10891675 DOI: 10.3390/ph17020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
The molecule (S)-4,5-dihydroxy-2,3-pentanedione (DPD) is produced by many different species of bacteria and is involved in bacterial communication. DPD is the precursor of signal molecule autoinducer-2 (AI-2) and has high potential to be used as a vaccine adjuvant. Vaccine adjuvants are compounds that enhance the stability and immunogenicity of vaccine antigens, modulate efficacy, and increase the immune response to a particular antigen. Previously, the microparticulate form of (S)-DPD was found to have an adjuvant effect with the gonorrhea vaccine. In this study, we evaluated the immunogenicity and adjuvanticity of several synthetic analogs of the (S)-DPD molecule, including ent-DPD((R)-4,5-dihydroxy-2,3-pentanedione), n-butyl-DPD ((S)-1,2-dihydroxy-3,4-octanedione), isobutyl-DPD ((S)-1,2-dihydroxy-6-methyl-3,4-heptanedione), n-hexyl-DPD ((S)-1,2-dihydroxy-3,4-decanedione), and phenyl-DPD ((S)-3,4-dihydroxy-1-phenyl-1,2-butanedione), in microparticulate formulations. The microparticulate formulations of all analogs of (S)-DPD were found to be noncytotoxic toward dendritic cells. Among these analogs, ent-DPD, n-butyl-DPD, and isobutyl-DPD were found to be immunogenic toward antigens and showed adjuvant efficacy with microparticulate gonorrhea vaccines. It was observed that n-hexyl-DPD and phenyl-DPD did not show any adjuvant effect. This study shows that synthetic analogs of (S)-DPD molecules are capable of eliciting adjuvant effects with vaccines. A future in vivo evaluation will further confirm that these analogs are promising vaccine adjuvants.
Collapse
Affiliation(s)
- Devyani Joshi
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; (D.J.); (S.S.)
| | - Sarthak Shah
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; (D.J.); (S.S.)
| | - Christiane Chbib
- College of Pharmacy, Larkin University, 18301 N Miami Ave, Miami, FL 33169, USA;
| | - Mohammad N. Uddin
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; (D.J.); (S.S.)
| |
Collapse
|
23
|
Puri S, Mazza M, Roy G, England RM, Zhou L, Nourian S, Anand Subramony J. Evolution of nanomedicine formulations for targeted delivery and controlled release. Adv Drug Deliv Rev 2023; 200:114962. [PMID: 37321376 DOI: 10.1016/j.addr.2023.114962] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
Nanotechnology research over the past several decades has been aimed primarily at improving the physicochemical properties of small molecules to produce druggable candidates as well as for tumor targeting of cytotoxic molecules. The recent focus on genomic medicine and the success of lipid nanoparticles for mRNA vaccines have provided additional impetus for the development of nanoparticle drug carriers for nucleic acid delivery, including siRNA, mRNA, DNA, and oligonucleotides, to create therapeutics that can modulate protein deregulation. Bioassays and characterizations, including trafficking assays, stability, and endosomal escape, are key to understanding the properties of these novel nanomedicine formats. We review historical nanomedicine platforms, characterization methodologies, challenges to their clinical translation, and key quality attributes for commercial translation with a view to their developability into a genomic medicine. New nanoparticle systems for immune targeting, as well as in vivo gene editing and in situ CAR therapy, are also highlighted as emerging areas.
Collapse
Affiliation(s)
- Sanyogitta Puri
- Advanced Drug Delivery, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Mariarosa Mazza
- Advanced Drug Delivery, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
| | - Gourgopal Roy
- Advanced Drug Delivery, BioPharmaceuticals R&D, AstraZeneca, Biologics Engineering, Oncology R&D, United States
| | - Richard M England
- Advanced Drug Delivery, BioPharmaceuticals R&D, AstraZeneca, Macclesfield, UK
| | - Liping Zhou
- Advanced Drug Delivery, BioPharmaceuticals R&D, AstraZeneca, Boston, MA, USA
| | - Saghar Nourian
- Emerging Innovations Unit, Discovery Sciences, Biopharmaceutical R&D , AstraZeneca, Gaithersburg, MD, USA
| | - J Anand Subramony
- Advanced Drug Delivery, BioPharmaceuticals R&D, AstraZeneca, Biologics Engineering, Oncology R&D, United States.
| |
Collapse
|
24
|
Shakya AK, Nandakumar KS. Polymer Chemistry Defines Adjuvant Properties and Determines the Immune Response against the Antigen or Vaccine. Vaccines (Basel) 2023; 11:1395. [PMID: 37766073 PMCID: PMC10537360 DOI: 10.3390/vaccines11091395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Activation of the immune system is a needed for designing new antigen/drug delivery systems to develop new therapeutics and for developing animal disease models to study the disease pathogenesis. A weak antigen alone is insufficient to activate the immune system. Sometimes, assistance in the form of polymers is needed to control the release of antigens under in vivo conditions or in the form of an adjuvant to activate the immune system efficiently. Many kinds of polymers from different functional groups are suitable as microbial antigens for inducing therapeutic immune responses against infectious diseases at the preclinical level. The choice of the functionality of polymer varies as per the application type. Polymers from the acid and ester groups are the most common types investigated for protein-based antigens. However, electrostatic interaction-displaying polymers like cationic polymers are the most common type for nucleic acid-based antigens. Metal coordination chemistry is commonly used in polymers designed for cancer immunotherapeutic applications to suppress inflammation and induce a protective immune response. Amide chemistry is widely deployed in polymers used to develop antigen-specific disease models like the experimental autoimmune arthritis murine model.
Collapse
Affiliation(s)
| | - Kutty Selva Nandakumar
- Department of Environmental and Biosciences, School of Business, Innovation and Sustainability, Halmstad University, 30118 Halmstad, Sweden
| |
Collapse
|
25
|
Zhang Y, Li Q, Ding M, Xiu W, Shan J, Yuwen L, Yang D, Song X, Yang G, Su X, Mou Y, Teng Z, Dong H. Endogenous/Exogenous Nanovaccines Synergistically Enhance Dendritic Cell-Mediated Tumor Immunotherapy. Adv Healthc Mater 2023; 12:e2203028. [PMID: 36807733 PMCID: PMC11468714 DOI: 10.1002/adhm.202203028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/20/2023] [Indexed: 02/20/2023]
Abstract
Traditional dendritic cell (DC)-mediated immunotherapy is usually suppressed by weak immunogenicity in tumors and generally leads to unsatisfactory outcomes. Synergistic exogenous/endogenous immunogenic activation can provide an alternative strategy for evoking a robust immune response by promoting DC activation. Herein, Ti3 C2 MXene-based nanoplatforms (termed MXP) are prepared with high-efficiency near-infrared photothermal conversion and immunocompetent loading capacity to form endogenous/exogenous nanovaccines. Specifically, the immunogenic cell death of tumor cells induced by the photothermal effects of the MXP can generate endogenous danger signals and antigens release to boost vaccination for DC maturation and antigen cross-presentation. In addition, MXP can deliver model antigen ovalbumin (OVA) and agonists (CpG-ODN) as an exogenous nanovaccine (MXP@OC), which further enhances DC activation. Importantly, the synergistic strategy of photothermal therapy and DC-mediated immunotherapy by MXP significantly eradicates tumors and enhances adaptive immunity. Hence, the present work provides a two-pronged strategy for improving immunogenicity and killing tumor cells to achieve a favorable outcome in tumor patients.
Collapse
Affiliation(s)
- Yu Zhang
- Nanjing Stomatological HospitalMedical School of Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Qiang Li
- Nanjing Stomatological HospitalMedical School of Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Meng Ding
- Nanjing Stomatological HospitalMedical School of Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Weijun Xiu
- Key Laboratory for Organic Electronics and Information DisplaysJiangsu Key Laboratory for BiosensorsInstitute of Advanced MaterialsJiangsu National Synergetic Innovation Centre for Advanced MaterialsNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjingJiangsu210023P. R. China
| | - Jingyang Shan
- Department of NeurologyShenzhen Institute of Translational MedicineThe First Affiliated Hospital of Shenzhen UniversityShenzhen Second People's HospitalShenzhen518000P. R. China
| | - Lihui Yuwen
- Key Laboratory for Organic Electronics and Information DisplaysJiangsu Key Laboratory for BiosensorsInstitute of Advanced MaterialsJiangsu National Synergetic Innovation Centre for Advanced MaterialsNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjingJiangsu210023P. R. China
| | - Dongliang Yang
- School of Physical and Mathematical SciencesNanjing Tech University30 South Puzhu RoadNanjingJiangsu211816P. R. China
| | - Xuejiao Song
- School of Physical and Mathematical SciencesNanjing Tech University30 South Puzhu RoadNanjingJiangsu211816P. R. China
| | - Guangwen Yang
- Nanjing Stomatological HospitalMedical School of Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Xiaodan Su
- Key Laboratory for Organic Electronics and Information DisplaysJiangsu Key Laboratory for BiosensorsInstitute of Advanced MaterialsJiangsu National Synergetic Innovation Centre for Advanced MaterialsNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjingJiangsu210023P. R. China
| | - Yongbin Mou
- Nanjing Stomatological HospitalMedical School of Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information DisplaysJiangsu Key Laboratory for BiosensorsInstitute of Advanced MaterialsJiangsu National Synergetic Innovation Centre for Advanced MaterialsNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjingJiangsu210023P. R. China
| | - Heng Dong
- Nanjing Stomatological HospitalMedical School of Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| |
Collapse
|
26
|
Liu M, Lau CYJ, Cabello IT, Garssen J, Willemsen LEM, Hennink WE, van Nostrum CF. Live Cell Imaging by Förster Resonance Energy Transfer Fluorescence to Study Trafficking of PLGA Nanoparticles and the Release of a Loaded Peptide in Dendritic Cells. Pharmaceuticals (Basel) 2023; 16:818. [PMID: 37375766 DOI: 10.3390/ph16060818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Our previous study demonstrated that a selected β-lactoglobulin-derived peptide (BLG-Pep) loaded in poly(lactic-co-glycolic acid) (PLGA) nanoparticles protected mice against cow's milk allergy development. However, the mechanism(s) responsible for the interaction of the peptide-loaded PLGA nanoparticles with dendritic cells (DCs) and their intracellular fate was/were elusive. Förster resonance energy transfer (FRET), a distance-dependent non-radioactive energy transfer process mediated from a donor to an acceptor fluorochrome, was used to investigate these processes. The ratio of the donor (Cyanine-3)-conjugated peptide and acceptor (Cyanine-5) labeled PLGA nanocarrier was fine-tuned for optimal (87%) FRET efficiency. The colloidal stability and FRET emission of prepared NPs were maintained upon 144 h incubation in PBS buffer and 6 h incubation in biorelevant simulated gastric fluid at 37 °C. A total of 73% of Pep-Cy3 NP was internalized by DCs as quantified using flow cytometry and confirmed using confocal fluorescence microscopy. By real-time monitoring of the change in the FRET signal of the internalized peptide-loaded nanoparticles, we observed prolonged retention (for 96 h) of the nanoparticles-encapsulated peptide as compared to 24 h retention of the free peptide in the DCs. The prolonged retention and intracellular antigen release of the BLG-Pep loaded in PLGA nanoparticles in murine DCs might facilitate antigen-specific tolerance induction.
Collapse
Affiliation(s)
- Mengshan Liu
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Chun Yin Jerry Lau
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Irene Trillo Cabello
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Johan Garssen
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
- Department of Immunology, Nutricia Research B.V., 3584 CT Utrecht, The Netherlands
| | - Linette E M Willemsen
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Cornelus F van Nostrum
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
27
|
Menon I, Patil S, Bagwe P, Vijayanand S, Kale A, Braz Gomes K, Kang SM, D'Souza M. Dissolving Microneedles Loaded with Nanoparticle Formulation of Respiratory Syncytial Virus Fusion Protein Virus-like Particles (F-VLPs) Elicits Cellular and Humoral Immune Responses. Vaccines (Basel) 2023; 11:vaccines11040866. [PMID: 37112778 PMCID: PMC10144232 DOI: 10.3390/vaccines11040866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/25/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Respiratory syncytial virus (RSV) is one of the leading causes of bronchiolitis and pneumonia in children ages five years and below. Recent outbreaks of the virus have proven that RSV remains a severe burden on healthcare services. Thus, a vaccine for RSV is a need of the hour. Research on novel vaccine delivery systems for infectious diseases such as RSV can pave the road to more vaccine candidates. Among many novel vaccine delivery systems, a combined system with polymeric nanoparticles loaded in dissolving microneedles holds a lot of potential. In this study, the virus-like particles of the RSV fusion protein (F-VLP) were encapsulated in poly (D, L-lactide-co-glycolide) (PLGA) nanoparticles (NPs). These NPs were then loaded into dissolving microneedles (MNs) composed of hyaluronic acid and trehalose. To test the in vivo immunogenicity of the nanoparticle-loaded microneedles, Swiss Webster mice were immunized with the F-VLP NPs, both with and without adjuvant monophosphoryl lipid A (MPL) NPs loaded in the MN. The mice immunized with the F-VLP NP + MPL NP MN showed high immunoglobulin (IgG and IgG2a) levels both in the serum and lung homogenates. A subsequent analysis of lung homogenates post-RSV challenge revealed high IgA, indicating the generation of a mucosal immune response upon intradermal immunization. A flowcytometry analysis showed high CD8+ and CD4+ expression in the lymph nodes and spleens of the F-VLP NP + MPL NP MN-immunized mice. Thus, our vaccine elicited a robust humoral and cellular immune response in vivo. Therefore, PLGA nanoparticles loaded in dissolving microneedles could be a suitable novel delivery system for RSV vaccines.
Collapse
Affiliation(s)
- Ipshita Menon
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Smital Patil
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Priyal Bagwe
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Sharon Vijayanand
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Akanksha Kale
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Keegan Braz Gomes
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Sang Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Martin D'Souza
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| |
Collapse
|
28
|
Zhang Y, Zhu T, Xu S, Gu P, Cai G, Peng S, Liu Z, Yang Y, Hu Y, Liu J, Wang D. Cationic Nanoparticle-Stabilized Vaccine Delivery System for the H9N2 Vaccine to Promote Immune Response in Chickens. Mol Pharm 2023; 20:1613-1623. [PMID: 36795759 DOI: 10.1021/acs.molpharmaceut.2c00805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Chinese yam polysaccharides (CYPs) have received wide attention for their immunomodulatory activity. Our previous studies had discovered that the Chinese yam polysaccharide PLGA-stabilized Pickering emulsion (CYP-PPAS) can serve as an efficient adjuvant to trigger powerful humoral and cellular immunity. Recently, positively charged nano-adjuvants are easily taken up by antigen-presenting cells, potentially resulting in lysosomal escape, the promotion of antigen cross-presentation, and the induction of CD8 T-cell response. However, reports on the practical application of cationic Pickering emulsions as adjuvants are very limited. Considering the economic damage and public-health risks caused by the H9N2 influenza virus, it is urgent to develop an effective adjuvant for boosting humoral and cellular immunity against influenza virus infection. Here, we applied polyethyleneimine-modified Chinese yam polysaccharide PLGA nanoparticles as particle stabilizers and squalene as the oil core to fabricate a positively charged nanoparticle-stabilized Pickering emulsion adjuvant system (PEI-CYP-PPAS). The cationic Pickering emulsion of PEI-CYP-PPAS was utilized as an adjuvant for the H9N2 Avian influenza vaccine, and the adjuvant activity was compared with the Pickering emulsion of CYP-PPAS and the commercial adjuvant (aluminum adjuvant). The PEI-CYP-PPAS, with a size of about 1164.66 nm and a ζ potential of 33.23 mV, could increase the H9N2 antigen loading efficiency by 83.99%. After vaccination with Pickering emulsions based on H9N2 vaccines, PEI-CYP-PPAS generated higher HI titers and stronger IgG antibodies than CYP-PPAS and Alum and increased the immune organ index of the spleen and bursa of Fabricius without immune organ injury. Moreover, treatment with PEI-CYP-PPAS/H9N2 induced CD4+ and CD8+ T-cell activation, a high lymphocyte proliferation index, and increased cytokine expression of IL-4, IL-6, and IFN-γ. Thus, compared with the CYP-PPAS and aluminum adjuvant, the cationic nanoparticle-stabilized vaccine delivery system of PEI-CYP-PPAS was an effective adjuvant for H9N2 vaccination to elicit powerful humoral and cellular immune responses.
Collapse
Affiliation(s)
- Yue Zhang
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing, Jiangsu 210095, P. R. China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Tianyu Zhu
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing, Jiangsu 210095, P. R. China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Shuwen Xu
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing, Jiangsu 210095, P. R. China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Pengfei Gu
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing, Jiangsu 210095, P. R. China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Gaofeng Cai
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing, Jiangsu 210095, P. R. China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Song Peng
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing, Jiangsu 210095, P. R. China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Zhenguang Liu
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing, Jiangsu 210095, P. R. China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yang Yang
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing, Jiangsu 210095, P. R. China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yuanliang Hu
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing, Jiangsu 210095, P. R. China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jiaguo Liu
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing, Jiangsu 210095, P. R. China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Deyun Wang
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing, Jiangsu 210095, P. R. China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
29
|
Xu S, Wu Z, Cai G, Zhang Y, Peng S, Jiao L, Liu Z, Yang Y, Wang D. Astragalus polysaccharides combined with simvastatin as an immunostimulant enhances the immune adjuvanticity of oil-in-water emulsion and immune responses in mice. Vaccine 2023; 41:1684-1693. [PMID: 36754767 DOI: 10.1016/j.vaccine.2023.01.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/12/2022] [Accepted: 01/30/2023] [Indexed: 02/08/2023]
Abstract
Oil-in-water emulsion-based adjuvants have demonstrated acceptable safety in many disease indications, while their adjuvant activities for vaccines still need to be improved. Recently, the strategy of combining adjuvants with multiple types of immunostimulants has been shown to enhance immune responses. In this study, astragalus polysaccharides were combined with simvastatin as an immunostimulant to construct a compound O/W emulsion adjuvant. The formulations were optimized according to the OVA-specific antibody responses induced in mice. For this reason, high (5 mg/mL), medium (2.5 mg/mL), and low (1.25 mg/mL) concentrations of astragalus polysaccharides and high (10 mg/mL), medium (1 mg/mL), and low (0.1 mg/mL) concentrations of simvastatin were selected. The final optimal formulation of the immunostimulant was a high concentration of astragalus polysaccharides combined with a medium concentration of simvastatin. The optimal compound O/W emulsion adjuvant could induce effective humoral and cellular immune responses that were stronger and more stable than those induced by aluminum adjuvant and Freund's adjuvant. The OVA/HAPS-MSim-OE induced dramatically strong and persistent IgG expressions and Th1-polarized immune responses. What's more, the highest CD4+/CD8+lymphocyte ratios were observed in OVA/HAPS-MSim-OE group. In addition, compound O/W emulsion adjuvant groups significantly promoted the secretion of IFN-γ and IL-6, which also indicated that the compound O/W emulsion adjuvants could induce both enhanced Th1 and Th2-mediated immune responses but prefer the Th1-mediated ones. This study would contribute to an interesting and promising direction in the development of emulsion-based adjuvants.
Collapse
Affiliation(s)
- Shuwen Xu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing, Jiangsu 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Zhiyong Wu
- Nanjing Traditional Chinese Veterinary Medicine Research Center, Nanjing, Jiangsu 210095, PR China
| | - Gaofeng Cai
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing, Jiangsu 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yue Zhang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing, Jiangsu 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Song Peng
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing, Jiangsu 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Lina Jiao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing, Jiangsu 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Zhenguang Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing, Jiangsu 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yang Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing, Jiangsu 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing, Jiangsu 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
30
|
Hendy DA, Haven A, Bachelder EM, Ainslie KM. Preclinical developments in the delivery of protein antigens for vaccination. Expert Opin Drug Deliv 2023; 20:367-384. [PMID: 36731824 PMCID: PMC9992317 DOI: 10.1080/17425247.2023.2176844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 02/01/2023] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Vaccine technology has constantly advanced since its origin. One of these advancements is where purified parts of a pathogen are used rather than the whole pathogen. Subunit vaccines have no chance of causing disease; however, alone these antigens are often poorly immunogenic. Therefore, they can be paired with immune stimulating adjuvants. Further, subunits can be combined with delivery strategies such as nano/microparticles to enrich their delivery to organs and cells of interest as well as protect them from in vivo degradation. Here, we seek to highlight some of the more promising delivery strategies for protein antigens. AREAS COVERED We present a brief description of the different types of vaccines, clinically relevant examples, and their disadvantages when compared to subunit vaccines. Also, specific preclinical examples of delivery strategies for protein antigens. EXPERT OPINION Subunit vaccines provide optimal safety given that they have no risk of causing disease; however, they are often not immunogenic enough on their own to provide protection. Advanced delivery systems are a promising avenue to increase the immunogenicity of subunit vaccines, but scalability and stability can be improved. Further, more research is warranted on systems that promote a mucosal immune response to provide better protection against infection.
Collapse
Affiliation(s)
- Dylan A. Hendy
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Alex Haven
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Eric M. Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Kristy M. Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA
- Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
31
|
Peletta A, Lemoine C, Courant T, Collin N, Borchard G. Meeting vaccine formulation challenges in an emergency setting: Towards the development of accessible vaccines. Pharmacol Res 2023; 189:106699. [PMID: 36796463 DOI: 10.1016/j.phrs.2023.106699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Vaccination is considered one of the most successful strategies to prevent infectious diseases. In the event of a pandemic or epidemic, the rapid development and distribution of the vaccine to the population is essential to reduce mortality, morbidity and transmission. As seen during the COVID-19 pandemic, the production and distribution of vaccines has been challenging, in particular for resource-constrained settings, essentially slowing down the process of achieving global coverage. Pricing, storage, transportation and delivery requirements of several vaccines developed in high-income countries resulted in limited access for low-and-middle income countries (LMICs). The capacity to manufacture vaccines locally would greatly improve global vaccine access. In particular, for the development of classical subunit vaccines, the access to vaccine adjuvants is a pre-requisite for more equitable access to vaccines. Vaccine adjuvants are agents required to augment or potentiate, and possibly target the specific immune response to such type of vaccine antigens. Openly accessible or locally produced vaccine adjuvants may allow for faster immunization of the global population. For local research and development of adjuvanted vaccines to expand, knowledge on vaccine formulation is of paramount importance. In this review, we aim to discuss the optimal characteristics of a vaccine developed in an emergency setting by focusing on the importance of vaccine formulation, appropriate use of adjuvants and how this may help overcome barriers for vaccine development and production in LMICs, achieve improved vaccine regimens, delivery and storage requirements.
Collapse
Affiliation(s)
- Allegra Peletta
- Section of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Rue Michel-Servet 1, 1221 Geneva, Switzerland.
| | - Céline Lemoine
- Vaccine Formulation Institute, Rue du Champ-Blanchod 4, 1228 Plan-les-Ouates, Switzerland.
| | - Thomas Courant
- Vaccine Formulation Institute, Rue du Champ-Blanchod 4, 1228 Plan-les-Ouates, Switzerland.
| | - Nicolas Collin
- Vaccine Formulation Institute, Rue du Champ-Blanchod 4, 1228 Plan-les-Ouates, Switzerland.
| | - Gerrit Borchard
- Section of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Rue Michel-Servet 1, 1221 Geneva, Switzerland.
| |
Collapse
|
32
|
He M, Sun Y, Cheng Y, Wang J, Zhang M, Sun R, Hou X, Xu J, He H, Wang H, Yuan Z, Lan M, Zhao Y, Yang Y, Chen X, Gao F. Spatiotemporally controllable diphtherin transgene system and neoantigen immunotherapy. J Control Release 2023; 355:538-551. [PMID: 36063962 DOI: 10.1016/j.jconrel.2022.08.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 07/12/2022] [Accepted: 08/29/2022] [Indexed: 02/16/2023]
Abstract
Individualized immunotherapy has attracted great attention due to its high specificity, effectiveness, and safety. We used an exogenous antigen to label tumor cells with MHC I molecules, which allowed neoantigen-specific T cells to recognize and kill tumor cells. A neoantigen vaccine alone cannot achieve complete tumor clearance due to a tumor immunosuppressive microenvironment. The LightOn system was developed to effectively eliminate tumor cells through the spatiotemporally controllable expression of diphtheria toxin A fragment, leading to antigen release in the tumor region. These antigens stimulated and enhanced immunological function and thus, recruited neoantigen-specific T cells to infiltrate tumor tissue. Using the nanoparticle delivery system, neoantigens produced higher delivery efficiency to lymph nodes and improved tumor targeting ability for tumor cell labelling. Good tumor inhibition and prolonged survival were achieved, while eliciting a strong immune response. The combination of a spatiotemporally controllable transgene system with tumor neoantigen labeling has great potential for tumor immunotherapy.
Collapse
Affiliation(s)
- Muye He
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuji Sun
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Cheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jie Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Miao Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Rui Sun
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xinyu Hou
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiajun Xu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Hai He
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Hongtao Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zeting Yuan
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Yuzheng Zhao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, China
| | - Yi Yang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xianjun Chen
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Feng Gao
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
33
|
Mansour A, Romani M, Acharya AB, Rahman B, Verron E, Badran Z. Drug Delivery Systems in Regenerative Medicine: An Updated Review. Pharmaceutics 2023; 15:pharmaceutics15020695. [PMID: 36840018 PMCID: PMC9967372 DOI: 10.3390/pharmaceutics15020695] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Modern drug discovery methods led to evolving new agents with significant therapeutic potential. However, their properties, such as solubility and administration-related challenges, may hinder their benefits. Moreover, advances in biotechnology resulted in the development of a new generation of molecules with a short half-life that necessitates frequent administration. In this context, controlled release systems are required to enhance treatment efficacy and improve patient compliance. Innovative drug delivery systems are promising tools that protect therapeutic proteins and peptides against proteolytic degradation where controlled delivery is achievable. The present review provides an overview of different approaches used for drug delivery.
Collapse
Affiliation(s)
- Alaa Mansour
- Periodontology Unit, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Maya Romani
- Department of Family Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | | | - Betul Rahman
- Periodontology Unit, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence:
| | - Elise Verron
- CNRS, CEISAM, UMR 6230, Nantes Université, F-44000 Nantes, France
| | - Zahi Badran
- Periodontology Unit, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
34
|
Wang D, Gu W, Chen W, Zhou J, Yu L, Kook Kim B, Zhang X, Seung Kim J. Advanced nanovaccines based on engineering nanomaterials for accurately enhanced cancer immunotherapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Li X, Wang ZG, Zhu H, Wen HP, Ning D, Liu HY, Pang DW, Liu SL. Inducing Autophagy and Blocking Autophagic Flux via a Virus-Mimicking Nanodrug for Cancer Therapy. NANO LETTERS 2022; 22:9163-9173. [PMID: 36374537 DOI: 10.1021/acs.nanolett.2c04091] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Maximizing the therapeutic capacity of drugs by allowing them to escape lysosomal degradation is a long-term challenge for nanodrug delivery. Japanese encephalitis virus (JEV) has evolved the ability to escape the endosomal region to avoid degradation of internal genetic material by lysosomes and further induce upregulation of cellular autophagy for the purpose of their mass reproduction. In this work, to exploit the lysosome escape and autophagy-inducing properties of JEV for cancer therapy, we constructed a virus-mimicking nanodrug consisting of anti-PDL1 antibody-decorated JEV-mimicking virosome encapsulated with a clinically available autophagy inhibitor, hydroxychloroquine (HCQ). Our study indicated that the nanodrug can upregulate the autophagy level and inhibit the autophagic flux, thereby inducing the apoptosis of tumor cells, and further activating the immune response, which can greatly improve the antitumor and tumor metastasis suppression effects and provide a potential therapeutic strategy for tumor treatment.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P. R. China
| | - Han Zhu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P. R. China
| | - Hui-Ping Wen
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P. R. China
| | - Di Ning
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P. R. China
| | - Hao-Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P. R. China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P. R. China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P. R. China
| |
Collapse
|
36
|
Heng WT, Yew JS, Poh CL. Nanovaccines against Viral Infectious Diseases. Pharmaceutics 2022; 14:2554. [PMID: 36559049 PMCID: PMC9784285 DOI: 10.3390/pharmaceutics14122554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Infectious diseases have always been regarded as one of the greatest global threats for the last century. The current ongoing COVID-19 pandemic caused by SARS-CoV-2 is living proof that the world is still threatened by emerging infectious diseases. Morbidity and mortality rates of diseases caused by Coronavirus have inflicted devastating social and economic outcomes. Undoubtedly, vaccination is the most effective method of eradicating infections and infectious diseases that have been eradicated by vaccinations, including Smallpox and Polio. To date, next-generation vaccine candidates with novel platforms are being approved for emergency use, such as the mRNA and viral vectored vaccines against SARS-CoV-2. Nanoparticle based vaccines are the perfect candidates as they demonstrated targeted antigen delivery, improved antigen presentation, and sustained antigen release while providing self-adjuvanting functions to stimulate potent immune responses. In this review, we discussed most of the recent nanovaccines that have found success in immunization and challenge studies in animal models in comparison with their naked vaccine counterparts. Nanovaccines that are currently in clinical trials are also reviewed.
Collapse
Affiliation(s)
| | | | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Malaysia
| |
Collapse
|
37
|
Fan Z, Zhang Y, Jiao L, Zhu T, Feng Z, Liu Z, Yang Y, Wang D. Lycium barbarum polysaccharides-loaded Particulate Alum via Pickering emulsion as an adjuvant to enhance immune responses. Int J Pharm 2022; 630:122418. [PMID: 36423709 DOI: 10.1016/j.ijpharm.2022.122418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/19/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Pickering emulsion has great potential as a vaccine adjuvant due to its unique advantages such as its high antigen loading efficiency, great stability, etc. Among several adjuvants on the market, aluminum adjuvant (Alum) is the most widely used at present. However, problems such as the inability to effectively induce cellular immunity and the poor effect on subunit vaccines limit the application of Alum. As an immunopotentiator, Lycium barbarum polysaccharides (LBP) have been proven to have the ability to regulate humoral and cellular immunity. To overcome the insufficiency of Alum, we explored a new adjuvant delivery system. The Lycium barbarum polysaccharides-loaded Particulate Alum via Pickering emulsion (LBPPE) was prepared by loading Alum on the squalene/water interphase following LBP was adsorbed on the Alum surface (Fig. 10). Similar to squalene, LBPPE possesses a good biosafety profile. LBPPE was spherical with uneven surface, which increased the possibility of efficient antigen adsorption on the surface and crack of LBPPE. And the result shown that the LBPPE had high antigen loading rate at approximately 90 %. In vivo experiments, LBPPE showed an excellent ability to recruit antigen-presenting cells (APCs) at the injection sites, activate dendritic cells in the lymph nodes. Then, in the evaluation of humoral immunity, LBPPE was able to effectively induce the production of IgG, IgG1, and IgG2a. Moreover, LBPPE significantly enhanced the expression and activation of T lymphocytes, and induced a strong immune memory T cells response. All the results above suggested that LBPPE is likely to provide promising insights toward a safe and efficient adjuvant platform for vaccines.
Collapse
Affiliation(s)
- Zexiao Fan
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yue Zhang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lina Jiao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tianyu Zhu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zian Feng
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhenguang Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yang Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
38
|
Malek-Khatabi A, Tabandeh Z, Nouri A, Mozayan E, Sartorius R, Rahimi S, Jamaledin R. Long-Term Vaccine Delivery and Immunological Responses Using Biodegradable Polymer-Based Carriers. ACS APPLIED BIO MATERIALS 2022; 5:5015-5040. [PMID: 36214209 DOI: 10.1021/acsabm.2c00638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biodegradable polymers are largely employed in the biomedical field, ranging from tissue regeneration to drug/vaccine delivery. The biodegradable polymers are highly biocompatible and possess negligible toxicity. In addition, biomaterial-based vaccines possess adjuvant properties, thereby enhancing immune responses. This Review introduces the use of different biodegradable polymers and their degradation mechanism. Different kinds of vaccines, as well as the interaction between the carriers with the immune system, then are highlighted. Natural and synthetic biodegradable micro-/nanoplatforms, hydrogels, and scaffolds for local or targeted and controlled vaccine release are subsequently discussed.
Collapse
Affiliation(s)
- Atefeh Malek-Khatabi
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Zahra Tabandeh
- Department of Physical Chemistry, Faculty of Chemistry, University of Kashan, Kashan 8731753153, Iran
| | - Akram Nouri
- School of Chemistry, College of Science, University of Tehran, Tehran 141556455, Iran
| | - Elaheh Mozayan
- Department of Cell and Molecular Biology, University of Kashan, Kashan 8731753153, Iran
| | | | - Shahnaz Rahimi
- School of Chemistry, College of Science, University of Tehran, Tehran 141556455, Iran
| | - Rezvan Jamaledin
- Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II, Naples 80125, Italy
| |
Collapse
|
39
|
Zhang Y, Gu P, Jiao L, He J, Yu L, Liu Z, Yang Y, Hu Y, Liu J, Wang D. Chinese yam polysaccharides PLGA-stabilized Pickering emulsion as an adjuvant system for PCV- 2 vaccine to enhance immune response. Int J Biol Macromol 2022; 219:1034-1046. [PMID: 35963357 DOI: 10.1016/j.ijbiomac.2022.08.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/25/2022] [Accepted: 08/07/2022] [Indexed: 11/05/2022]
Abstract
Chinese yam polysaccharides (CYP) exhibit superior adjuvant activity and modulate the immune response, but the low bioavailability limits their clinical application. Pickering emulsions have been proven as an efficient vaccine delivery system to enhance the immune response. Here, we used the Chinese yam polysaccharides PLGA-stabilized Pickering emulsion adjuvant system (CYP-PPAS) loaded with Porcine circovirus 2 as a vaccine and focused on investigating its adjuvant activity on humoral and cellular immunity in mice. The CYP-PPAS increased PCV-2 antigen loading efficiency and showed a high antigen uptake efficiency by macrophages in vitro. In vivo, CYP-PPAS significantly facilitated DCs maturation in draining lymph nodes than CYP or PPAS alone group. The CYP-PPAS also induced an increased proliferation index and a CD4+/CD8+ ratio. Meanwhile, in contrast to the CYP and PPAS groups, CYP-PPAS elicited a stronger anti-PCV-2 IgG and mixed Th1/Th2 immune response. Specifically, the CYP-PPAS group displayed the high expression of CD107a, FasL, and Granzyme B secretion to augment a strong cytotoxic lymphocyte response. Overall, the CYP-PPAS was a successful adjuvant system for promoting humoral and cellular immune responses, which opens up an avenue for the development of effective adjuvants against infectious diseases.
Collapse
Affiliation(s)
- Yue Zhang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Pengfei Gu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lina Jiao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jin He
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lin Yu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhenguang Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yang Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuanliang Hu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
40
|
Cai G, Yang Y, Gu P, Li K, Adelijiang W, Zhu T, Liu Z, Wang D. The secretion of sIgA and dendritic cells activation in the intestinal of cyclophosphamide-induced immunosuppressed mice are regulated by Alhagi honey polysaccharides. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 103:154232. [PMID: 35675749 DOI: 10.1016/j.phymed.2022.154232] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND It remains a huge challenge to recover the intestine immune function for the treatment of intestinal mucosal damage from chemotherapy with cyclophosphamide (CY). Alhagi honey polysaccharide (AH) has immunomodulation pharmacological activity, but the effect and mechanism on the intestinal immune system of CY-mice remain unclear. PURPOSE In this experiment, the immunomodulatory activity of AH on intestinal immune in CY-mice and its mechanism of regulating the intestinal immune system was investigated. STUDY DESIGN AND METHODS The experiment studied the immunomodulatory activity of AH on the intestinal immune system and its mechanism for the first time from in vitro and in vivo experiments. We investigated the immunomodulatory effects of AH on Caco-2 and dendritic cells (DCs) in vitro by using western blot (WB), flow cytometry, quantitative real-time PCR (qPCR), and ELISA methods. In vivo experiment, the immunosuppressive mouse model was established through being given intraperitoneal injection with CY (80 mg/kg) for 3 days. Then, mice oral administration of 800 mg/kg AH and 40 mg/kg levamisole hydrochloride for a week. Immunofluorescence, flow cytometry, ELISA, qPCR and WB were applied to examine the immunomodulatory activity of AH on the intestinal immune function of CY-mice, as well as the function of AH on the concentration of SCFAs in cecum by Gas chromatographic analysis. RESULTS In vitro experiments, AH could significantly stimulate the expression of pIgR protein in Caco-2. It could also induce the DCs maturation and release the cytokines to regulate the immune response. In vivo experiments, AH could remarkably stimulate the DCs maturation and secrete more CCL20 to recruit DCs, then induce the T (CD4+ and CD8+) and B cells proliferation and activation. Moreover, it could further induce T helper cells to differentiate and secrete cytokines to enhance the secretion of sIgA. Furthermore, it also directly activated DCs and released cytokines to increase the content of pIgR, J-chain, and IgA+ cells in intestine, thereby enhancing the secretion of sIgA to protect the intestine. In addition, AH could obviously strengthen the SCFAs production in cecum to regulate the intestinal immune dysfunction induced by CY. CONCLUSION In summary, oral administrated AH exhibits great benefits for treating CY-induced intestinal immunosuppression, and the mechanism of action mainly involves sIgA, DCs, SCFAs.
Collapse
Affiliation(s)
- Gaofeng Cai
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yang Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Pengfei Gu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Kui Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wusiman Adelijiang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830000, China
| | - Tianyu Zhu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhenguang Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
41
|
Kumar M, Dogra R, Mandal UK. Nanomaterial-based delivery of vaccine through nasal route: Opportunities, challenges, advantages, and limitations. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
42
|
Domingues C, Santos A, Alvarez-Lorenzo C, Concheiro A, Jarak I, Veiga F, Barbosa I, Dourado M, Figueiras A. Where Is Nano Today and Where Is It Headed? A Review of Nanomedicine and the Dilemma of Nanotoxicology. ACS NANO 2022; 16:9994-10041. [PMID: 35729778 DOI: 10.1021/acsnano.2c00128] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Worldwide nanotechnology development and application have fueled many scientific advances, but technophilic expectations and technophobic demands must be counterbalanced in parallel. Some of the burning issues today are the following: (1) Where is nano today? (2) How good are the communication and investment networks between academia/research and governments? (3) Is there any spotlight application for nanotechnology? Nanomedicine is a particular arm of nanotechnology within the healthcare landscape, focused on diagnosis, treatment, and monitoring of emerging (such as coronavirus disease 2019, COVID-19) and contemporary (including diabetes, cardiovascular diseases, neurodegenerative disorders, and cancer) diseases. However, it may only represent the bright side of the coin. In fact, in the recent past, the concept of nanotoxicology has emerged to address the dark shadows of nanomedicine. The nanomedicine field requires more nanotoxicological studies to identify undesirable effects and guarantee safety. Here, we provide an overall perspective on nanomedicine and nanotoxicology as central pieces of the giant puzzle of nanotechnology. First, the impact of nanotechnology on education and research is highlighted, followed by market trends and scientific output tendencies. In the next section, the nanomedicine and nanotoxicology dilemma is addressed through the interplay of in silico, in vitro, and in vivo models with the support of omics and microfluidic approaches. Lastly, a reflection on the regulatory issues and clinical trials is provided. Finally, some conclusions and future perspectives are proposed for a clearer and safer translation of nanomedicines from the bench to the bedside.
Collapse
Affiliation(s)
- Cátia Domingues
- Univ. Coimbra, Faculty of Pharmacy, Galenic and Pharmaceutical Technology Laboratory, 3000-548 Coimbra, Portugal
- LAQV-REQUIMTE, Galenic and Pharmaceutical Technology Laboratory, Faculty of Pharmacy, Univ. Coimbra, 3000-548 Coimbra, Portugal
- Univ. Coimbra, Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Ana Santos
- Univ. Coimbra, Faculty of Pharmacy, Galenic and Pharmaceutical Technology Laboratory, 3000-548 Coimbra, Portugal
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, iMATUS, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, iMATUS, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ivana Jarak
- Univ. Coimbra, Faculty of Pharmacy, Galenic and Pharmaceutical Technology Laboratory, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Univ. Coimbra, Faculty of Pharmacy, Galenic and Pharmaceutical Technology Laboratory, 3000-548 Coimbra, Portugal
- LAQV-REQUIMTE, Galenic and Pharmaceutical Technology Laboratory, Faculty of Pharmacy, Univ. Coimbra, 3000-548 Coimbra, Portugal
| | - Isabel Barbosa
- Univ. Coimbra, Faculty of Pharmacy, Phamaceutical Chemistry Laboratory, 3000-548 Coimbra, Portugal
| | - Marília Dourado
- Univ. Coimbra, Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ. Coimbra, Center for Health Studies and Research of the University of Coimbra (CEISUC), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ. Coimbra, Center for Studies and Development of Continuous and Palliative Care (CEDCCP), Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Ana Figueiras
- Univ. Coimbra, Faculty of Pharmacy, Galenic and Pharmaceutical Technology Laboratory, 3000-548 Coimbra, Portugal
- LAQV-REQUIMTE, Galenic and Pharmaceutical Technology Laboratory, Faculty of Pharmacy, Univ. Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
43
|
Lee J, Kim D, Byun J, Wu Y, Park J, Oh YK. In vivo fate and intracellular trafficking of vaccine delivery systems. Adv Drug Deliv Rev 2022; 186:114325. [PMID: 35550392 PMCID: PMC9085465 DOI: 10.1016/j.addr.2022.114325] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/22/2022] [Accepted: 05/05/2022] [Indexed: 01/12/2023]
Abstract
With the pandemic of severe acute respiratory syndrome coronavirus 2, vaccine delivery systems emerged as a core technology for global public health. Given that antigen processing takes place inside the cell, the intracellular delivery and trafficking of a vaccine antigen will contribute to vaccine efficiency. Investigations focusing on the in vivo behavior and intracellular transport of vaccines have improved our understanding of the mechanisms relevant to vaccine delivery systems and facilitated the design of novel potent vaccine platforms. In this review, we cover the intracellular trafficking and in vivo fate of vaccines administered via various routes and delivery systems. To improve immune responses, researchers have used various strategies to modulate vaccine platforms and intracellular trafficking. In addition to progress in vaccine trafficking studies, the challenges and future perspectives for designing next-generation vaccines are discussed.
Collapse
Affiliation(s)
- Jaiwoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Dongyoon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Junho Byun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yina Wu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinwon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
44
|
Allahyari M. PLGA Nanoparticles as an Efficient Platform in Protein Vaccines Against Toxoplasma gondii. Acta Parasitol 2022; 67:582-591. [PMID: 35013939 DOI: 10.1007/s11686-021-00499-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 11/22/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Toxoplasma gondii (T. gondii) as an obligatory intracellular is widespread all over the world and causes considerable concerns in immunocompromised patients by developing toxoplasmic encephalitis and in pregnancy because of serious consequences in the fetus. Although vaccination is the only approach to overcome toxoplasmosis, there is no commercially available human vaccine against T. gondii. PURPOSE The remarkable features of poly (lactic-co-glycolic acid) (PLGA) particles have brought up the application of PLGA as a promising vaccine delivery vehicle against T. gondii and other intracellular parasites. This review focuses on the application of the PLGA delivery system in the development of preventive vaccines against T. gondii. METHODS In this study, all required data were collected from articles indexed in English databases, including Scopus, PubMed, Web of Science, Science Direct, and Google Scholar. RESULT Immunity against T. gondii, characteristics of PLGA particles as a delivery vehicle, and all researches on particulate PLGA vaccines with different T. gondii antigens and DNA against were discussed and their efficacies in conferring protection against a lethal challenge based on increased survival or reduced brain cyst loads have been shown. CONCLUSION Although various levels of protection against lethal challenge have been achieved through PLGA-based vaccinations, there is still no complete protection against T. gondii infection. Surprisingly, the application of surface modifications of PLGA particles by mucoadhesive polymers, cationic agents, DCs (dendritic cells) targeting receptors, specialized membranous epithelial cells (M-cells), and co-delivery of the desired antigen along with toll-like receptor ligands would be a revolutionized vaccine strategy against T. gondii.
Collapse
Affiliation(s)
- Mojgan Allahyari
- Recombinant Protein Production Department, Production and Research Complex, Pasteur Institute of Iran, Karaj, Iran.
| |
Collapse
|
45
|
Zhang L, Zhao W, Huang J, Li F, Sheng J, Song H, Chen Y. Development of a Dendritic Cell/Tumor Cell Fusion Cell Membrane Nano-Vaccine for the Treatment of Ovarian Cancer. Front Immunol 2022; 13:828263. [PMID: 35251013 PMCID: PMC8893350 DOI: 10.3389/fimmu.2022.828263] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer (OC) is a malignant tumor that seriously affects women’s health. In recent years, immunotherapy has shown great potential in tumor treatment. As a major contributor of immunotherapy, dendritic cells (DCs) - based tumor vaccine has been demonstrated to have a positive effect in inducing immune responses in animal experiments. However, the effect of tumor vaccines in clinical trials is not ideal. Therefore, it is urgent to improve the existing tumor vaccines for tumor treatment. Here, we developed a fusion cell membrane (FCM) nano-vaccine FCM-NPs, which is prepared by fusing DCs and OC cells and coating the FCM on the poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) loaded with the immune adjuvant CpG-oligodeoxynucleotide (CpG-ODN). The fusion process promoted the maturation of DCs, thus up-regulating the expression of costimulatory molecule CD80/CD86 and accelerating lymph node homing of DCs. Furthermore, FCM-NPs has both the immunogenicity of tumor cells and the antigen presenting ability of DCs, it can stimulate naive T lymphocytes to produce a large number of tumor-specific cytotoxic CD8+ T lymphocytes. FCM-NPs exhibited strong immuno-activating effect both in vitro and in vivo. By establishing subcutaneous transplanted tumor model, patient-derived xenograft tumor model and abdominal metastatic tumor model, FCM-NPs was proved to have the effect of delaying the growth and inhibiting the metastasis of OC. FCM-NPs is expected to become a new tumor vaccine for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, National Clinical Research Centre of Cancer, Tianjin, China
| | - Wei Zhao
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jinke Huang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Fangxuan Li
- Department of Cancer Prevention, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jindong Sheng
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hualin Song
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ying Chen
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, National Clinical Research Centre of Cancer, Tianjin, China
| |
Collapse
|
46
|
Zhong L, Shi C, Hou Q, Yang R, Li M, Fu X. Promotive effects of four herbal medicine
ARCC
on wound healing in mice and human. Health Sci Rep 2022; 5:e494. [PMID: 35509387 PMCID: PMC9059203 DOI: 10.1002/hsr2.494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 01/19/2023] Open
Abstract
Background Traditional Chinese medicine (TCM) had been extensively used in China for wound management and had shown great potential in wound treatment while its mechanism is still needed to be addressed. Objective The present study sought to investigate the therapuetic effect of the TCM ARCC on acute and chronic wounds. Methods Here, using the ultra‐low temperature preparation method, the mixed ultramicro powder prepared with Angelica (A), Angelica (R), Calcined Gypsum (C) and Caleramide (C) named as ARCC. The effects of ARCC on wound healing in adult and aged mice were comparatively evaluated through a full‐thickness skin defect model. In addition, we randomly selected 10 patients aged 55 to 70 years from a cohort of 500 patients with diabetic feet to assess their prognosis. Results As the results showed that the healing rate had delayed in aged mice compared to adult mice, while ARCC prominently augmented the healing process in aged mice. Moreover, ARCC treatment wounds in aged mice showed accelerated re‐epithelization, enhanced granulation tissue formation, and increased vascularization, which was similar to that of adult mice. Furthermore, ARCC also achieved therapeutic effects in diabetic foot patients, accelerating wound healing. The results found that foot ulcers improved significantly 7 days after the ARCC administration, and 80% of patients were healed within 1 month. Discussion In the present study, ARCC was found to have therapeutic effects on both acute and chronic wounds in animal models. ARCC also demonstrated therapeutic effects in diabetic feet, which promoted wound healing, prevented wound infection, and avoided the risk of further surgery or amputation. All these evidences suggested ARCC was a promising approach for wound treatment. Conclusions ARCC might be recommended as a promising therapeutic medication in diabetic and chronic refractory wounds.
Collapse
Affiliation(s)
- Lingzhi Zhong
- Department of Tissue Repair and Regeneration The First Medical Center, Chinese PLA General Hospital Beijing China
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center PLA General Hospital and PLA Medical College Beijing China
| | - Cuijuan Shi
- Department of Endocrinology First Teaching Hospital of Tianjin University of Traditional Chinese Medicine Tianjin China
- National Clinical Research Center for Chinese Meicine Acupuncture and Moxibustion Tianjin China
| | - Qian Hou
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center PLA General Hospital and PLA Medical College Beijing China
| | - Rungong Yang
- Department of Tissue Repair and Regeneration The First Medical Center, Chinese PLA General Hospital Beijing China
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center PLA General Hospital and PLA Medical College Beijing China
| | - Meirong Li
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center PLA General Hospital and PLA Medical College Beijing China
- Central Laboratory, Trauma Treatment Center, Central Laboratory Chinese PLA General Hospital Hainan Hospital Sanya China
| | - Xiaobing Fu
- Department of Tissue Repair and Regeneration The First Medical Center, Chinese PLA General Hospital Beijing China
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center PLA General Hospital and PLA Medical College Beijing China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration Beijing China
- Research Unit of Trauma Care, Tissue Repair and Regeneration Chinese Academy of Medical Sciences 2019RU051 Beijing China
| |
Collapse
|
47
|
Effect of Solvents, Stabilizers and the Concentration of Stabilizers on the Physical Properties of Poly(d,l-lactide- co-glycolide) Nanoparticles: Encapsulation, In Vitro Release of Indomethacin and Cytotoxicity against HepG2-Cell. Pharmaceutics 2022; 14:pharmaceutics14040870. [PMID: 35456705 PMCID: PMC9028368 DOI: 10.3390/pharmaceutics14040870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/20/2022] [Accepted: 04/12/2022] [Indexed: 01/27/2023] Open
Abstract
A biocompatible, biodegradable and FDA-approved polymer [Poly lactic-co-glycolic acid (PLGA)] was used to prepare the nanoparticles (NPs) to observe the effect of solvents, stabilizers and their concentrations on the physical properties of the PLGA-NPs, following the encapsulation and in vitro release of Indomethacin (IND). PLGA-NPs were prepared by the single-emulsion solvent evaporation technique using dichloromethane (DCM)/chloroform as the organic phase with Polyvinyl-alcohol (PVA)/Polyvinylpyrrolidone (PVP) as stabilizers to encapsulate IND. The effects of different proportions of PVA/PVP with DCM/chloroform on the physiochemical properties (particle size, the polydispersity index, the zeta potential by Malvern Zetasizer and morphology by SEM) of the NPs were investigated. DSC was used to check the physical state, the possible complexation of PLGA with stabilizer(s) and the crystallinity of the encapsulated drug. Stabilizers at all concentrations produced spherical, regular-shaped, smooth-surfaced discrete NPs. Average size of 273.2–563.9 nm was obtained when PVA (stabilizer) with DCM, whereas it ranged from 317.6 to 588.1 nm with chloroform. The particle size was 273.2–563.9 nm when PVP was the stabilizer with DCM, while it was 381.4–466.6 nm with chloroform. The zeta potentials of PVA-stabilized NPs were low and negative (−0.62 mV) while they were comparatively higher and positive for PVP-stabilized NPs (+17.73 mV). Finally, drug-loaded optimal NPs were composed of PLGA (40 mg) and IND (4 mg) in 1 mL DCM/chloroform with PVA/PVP (1–3%), which resulted in sufficient encapsulation (54.94–74.86%) and drug loading (4.99–6.81%). No endothermic peak of PVA/PVP appeared in the optimized formulation, which indicated the amorphous state of IND in the core of the PLGA-NPs. The in vitro release study indicated a sustained release of IND (32.83–52.16%) from the PLGA-NPs till 72 h and primarily followed the Higuchi matrix release kinetics followed by Korsmeyer–Peppas models. The cell proliferation assay clearly established that the organic solvents used to prepare PLGA-NPs had evaporated. The PLGA-NPs did not show any particular toxicity in the HepG2 cells within the dose range of IND (250–500 µg/mL) and at an equivalent concentration of PLGA-NPs (3571.4–7142.7 µg/mL). The cytotoxicity of the hepatotoxic drug (IND) was reduced by its encapsulation into PLGA-NPs. The outcomes of this investigation could be implemented to prepare PLGA-NPs of acceptable properties for the encapsulation of low/high molecular weight drugs. It would be useful for further in vitro and in vivo applications to use this delivery system.
Collapse
|
48
|
Gu P, Cai G, Yang Y, Hu Y, Liu J, Wang D. Polyethylenimine-coated PLGA nanoparticles containing Angelica sinensis polysaccharide promote dendritic cells activation and associated molecular mechanisms. Int J Biol Macromol 2022; 207:559-569. [PMID: 35288164 DOI: 10.1016/j.ijbiomac.2022.03.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022]
Abstract
Cationic PLGA nanoparticles-based delivery systems have been extensively employed as nanocarriers for drugs and antigens in recent years. Herein, we investigated the effects of polyethylenimine-coated PLGA nanoparticles containing Angelica sinensis polysaccharide (ASP) system (ASP-PLGA-PEI) on dendritic cells (DCs) activation and maturation, and further explored the changes of transcriptome and underlying mechanism of DCs activation based on RNA-seq. Our results demonstrated that ASP-PLGA-PEI obviously promoted the activation and maturation of DCs. Meanwhile, RNA-seq analysis results exhibited 2812 differentially expressed genes (DEGs) between ASP-PLGA-PEI and control group, and the DCs activation by ASP-PLGA-PEI stimulation mainly related to phagosome, antigen processing and presentation, proteasome, lysosome, protein processing in endoplasmic reticulum and other pathways by KEGG pathways analysis. Furthermore, ASP-PLGA-PEI nanoparticles increased the levels of pJAK2 protein, and the expression of co-stimulatory molecules and cytokines induced by ASP-PLGA-PEI nanoparticles were decreased with the presence of the inhibitor of JAK2/STAT3 signaling pathway. In addition, the nanoparticles were internalized by DCs mainly through the clathrin-mediated endocytosis and micropinocytosis. These results suggested that the DCs activation and maturation stimulated by ASP-PLGA-PEI were regulated via a complex interaction network, in which the JAK2/STAT3 signaling pathway played a crucial role.
Collapse
Affiliation(s)
- Pengfei Gu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Gaofeng Cai
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yang Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuanliang Hu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
49
|
Wan X, Yin Y, Zhou C, Hou L, Cui Q, Zhang X, Cai X, Wang Y, Wang L, Tian J. Polysaccharides derived from Chinese medicinal herbs: A promising choice of vaccine adjuvants. Carbohydr Polym 2022; 276:118739. [PMID: 34823775 DOI: 10.1016/j.carbpol.2021.118739] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 01/24/2023]
Abstract
Adjuvants have been used in vaccines for a long time to promote the body's immune response, reducing vaccine dosage and production costs. Although many vaccine adjuvants are developed, the use in human vaccines is limited because of either limited action or side effects. Therefore, the development of new vaccine adjuvants is required. Many studies have found that natural polysaccharides derived from Traditional Chinese medicine (TCM) possess good immune promoting effects and simultaneously improve humoral, cellular and mucosal immunity. Recently polysaccharide adjuvants have attracted much attention in vaccine preparation because of their intrinsic characteristics: immunomodulation, biocompatibility, biodegradability, low toxicity and safety. This review article systematically analysed the literature on polysaccharides possessing vaccine adjuvant activity from TCM plants, such as Astragalus polysaccharide (APS), Rehmannia glutinosa polysaccharide (RGP), Isatis indigotica root polysaccharides (IRPS), etc. and their derivatives. We believe that polysaccharide adjuvants can be used to prepare the vaccines for clinical use provided their mechanisms of action are studied in detail.
Collapse
Affiliation(s)
- Xinhuan Wan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yiming Yin
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changzheng Zhou
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Hou
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China; Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266041, China
| | - Qinghua Cui
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China; Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266041, China
| | - Xiaoping Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China; Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266041, China
| | - Xiaoqing Cai
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuliang Wang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Lizhu Wang
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Jingzhen Tian
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China; Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266041, China.
| |
Collapse
|
50
|
Alhagi honey polysaccharides encapsulated into PLGA nanoparticle-based pickering emulsion as a novel adjuvant to induce strong and long-lasting immune responses. Int J Biol Macromol 2022; 202:130-140. [PMID: 35032492 DOI: 10.1016/j.ijbiomac.2022.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/16/2021] [Accepted: 01/05/2022] [Indexed: 12/22/2022]
Abstract
Alhagi honey polysaccharides, extracted from a perennial plant Alhagi pseudalhagi syn, possessed many biological activities such as immune enhancement, anti-tumor effect, and antioxygenation. In this study, we used Alhagi honey polysaccharide encapsulated (poly lactic-co-glycolic acid) (PLGA) nanoparticles to prepare an assembled particles-oil pickering emulsion: PPAS and PEI-PPAS. We investigated the characterization of two pickering emulsions, and the possible mechanism to enhance immune responses. The results showed that PPAS and PEI-PPAS both could load high adsorption of OVA and had ability to sustained controlled release OVA. In vivo experiment, PEI-PPAS/OVA enhanced the levels of IgG and cytokines. Meanwhile, it could effectively target dendritic cells (DCs), promoted the cellular uptake of OVA then activated DCs in lymph nodes. And this effect of PEI-PPAS might be induced through the MHC II and MHC I pathway in DCs. Thus, these findings demonstrated that PEI-PPAS could induce a strong and long-term cellular and humoral immune response, and have potential to applied to vaccine adjuvant delivery system.
Collapse
|