1
|
Kolesnichenko PV, Wittenbecher L, Zhang Q, Teh RY, Babu C, Fuhrer MS, Mikkelsen A, Zigmantas D. Sub-100 fs Formation of Dark Excitons in Monolayer WS 2. NANO LETTERS 2024. [PMID: 39516189 DOI: 10.1021/acs.nanolett.4c03807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Two-dimensional semiconducting transition metal dichalcogenides are promising materials for optoelectronic applications due to their strongly bound excitons. While bright excitons have been thoroughly scrutinized, dark excitons have been much less investigated, as they are not directly observable with far-field spectroscopy. However, with their nonzero momenta, dark excitons are significant for applications requiring long-range transport or coupling to external fields. We access such dark excitons in WS2 monolayer using transient photoemission electron microscopy with subdiffraction limited spatial resolution (75 nm) and exceptionally high temporal resolution (13 fs). Image time series of the monolayer are recorded at several different fluences. We directly observe the ultrafast formation of dark K-Λ excitons occurring within 14-50 fs and follow their subsequent picosecond decay. We distinguish exciton dynamics between the monolayer's interior and edges and conclude that the picosecond-scale evolution of dark excitations is defect-mediated while intervalley scattering is not affected by the defects.
Collapse
Affiliation(s)
- Pavel V Kolesnichenko
- Institute of Physical Chemistry, Heidelberg University, 69120 Heidelberg, Germany
- Institute for Molecular Systems, Engineering and Advanced Materials, Heidelberg University, 69120 Heidelberg, Germany
- Division of Chemical Physics, Lund University, P.O. Box 124, 221 00 Lund, Sweden
- NanoLund, P.O. Box 124, 221 00 Lund, Sweden
| | - Lukas Wittenbecher
- Division of Chemical Physics, Lund University, P.O. Box 124, 221 00 Lund, Sweden
- NanoLund, P.O. Box 124, 221 00 Lund, Sweden
- Department of Physics, Lund University, Box 118, 221 00 Lund, Sweden
| | - Qianhui Zhang
- Department of Civil Engineering, Monash University, Melbourne, Victoria 3800, Australia
| | - Run Yan Teh
- Centre for Quantum Science and Technology Theory, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
| | - Chandni Babu
- Division of Chemical Physics, Lund University, P.O. Box 124, 221 00 Lund, Sweden
- NanoLund, P.O. Box 124, 221 00 Lund, Sweden
| | - Michael S Fuhrer
- School of Physics and Astronomy, Monash University, Melbourne, Victoria 3800, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Melbourne, Victoria 3800 Australia
| | - Anders Mikkelsen
- NanoLund, P.O. Box 124, 221 00 Lund, Sweden
- Department of Physics, Lund University, Box 118, 221 00 Lund, Sweden
| | - Donatas Zigmantas
- Division of Chemical Physics, Lund University, P.O. Box 124, 221 00 Lund, Sweden
- NanoLund, P.O. Box 124, 221 00 Lund, Sweden
| |
Collapse
|
2
|
Koo NTW, Woo KC, Lim JWX, Loh ZH. Lifetime mapping using femtosecond time-resolved photoemission electron microscopy. J Chem Phys 2024; 161:174201. [PMID: 39484896 DOI: 10.1063/5.0232059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024] Open
Abstract
Time-resolved photoemission electron microscopy (PEEM) has established itself as a versatile experimental technique to unravel the ultrafast electron dynamics of materials with nanometer-scale resolution. However, the approach of performing PEEM-based, pixel-by-pixel lifetime mapping has not been reported thus far. Herein, we describe in detail the data pre-processing procedure and an algorithm to perform time-trace fittings of each pixel. We impose an energy cutoff for each pixel prior to spectral integration to enhance the robustness of our approach. With the energy cutoff, the energy-integrated time traces show improved statistics and lower fitting errors, thus resulting in a more accurate determination of the fit parameters, e.g., decay time constants. Our work allows us to reliably construct PEEM-based lifetime maps, which potentially shed light on the effects of local microenvironment on the ultrafast processes of the material and allow spatial distributions of lifetimes to be correlated with observables obtained from complementary microscopic techniques, hence enabling a more comprehensive characterization of the material.
Collapse
Affiliation(s)
- Norman Tze Wei Koo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Kyung Chul Woo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Justin Wei Xiang Lim
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Zhi-Heng Loh
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
3
|
Tran TX, Jang YJ, Vu VT, Jung CW, Do VD, Jin Y, Lee J, Kim H, Kim JH. Augmented Extraction Efficiency of a Hot D Exciton in MoS 2 via Intervalley Scattering. NANO LETTERS 2024; 24:11163-11169. [PMID: 39225119 DOI: 10.1021/acs.nanolett.4c01837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Prolonging hot carrier cooling, a crucial factor in optoelectronic applications, including hot carrier photovoltaics, presents a significant challenge. High-energy band-nesting excitons within parallel bands offer a promising and underexplored avenue for addressing this issue. Here, we exploit an exceptional D exciton cooling prolongation of 2 to 3 orders of magnitude compared to sub-picosecond in typical transition metal dichalcogenides (TMDs) owing to the complex Coulomb environment and the sequential and mismatch-valley relaxation. Simultaneously, the intervalley scattering upconversion of band-edge excitons with the slow D exciton formation in the metastable Γ valley/hill also reduces the cooling rate. We successfully extract D and C excitons as hot carriers through integrating with various thicknesses of TiOx, achieving the highest efficiency of 98% and 85% at a Ti thickness of 2 nm. Our findings highlight the potential of band-nesting excitons for extending hot carrier cooling time, paving the way for advancements in hot carrier-based optoelectronic devices.
Collapse
Affiliation(s)
- Thanh-Xuan Tran
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Center for Ultrafast Phase Transformation, Department of Physics, Sogang University, Seoul 04107, Republic of Korea
| | - Yu Jin Jang
- Solar Energy Research Institute of Singapore (SERIS), National University of Singapore (NUS), Singapore 117574
| | - Van-Tu Vu
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chan-Woo Jung
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Van Dam Do
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yeongrok Jin
- Department of Physics, Pusan National University, Busan 46241, Republic of Korea
| | - Jaekwang Lee
- Department of Physics, Pusan National University, Busan 46241, Republic of Korea
| | - Hyunjung Kim
- Center for Ultrafast Phase Transformation, Department of Physics, Sogang University, Seoul 04107, Republic of Korea
| | - Ji-Hee Kim
- Department of Physics, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
4
|
Jiang P, Zhang L, Zheng W, Wang Y, Liu Y, Xiao J, Li Y, Medvedev N, Ischenko A, Kang Z, Liu Y, Li Z, Wu C. Acoustic phonon excitation in gold probed by time-resolved photoemission electron microscopy. J Chem Phys 2024; 161:024704. [PMID: 38984963 DOI: 10.1063/5.0213237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/20/2024] [Indexed: 07/11/2024] Open
Abstract
Electron-phonon coupling is an important energy transfer mechanism in solids after ultrafast laser excitation. In this study, we present an extreme ultraviolet (EUV) and infrared (IR) pump-probe photoemission experiment to investigate the electron-phonon coupling in nonequilibrium gold. The energy of IR-laser-emitted photoelectrons is shifted due to the EUV photoemission and oscillates with a ∼4THz frequency. Such oscillation is considered as the effective excitation of the longitudinal acoustic phonon mode in gold through the spectral-dependent electron-phonon coupling. Our study showcases the capability of time-resolved photoemission electron microscopy to monitor the non-equilibrium lattice vibrations with ultrahigh spatial and temporal resolution.
Collapse
Affiliation(s)
- Pengzuo Jiang
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Linfeng Zhang
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Wei Zheng
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Yang Wang
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Yu Liu
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Jingying Xiao
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Yaolong Li
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Nikita Medvedev
- Institute of Physics, Czech Academy of Sciences, Na Slovance 1999/2, 18221 Prague 8, Czech Republic
- Institute of Plasma Physics, Czech Academy of Sciences, Za Slovankou 3, 18200 Prague 8, Czech Republic
| | - Anatoly Ischenko
- Lomonosov Institute of Fine Chemical Technologies, RTU-MIREA-Russian Technological University, Vernadskii Avenue 86, 119571 Moscow, Russia
| | - Zexin Kang
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Yunquan Liu
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| | - Zheng Li
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| | - Chengyin Wu
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| |
Collapse
|
5
|
Perez C, Ellis SR, Alcorn FM, Smoll EJ, Fuller EJ, Leonard F, Chandler D, Talin AA, Bisht RS, Ramanathan S, Goodson KE, Kumar S. Picosecond carrier dynamics in InAs and GaAs revealed by ultrafast electron microscopy. SCIENCE ADVANCES 2024; 10:eadn8980. [PMID: 38748793 PMCID: PMC11095486 DOI: 10.1126/sciadv.adn8980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/10/2024] [Indexed: 05/19/2024]
Abstract
Understanding the limits of spatiotemporal carrier dynamics, especially in III-V semiconductors, is key to designing ultrafast and ultrasmall optoelectronic components. However, identifying such limits and the properties controlling them has been elusive. Here, using scanning ultrafast electron microscopy, in bulk n-GaAs and p-InAs, we simultaneously measure picosecond carrier dynamics along with three related quantities: subsurface band bending, above-surface vacuum potentials, and surface trap densities. We make two unexpected observations. First, we uncover a negative-time contrast in secondary electrons resulting from an interplay among these quantities. Second, despite dopant concentrations and surface state densities differing by many orders of magnitude between the two materials, their carrier dynamics, measured by photoexcited band bending and filling of surface states, occur at a seemingly common timescale of about 100 ps. This observation may indicate fundamental kinetic limits tied to a multitude of material and surface properties of optoelectronic III-V semiconductors and highlights the need for techniques that simultaneously measure electro-optical kinetic properties.
Collapse
Affiliation(s)
- Christopher Perez
- Sandia National Laboratories, Livermore, CA, USA
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Scott R. Ellis
- Sandia National Laboratories, Livermore, CA, USA
- Intel Corporation, San Jose, CA, USA
| | | | | | | | | | | | | | - Ravindra Singh Bisht
- Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Shriram Ramanathan
- Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Kenneth E. Goodson
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Suhas Kumar
- Sandia National Laboratories, Livermore, CA, USA
| |
Collapse
|
6
|
Lyu X, Li Y, Li X, Liu X, Xiao J, Xu W, Jiang P, Yang H, Wu C, Hu X, Peng LY, Gong Q, Yang S, Gao Y. Layer-dependent ultrafast carrier dynamics of PdSe 2 investigated by photoemission electron microscopy. NANOSCALE 2024. [PMID: 38656387 DOI: 10.1039/d4nr00281d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
For atomically thin two-dimensional materials, variations in layer thickness can result in significant changes in the electronic energy band structure and physicochemical properties, thereby influencing the carrier dynamics and device performance. In this work, we employ time- and energy-resolved photoemission electron microscopy to reveal the ultrafast carrier dynamics of PdSe2 with different layer thicknesses. We find that for few-layer PdSe2 with a semiconductor phase, an ultrafast hot carrier cooling on a timescale of approximately 0.3 ps and an ultrafast defect trapping on a timescale of approximately 1.3 ps are unveiled, followed by a slower decay of approximately tens of picoseconds. However, for bulk PdSe2 with a semimetal phase, only an ultrafast hot carrier cooling and a slower decay of approximately tens of picoseconds are observed, while the contribution of defect trapping is suppressed with the increase of layer number. Theoretical calculations of the electronic energy band structure further confirm the transition from a semiconductor to a semimetal. Our work demonstrates that TR- and ER-PEEM with ultrahigh spatiotemporal resolution and wide-field imaging capability has great advantages in revealing the intricate details of ultrafast carrier dynamics of nanomaterials.
Collapse
Affiliation(s)
- Xiaying Lyu
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China.
| | - Yaolong Li
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China.
| | - Xiaofang Li
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China.
| | - Xiulan Liu
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China.
| | - Jingying Xiao
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China.
| | - Weiting Xu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China.
| | - Pengzuo Jiang
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China.
| | - Hong Yang
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China.
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Chengyin Wu
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China.
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xiaoyong Hu
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China.
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Liang-You Peng
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China.
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China.
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Shengxue Yang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China.
| | - Yunan Gao
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China.
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
7
|
Tang J, Li Y, Ye S, Jiang P, Xue Z, Li X, Lyu X, Liu Q, Chu S, Yang H, Wu C, Hu X, Gao Y, Wang S, Sun Q, Lu G, Gong Q. Direct Hot-Electron Transfer at the Au Nanoparticle/Monolayer Transition-Metal Dichalcogenide Interface Observed with Ultrahigh Spatiotemporal Resolution. NANO LETTERS 2024; 24:2931-2938. [PMID: 38377049 DOI: 10.1021/acs.nanolett.4c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Plasmon-induced hot-electron transfer at the metallic nanoparticle/semiconductor interface is the basis of plasmon-enhanced photocatalysis and energy harvesting. However, limited by the nanoscale size of hot spots and femtosecond time scale of hot-electron transfer, direct observation is still challenging. Herein, by using spatiotemporal-resolved photoemission electron microscopy with a two-color pump-probe beamline, we directly observed such a process with a concise system, the Au nanoparticle/monolayer transition-metal dichalcogenide (TMD) interface. The ultrafast hot-electron transfer from Au nanoparticles to monolayer TMDs and the plasmon-enhanced transfer process were directly measured and verified through an in situ comparison with the Au film/TMD interface and free TMDs. The lifetime at the Au nanoparticle/MoSe2 interface decreased from 410 to 42 fs, while the photoemission intensities exhibited a 27-fold increase compared to free MoSe2. We also measured the evolution of hot electrons in the energy distributions, indicating the hot-electron injection and decay happened in an ultrafast time scale of ∼50 fs without observable electron cooling.
Collapse
Affiliation(s)
- Jinglin Tang
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China
| | - Yaolong Li
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China
| | - Sheng Ye
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China
| | - Pengzuo Jiang
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China
| | - Zhaohang Xue
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China
| | - Xiaofang Li
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China
| | - Xiaying Lyu
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China
| | - Qinyun Liu
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China
| | - Saisai Chu
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China
| | - Hong Yang
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Chengyin Wu
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xiaoyong Hu
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yunan Gao
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Shufeng Wang
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Quan Sun
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| | - Guowei Lu
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
8
|
Lyu X, Li Y, Jiang P, Zhang J, Liu X, Li X, Yang H, Lu G, Hu X, Peng L, Gong Q, Gao Y. Reveal Ultrafast Electron Relaxation across Sub-bands of Tellurium by Time- and Energy-Resolved Photoemission Microscopy. NANO LETTERS 2023; 23:9547-9554. [PMID: 37816225 DOI: 10.1021/acs.nanolett.3c03102] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Exploring ultrafast carrier dynamics is crucial for the materials' fundamental properties and device design. In this work, we employ time- and energy-resolved photoemission electron microscopy with tunable pump wavelengths from visible to near-infrared to reveal the ultrafast carrier dynamics of the elemental semiconductor tellurium. We find that two discrete sub-bands around the Γ point of the conduction band are involved in excited-state electron ultrafast relaxation and reveal that hot electrons first go through ultrafast intra sub-band cooling on a time scale of about 0.3 ps and then transfer from the higher sub-band to the lower one on a time scale of approximately 1 ps. Additionally, theoretical calculations reveal that the lower one has flat-band characteristics, possessing a large density of states and a long electron lifetime. Our work demonstrates that TR- and ER-PEEM with broad tunable pump wavelengths are powerful techniques in revealing the details of ultrafast carrier dynamics in time and energy domains.
Collapse
Affiliation(s)
- Xiaying Lyu
- State Key Laboratory for Mesoscopic Physics & Department of Physics and Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
| | - Yaolong Li
- State Key Laboratory for Mesoscopic Physics & Department of Physics and Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
| | - Pengzuo Jiang
- State Key Laboratory for Mesoscopic Physics & Department of Physics and Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
| | - Jianing Zhang
- State Key Laboratory for Mesoscopic Physics & Department of Physics and Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
| | - Xiulan Liu
- State Key Laboratory for Mesoscopic Physics & Department of Physics and Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
| | - Xiaofang Li
- State Key Laboratory for Mesoscopic Physics & Department of Physics and Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
| | - Hong Yang
- State Key Laboratory for Mesoscopic Physics & Department of Physics and Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Guowei Lu
- State Key Laboratory for Mesoscopic Physics & Department of Physics and Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xiaoyong Hu
- State Key Laboratory for Mesoscopic Physics & Department of Physics and Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Liangyou Peng
- State Key Laboratory for Mesoscopic Physics & Department of Physics and Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic Physics & Department of Physics and Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yunan Gao
- State Key Laboratory for Mesoscopic Physics & Department of Physics and Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
9
|
Qin Y, Wang R, Wu X, Wang Y, Li X, Gao Y, Peng L, Gong Q, Liu Y. Ultrafast Electronic Dynamics in Anisotropic Indirect Interlayer Excitonic States of Monolayer WSe 2/ReS 2 Heterojunctions. NANO LETTERS 2023; 23:8643-8649. [PMID: 37672749 DOI: 10.1021/acs.nanolett.3c02488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Understanding ultrafast electronic dynamics of the interlayer excitonic states in atomically thin transition metal dichalcogenides is of importance in engineering valleytronics and developing excitonic integrated circuits. In this work, we experimentally explored the ultrafast dynamics of indirect interlayer excitonic states in monolayer type II WSe2/ReS2 heterojunctions using time-resolved photoemission electron microscopy, which reveals its anisotropic behavior. The ultrafast cooling and decay of excited-state electrons exhibit significant linear dichroism. The ab initio theoretical calculations provide unambiguous evidence that this linear dichroism result is primarily associated with the anisotropic nonradiative recombination of indirect interlayer excitonic states. Measuring time-resolved photoemission energy spectra, we have further revealed the ultrafast evolution of excited-state electrons in anisotropic indirect interlayer excitonic states. The findings have important implications for controlling the interlayer moiré excitonic effects and designing anisotropic optoelectronic devices.
Collapse
Affiliation(s)
- Yulu Qin
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Rui Wang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Xiaoyuan Wu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Yunkun Wang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Xiaofang Li
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Yunan Gao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Liangyou Peng
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yunquan Liu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
10
|
Xu C, Zhou G, Alexeev EM, Cadore AR, Paradisanos I, Ott AK, Soavi G, Tongay S, Cerullo G, Ferrari AC, Prezhdo OV, Loh ZH. Ultrafast Electronic Relaxation Dynamics of Atomically Thin MoS 2 Is Accelerated by Wrinkling. ACS NANO 2023; 17:16682-16694. [PMID: 37581747 DOI: 10.1021/acsnano.3c02917] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Strain engineering is an attractive approach for tuning the local optoelectronic properties of transition metal dichalcogenides (TMDs). While strain has been shown to affect the nanosecond carrier recombination dynamics of TMDs, its influence on the sub-picosecond electronic relaxation dynamics is still unexplored. Here, we employ a combination of time-resolved photoemission electron microscopy (TR-PEEM) and nonadiabatic ab initio molecular dynamics (NAMD) to investigate the ultrafast dynamics of wrinkled multilayer (ML) MoS2 comprising 17 layers. Following 2.41 eV photoexcitation, electronic relaxation at the Γ valley occurs with a time constant of 97 ± 2 fs for wrinkled ML-MoS2 and 120 ± 2 fs for flat ML-MoS2. NAMD shows that wrinkling permits larger amplitude motions of MoS2 layers, relaxes electron-phonon coupling selection rules, perturbs chemical bonding, and increases the electronic density of states. As a result, the nonadiabatic coupling grows and electronic relaxation becomes faster compared to flat ML-MoS2. Our study suggests that the sub-picosecond electronic relaxation dynamics of TMDs is amenable to strain engineering and that applications which require long-lived hot carriers, such as hot-electron-driven light harvesting and photocatalysis, should employ wrinkle-free TMDs.
Collapse
Affiliation(s)
- Ce Xu
- School of Chemistry, Chemical Engineering and Biotechnology, and School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Guoqing Zhou
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Evgeny M Alexeev
- Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Alisson R Cadore
- Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Ioannis Paradisanos
- Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Anna K Ott
- Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Giancarlo Soavi
- Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Sefaattin Tongay
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Giulio Cerullo
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
- IFN-CNR, Piazza Leonardo da Vinci 32, I-20133, Milano, Italy
| | - Andrea C Ferrari
- Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Oleg V Prezhdo
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Zhi-Heng Loh
- School of Chemistry, Chemical Engineering and Biotechnology, and School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
11
|
Yang S, Chen W, Sa B, Guo Z, Zheng J, Pei J, Zhan H. Strain-Dependent Band Splitting and Spin-Flip Dynamics in Monolayer WS 2. NANO LETTERS 2023; 23:3070-3077. [PMID: 36995751 DOI: 10.1021/acs.nanolett.3c00771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Triggered by the expanding demands of semiconductor devices, strain engineering of two-dimensional transition metal dichalcogenides (TMDs) has garnered considerable research interest. Through steady-state measurements, strain has been proved in terms of its modulation of electronic energy bands and optoelectronic properties in TMDs. However, the influence of strain on the spin-orbit coupling as well as its related valley excitonic dynamics remains elusive. Here, we demonstrate the effect of strain on the excitonic dynamics of monolayer WS2 via steady-state fluorescence and transient absorption spectroscopy. Combined with theoretical calculations, we found that tensile strain can reduce the spin-splitting value of the conduction band and lead to transitions between different exciton states via spin-flip mechanism. Our findings suggest that the spin-flip process is strain-dependent, provides a reference for application of valleytronic devices, where tensile strain is usually existing during their design and fabrication.
Collapse
Affiliation(s)
- Shichao Yang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Wenwei Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Baisheng Sa
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Zhiyong Guo
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Jingying Zheng
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Jiajie Pei
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Hongbing Zhan
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
- Fujian Science & Technology Innovatation Laboratory for Optoelectronic Information, Fuzhou 350108, Fujian, Peoples Republic of China
| |
Collapse
|
12
|
Wang T, Hopper TR, Mondal N, Liu S, Yao C, Zheng X, Torrisi F, Bakulin AA. Hot Carrier Cooling and Trapping in Atomically Thin WS 2 Probed by Three-Pulse Femtosecond Spectroscopy. ACS NANO 2023; 17:6330-6340. [PMID: 36939760 PMCID: PMC10100566 DOI: 10.1021/acsnano.2c10479] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Transition metal dichalcogenides (TMDs) have shown outstanding semiconducting properties which make them promising materials for next-generation optoelectronic and electronic devices. These properties are imparted by fundamental carrier-carrier and carrier-phonon interactions that are foundational to hot carrier cooling. Recent transient absorption studies have reported ultrafast time scales for carrier cooling in TMDs that can be slowed at high excitation densities via a hot-phonon bottleneck (HPB) and discussed these findings in the light of optoelectronic applications. However, quantitative descriptions of the HPB in TMDs, including details of the electron-lattice coupling and how cooling is affected by the redistribution of energy between carriers, are still lacking. Here, we use femtosecond pump-push-probe spectroscopy as a single approach to systematically characterize the scattering of hot carriers with optical phonons, cold carriers, and defects in a benchmark TMD monolayer of polycrystalline WS2. By controlling the interband pump and intraband push excitations, we observe, in real-time (i) an extremely rapid "intrinsic" cooling rate of ∼18 ± 2.7 eV/ps, which can be slowed with increasing hot carrier density, (ii) the deprecation of this HPB at elevated cold carrier densities, exposing a previously undisclosed role of the carrier-carrier interactions in mediating cooling, and (iii) the interception of high energy hot carriers on the subpicosecond time scale by lattice defects, which may account for the lower photoluminescence yield of TMDs when excited above band gap.
Collapse
Affiliation(s)
- Tong Wang
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United Kingdom
| | - Thomas R. Hopper
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United Kingdom
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Navendu Mondal
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United Kingdom
| | - Sihui Liu
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United Kingdom
| | - Chengning Yao
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United Kingdom
| | - Xijia Zheng
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United Kingdom
| | - Felice Torrisi
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United Kingdom
- Dipartimento
di Fisica e Astronomia, Universita’
di Catania & CNR-IMM (Catania Universita’), Via S. Sofia 64, 95123 Catania, Italy
| | - Artem A. Bakulin
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United Kingdom
| |
Collapse
|
13
|
Liu F. Time- and angle-resolved photoemission spectroscopy (TR-ARPES) of TMDC monolayers and bilayers. Chem Sci 2023; 14:736-750. [PMID: 36755720 PMCID: PMC9890651 DOI: 10.1039/d2sc04124c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Many unique properties in two-dimensional (2D) materials and their heterostructures rely on charge excitation, scattering, transfer, and relaxation dynamics across different points in the momentum space. Understanding these dynamics is crucial in both the fundamental study of 2D physics and their incorporation in optoelectronic and quantum devices. A direct method to probe charge carrier dynamics with momentum resolution is time- and angle-resolved photoemission spectroscopy (TR-ARPES). Such measurements have been challenging, since photoexcited carriers in many 2D monolayers reside at high crystal momenta, requiring probe photon energies in the extreme UV (EUV) regime. These challenges have been recently addressed by development of table-top pulsed EUV sources based on high harmonic generation, and the successful integration into a TR-ARPES and/or time-resolved momentum microscope. Such experiments will allow direct imaging of photoelectrons with superior time, energy, and crystal momentum resolution, with unique advantage over traditional optical measurements. Recently, TR-ARPES experiments of 2D transition metal dichalcogenide (TMDC) monolayers and bilayers have created unprecedented opportunities to reveal many intrinsic dynamics of 2D materials, such as bandgap renormalization, charge carrier scattering, relaxation, and wavefunction localization in moiré patterns. This perspective aims to give a short review of recent discoveries and discuss the challenges and opportunities of such techniques in the future.
Collapse
Affiliation(s)
- Fang Liu
- Department of Chemistry and the PULSE Institute, Stanford University Stanford California 94305 USA
| |
Collapse
|
14
|
Xue Z, Fan Z, Liao X, Li Y, Qin Y, Zhang G, Song X, Liao ZM, Sun D, Lu G, Gong Q. Metasurface Enabled Photothermoelectric Photoresponse of Semimetal Cd 3As 2 for Broadband Photodetection. NANO LETTERS 2022; 22:8728-8734. [PMID: 36314894 DOI: 10.1021/acs.nanolett.2c03574] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The artificial engineering of photoresponse is crucial for optoelectronic applications, especially for photodetectors. Here, we designed and fabricated a metasurface on a semimetallic Cd3As2 nanoplate to improve its thermoelectric photoresponse. The metasurface can enhance light absorption, resulting in a temperature gradient. This temperature gradient can contribute to thermoelectric photoresponse through the photothermoelectric effect. Furthermore, power-dependent measurements showed a linearly dependent photoresponse of the Cd3As2 metasurface device, indicating a second-order photocurrent response. Wavelength-dependent measurements showed that the metasurface can efficiently separate photoexcited carriers in the broadband range of 488 nm to 4 μm. The photoresponse near the metasurface boundaries exhibits a responsivity of ∼1 mA/W, which is higher than that near the electrode junctions. Moreover, the designed metasurface device provided an anisotropic polarization-dependent photoresponse rather than the isotropic photoresponse of the original Cd3As2 device. This study demonstrates that metasurfaces have excellent potential for artificial controllable photothermoelectric photoresponse of various semimetallic materials.
Collapse
Affiliation(s)
- Zhaohang Xue
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Zipu Fan
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Xin Liao
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Yaolong Li
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Yulu Qin
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Guanyu Zhang
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Xiaoming Song
- State Key Laboratory of Precision Measurement Technology and Instruments, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Zhi-Min Liao
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Dong Sun
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Guowei Lu
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| |
Collapse
|
15
|
Zeng Y, Dai W, Ma R, Li Z, Ou Z, Wang C, Yu Y, Zhu T, Liu X, Wang T, Xu H. Distinguishing Ultrafast Energy Transfer in Atomically Thin MoS 2 /WS 2 Heterostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204317. [PMID: 36148858 DOI: 10.1002/smll.202204317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/28/2022] [Indexed: 06/16/2023]
Abstract
Van der Waals semiconducting heterostructures, known as stacks of atomically thin transition-metal dichalcogenide (TMD) layers, have recently been reported as new quantum materials with fascinating optoelectronic properties and novel functionalities. These discoveries are significantly related to the interfacial carrier dynamics of the excited states. Carrier dynamics have been reported to be predominantly driven by the ultrafast charge transfer (CT) process; however, the energy transfer (ET) process remains elusive. Herein, the ET process in MoS2 /WS2 heterostructures via transient absorption microscopy is reported. By analyzing the ultrafast dynamics using various MoS2 /WS2 interfaces, an ET rate of ≈240 fs is obtain, which is not trivial to the CT process. This study elucidates the role of the ET process in interfacial carrier dynamics and provides guidance for engineering interfaces for optoelectronic and quantum applications of TMD heterostructures.
Collapse
Affiliation(s)
- Yan Zeng
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Wei Dai
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Rundong Ma
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Zhe Li
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Zhenwei Ou
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Cheng Wang
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Yiling Yu
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Tong Zhu
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoze Liu
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China
| | - Ti Wang
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Hongxing Xu
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China
- School of Microelectronics, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
16
|
Liu Q, Wei K, Tang Y, Xu Z, Cheng X, Jiang T. Visualizing Hot-Carrier Expansion and Cascaded Transport in WS 2 by Ultrafast Transient Absorption Microscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105746. [PMID: 35104054 PMCID: PMC8981895 DOI: 10.1002/advs.202105746] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/04/2022] [Indexed: 06/14/2023]
Abstract
The competition between different spatiotemporal carrier relaxation determines the carrier harvesting in optoelectronic semiconductors, which can be greatly optimized by utilizing the ultrafast spatial expansion of highly energetic carriers before their energy dissipation via carrier-phonon interactions. Here, the excited-state dynamics in layered tungsten disulfide (WS2 ) are primarily imaged in the temporal, spatial, and spectral domains by transient absorption microscopy. Ultrafast hot carrier expansion is captured in the first 1.4 ps immediately after photoexcitation, with a mean diffusivity up to 980 cm2 s-1 . This carrier diffusivity then rapidly weakens, reaching a conventional linear spread of 10.5 cm2 s-1 after 2 ps after the hot carriers cool down to the band edge and form bound excitons. The novel carrier diffusion can be well characterized by a cascaded transport model including 3D thermal transport and thermo-optical conversion, in which the carrier temperature gradient and lattice thermal transport govern the initial hot carrier expansion and long-term exciton diffusion rates, respectively. The ultrafast hot carrier expansion breaks the limit of slow exciton diffusion in 2D transition metal dichalcogenides, providing potential guidance for high-performance applications and thermal management of optoelectronic technology.
Collapse
Affiliation(s)
- Qirui Liu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, P. R. China
| | - Ke Wei
- State Key Laboratory of High Performance Computing, College of Computer, National University of Defense Technology, Changsha, 410073, P. R. China
- Beijing Institute for Advanced Study, National University of Defense Technology, Beijing, 100000, P. R. China
| | - Yuxiang Tang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, P. R. China
| | - Zhongjie Xu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, P. R. China
| | - Xiang'ai Cheng
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, P. R. China
| | - Tian Jiang
- Beijing Institute for Advanced Study, National University of Defense Technology, Beijing, 100000, P. R. China
| |
Collapse
|
17
|
Perfetto E, Pavlyukh Y, Stefanucci G. Real-Time GW: Toward an Ab Initio Description of the Ultrafast Carrier and Exciton Dynamics in Two-Dimensional Materials. PHYSICAL REVIEW LETTERS 2022; 128:016801. [PMID: 35061448 DOI: 10.1103/physrevlett.128.016801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
We demonstrate the feasibility of the time-linear scaling formulation of the GW method [Phys. Rev. Lett. 124, 076601 (2020)PRLTAO0031-900710.1103/PhysRevLett.124.076601] for ab initio simulations of optically driven two-dimensional materials. The time-dependent GW equations are derived and solved numerically in the basis of Bloch states. We address carrier multiplication and relaxation in photoexcited graphene and find deviations from the typical exponential behavior predicted by the Markovian Boltzmann approach. For a resonantly pumped semiconductor we discover a self-sustained screening cascade leading to the Mott transition of coherent excitons. Our results draw attention to the importance of non-Markovian and dynamical screening effects in out-of-equilibrium phenomena.
Collapse
Affiliation(s)
- E Perfetto
- Dipartimento di Fisica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
- INFN, Sezione di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Y Pavlyukh
- Dipartimento di Fisica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - G Stefanucci
- Dipartimento di Fisica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
- INFN, Sezione di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
18
|
Gao L, Hu Z, Lu J, Liu H, Ni Z. Defect-related dynamics of photoexcited carriers in 2D transition metal dichalcogenides. Phys Chem Chem Phys 2021; 23:8222-8235. [PMID: 33875990 DOI: 10.1039/d1cp00006c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) exhibit enormous potential in the field of optoelectronics. The high performance of TMD materials and optoelectronic devices significantly depends on processes involved in photoelectric conversion, including photo-excitation, relaxation, transportation, and recombination. Remarkably, inevitable defects in materials prolong or shorten the characteristic time of these processes and even bring about new photoelectric conversion channels, namely, the defect-related relaxation pathways of photoexcited carriers tailor the performance of photoelectric applications. In recent years, there have been numerous investigations in exploring the variant transient signals caused by defects in TMDs utilizing ultrafast spectroscopies. They have the capability in providing an accurate and overall representation of ultrafast processes owing to the subtle temporal resolution. The defect-related mechanisms occurring in different time scales (from femtosecond (fs) to microsecond (μs)) play influential roles throughout the relaxation process of photoexcited species. Herein, we review the defect-related relaxation mechanisms of photoexcited species in TMDs according to the time scale utilizing ultrafast spectroscopy techniques. By interpreting and summarizing the defect-related transient signals, we furnish the direction in material design and performance optimization.
Collapse
Affiliation(s)
- Lei Gao
- School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189, China.
| | - Zhenliang Hu
- School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189, China.
| | - Junpeng Lu
- School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189, China.
| | - Hongwei Liu
- Jiangsu Key Lab on Opto-Electronic Technology, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China
| | - Zhenhua Ni
- School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189, China.
| |
Collapse
|
19
|
Hu A, Liu W, Li X, Xu S, Li Y, Xue Z, Tang J, Ye L, Yang H, Li M, Ye Y, Sun Q, Gong Q, Lu G. Spectromicroscopy and imaging of photoexcited electron dynamics at in-plane silicon pn junctions. NANOSCALE 2021; 13:2626-2631. [PMID: 33496300 DOI: 10.1039/d0nr07954e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The ultrafast spatiotemporal imaging of photoexcited electrons is essential to understanding interfacial electron dynamic processes. We used time- and energy-resolved photoemission electron microscopy (PEEM) to investigate the photoexcited electron dynamics at multiplex in-plane silicon pn junctions. We found that the measured kinetic energy of photoelectrons from n-type regions is higher than that from p-type regions owing to different work functions. Interestingly, the kinetic energy of outer n-type regions is higher than that of inner n-type regions, which is caused by the reverse bias induced by photoemission. Time-resolved PEEM results reveal different evolution rates of hot electrons in different doping regions. The rise time of the n-type (outer n-type) regions is faster than that of the p-type (inner n-type) regions. So, closed doping patterns can influence the electron spectra and dynamics at the micro-nano scale. These results help us to understand the ultrafast dynamics of carriers at in-plane interfaces and optimize optoelectronic integrated devices with complex heterojunctions.
Collapse
Affiliation(s)
- Aiqin Hu
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of the Ministry of Education, School of Physics, Peking University, Beijing 100871, China.
| | - Wei Liu
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of the Ministry of Education, School of Physics, Peking University, Beijing 100871, China.
| | - Xiaofang Li
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of the Ministry of Education, School of Physics, Peking University, Beijing 100871, China.
| | - Shengnan Xu
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Yaolong Li
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of the Ministry of Education, School of Physics, Peking University, Beijing 100871, China.
| | - Zhaohang Xue
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of the Ministry of Education, School of Physics, Peking University, Beijing 100871, China.
| | - Jinglin Tang
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of the Ministry of Education, School of Physics, Peking University, Beijing 100871, China.
| | - Lulu Ye
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of the Ministry of Education, School of Physics, Peking University, Beijing 100871, China.
| | - Hong Yang
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of the Ministry of Education, School of Physics, Peking University, Beijing 100871, China. and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China and Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, Jiangsu, China
| | - Ming Li
- Institute of Microelectronics, Peking University, Beijing 100871, China
| | - Yu Ye
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of the Ministry of Education, School of Physics, Peking University, Beijing 100871, China.
| | - Quan Sun
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, Jiangsu, China
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of the Ministry of Education, School of Physics, Peking University, Beijing 100871, China. and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China and Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, Jiangsu, China
| | - Guowei Lu
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of the Ministry of Education, School of Physics, Peking University, Beijing 100871, China. and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China and Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, Jiangsu, China
| |
Collapse
|
20
|
Wittenbecher L, Viñas Boström E, Vogelsang J, Lehman S, Dick KA, Verdozzi C, Zigmantas D, Mikkelsen A. Unraveling the Ultrafast Hot Electron Dynamics in Semiconductor Nanowires. ACS NANO 2021; 15:1133-1144. [PMID: 33439621 PMCID: PMC7877729 DOI: 10.1021/acsnano.0c08101] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Hot electron relaxation and transport in nanostructures involve a multitude of ultrafast processes whose interplay and relative importance are still not fully understood, but which are relevant for future applications in areas such as photocatalysis and optoelectronics. To unravel these processes, their dynamics in both time and space must be studied with high spatiotemporal resolution in structurally well-defined nanoscale objects. We employ time-resolved photoemission electron microscopy to image the relaxation of photogenerated hot electrons within InAs nanowires on a femtosecond time scale. We observe transport of hot electrons to the nanowire surface within 100 fs caused by surface band bending. We find that electron-hole scattering substantially influences hot electron cooling during the first few picoseconds, while phonon scattering is prominent at longer time scales. The time scale of cooling is found to differ between the well-defined wurtzite and zincblende crystal segments of the nanowires depending on excitation light polarization. The scattering and transport mechanisms identified will play a role in the rational design of nanostructures for hot-electron-based applications.
Collapse
Affiliation(s)
- Lukas Wittenbecher
- Department
of Physics, Lund University, Box 118, 221 00 Lund, Sweden
- Chemical
Physics, Lund University, Box 124, 221 00 Lund, Sweden
- Nano
Lund, Lund University, Box 118, 221 00 Lund, Sweden
| | | | - Jan Vogelsang
- Department
of Physics, Lund University, Box 118, 221 00 Lund, Sweden
- Nano
Lund, Lund University, Box 118, 221 00 Lund, Sweden
| | - Sebastian Lehman
- Department
of Physics, Lund University, Box 118, 221 00 Lund, Sweden
- Nano
Lund, Lund University, Box 118, 221 00 Lund, Sweden
| | - Kimberly A. Dick
- Nano
Lund, Lund University, Box 118, 221 00 Lund, Sweden
- Centre
for Analysis and Synthesis, Lund University, Box 124, 221 00 Lund, Sweden
| | - Claudio Verdozzi
- Department
of Physics, Lund University, Box 118, 221 00 Lund, Sweden
| | - Donatas Zigmantas
- Chemical
Physics, Lund University, Box 124, 221 00 Lund, Sweden
- Nano
Lund, Lund University, Box 118, 221 00 Lund, Sweden
- E-mail:
| | - Anders Mikkelsen
- Department
of Physics, Lund University, Box 118, 221 00 Lund, Sweden
- Nano
Lund, Lund University, Box 118, 221 00 Lund, Sweden
- E-mail:
| |
Collapse
|
21
|
Sun Q, Zu S, Misawa H. Ultrafast photoemission electron microscopy: Capability and potential in probing plasmonic nanostructures from multiple domains. J Chem Phys 2020; 153:120902. [DOI: 10.1063/5.0013659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Quan Sun
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Shuai Zu
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Hiroaki Misawa
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
22
|
Da Browski M, Dai Y, Petek H. Ultrafast Photoemission Electron Microscopy: Imaging Plasmons in Space and Time. Chem Rev 2020; 120:6247-6287. [PMID: 32530607 DOI: 10.1021/acs.chemrev.0c00146] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Plasmonics is a rapidly growing field spanning research and applications across chemistry, physics, optics, energy harvesting, and medicine. Ultrafast photoemission electron microscopy (PEEM) has demonstrated unprecedented power in the characterization of surface plasmons and other electronic excitations, as it uniquely combines the requisite spatial and temporal resolution, making it ideally suited for 3D space and time coherent imaging of the dynamical plasmonic phenomena on the nanofemto scale. The ability to visualize plasmonic fields evolving at the local speed of light on subwavelength scale with optical phase resolution illuminates old phenomena and opens new directions for growth of plasmonics research. In this review, we guide the reader thorough experimental description of PEEM as a characterization tool for both surface plasmon polaritons and localized plasmons and summarize the exciting progress it has opened by the ultrafast imaging of plasmonic phenomena on the nanofemto scale.
Collapse
Affiliation(s)
- Maciej Da Browski
- Department of Physics and Astronomy and Pittsburgh Quantum Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.,Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter, Devon EX4 4QL, U.K
| | - Yanan Dai
- Department of Physics and Astronomy and Pittsburgh Quantum Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Hrvoje Petek
- Department of Physics and Astronomy and Pittsburgh Quantum Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|