1
|
Luo M, Wang Q, Zhao G, Jiang W, Zeng C, Zhang Q, Yang R, Dong W, Zhao Y, Zhang G, Jiang J, Wang Y, Zhu Q. Solid-state atomic hydrogen as a broad-spectrum RONS scavenger for accelerated diabetic wound healing. Natl Sci Rev 2024; 11:nwad269. [PMID: 38213516 PMCID: PMC10776359 DOI: 10.1093/nsr/nwad269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 01/13/2024] Open
Abstract
Hydrogen therapy shows great promise as a versatile treatment method for diseases associated with the overexpression of reactive oxygen and nitrogen species (RONS). However, developing an advanced hydrogen therapy platform that integrates controllable hydrogen release, efficient RONS elimination, and biodegradability remains a giant technical challenge. In this study, we demonstrate for the first time that the tungsten bronze phase H0.53WO3 (HWO) is an exceptionally ideal hydrogen carrier, with salient features including temperature-dependent highly-reductive atomic hydrogen release and broad-spectrum RONS scavenging capability distinct from that of molecular hydrogen. Moreover, its unique pH-responsive biodegradability ensures post-therapeutic clearance at pathological sites. Treatment with HWO of diabetic wounds in an animal model indicates that the solid-state atomic H promotes vascular formation by activating M2-type macrophage polarization and anti-inflammatory cytokine production, resulting in acceleration of chronic wound healing. Our findings significantly expand the basic categories of hydrogen therapeutic materials and pave the way for investigating more physical forms of hydrogen species as efficient RONS scavengers for clinical disease treatment.
Collapse
Affiliation(s)
- Man Luo
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, China
| | - Qin Wang
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230026, China
| | - Gang Zhao
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, China
| | - Wei Jiang
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230026, China
| | - Cici Zeng
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230026, China
| | - Qingao Zhang
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230026, China
| | - Ruyu Yang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, China
| | - Wang Dong
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230026, China
| | - Yunxi Zhao
- Shenzhen Senior High School, Shenzhen518040, China
| | - Guozhen Zhang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, China
| | - Jun Jiang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, China
| | - Yucai Wang
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230026, China
| | - Qing Zhu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, China
- Institute of Intelligent Innovation, Henan Academy of Sciences, Zhengzhou451162, China
| |
Collapse
|
2
|
Lobet M, Kinsey N, Liberal I, Caglayan H, Huidobro PA, Galiffi E, Mejía-Salazar JR, Palermo G, Jacob Z, Maccaferri N. New Horizons in Near-Zero Refractive Index Photonics and Hyperbolic Metamaterials. ACS PHOTONICS 2023; 10:3805-3820. [PMID: 38027250 PMCID: PMC10655250 DOI: 10.1021/acsphotonics.3c00747] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023]
Abstract
The engineering of the spatial and temporal properties of both the electric permittivity and the refractive index of materials is at the core of photonics. When vanishing to zero, those two variables provide efficient knobs to control light-matter interactions. This Perspective aims at providing an overview of the state of the art and the challenges in emerging research areas where the use of near-zero refractive index and hyperbolic metamaterials is pivotal, in particular, light and thermal emission, nonlinear optics, sensing applications, and time-varying photonics.
Collapse
Affiliation(s)
- Michaël Lobet
- Department
of Physics and Namur Institute of Structured Materials, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Nathaniel Kinsey
- Department
of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Iñigo Liberal
- Department
of Electrical, Electronic and Communications Engineering, Institute
of Smart Cities (ISC), Public University
of Navarre (UPNA), Pamplona 31006, Spain
| | - Humeyra Caglayan
- Faculty
of Engineering and Natural Science, Photonics, Tampere University, 33720 Tampere, Finland
| | - Paloma A. Huidobro
- Departamento
de Física Téorica de la Materia Condensada and Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, E-28049 Madrid, Spain
- Instituto
de Telecomunicações, Instituto
Superior Técnico-University of Lisbon, Avenida Rovisco Pais 1, Lisboa, 1049-001, Portugal
| | - Emanuele Galiffi
- Photonics
Initiative, Advanced Science Research Center, City University of New York, New
York, New York 10027, United States
| | | | - Giovanna Palermo
- Department
of Physics, NLHT Lab, University of Calabria, 87036 Rende, Italy
- CNR NANOTEC-Institute
of Nanotechnology, Rende (CS), 87036 Rende, Italy
| | - Zubin Jacob
- Elmore
Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck
Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nicolò Maccaferri
- Department
of Physics, Umeå University, Linnaeus väg 24, 90187 Umeå, Sweden
- Department
of Physics and Materials Science, University
of Luxembourg, 162a avenue
de la Faïencerie, L-1511 Luxembourg, Luxembourg
| |
Collapse
|
3
|
Shingaya Y, Takaki H, Kobayashi N, Aono M, Nakayama T. Single-molecule detection with enhanced Raman scattering of tungsten oxide nanostructure. NANOSCALE 2022; 14:14552-14557. [PMID: 36149385 DOI: 10.1039/d2nr03596k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We have found that tungsten oxide nanorods have a very large enhancement effect on Raman scattering. The nanorods with adsorbed 12CO and 13CO at the ratio of 1 : 1 were dispersed on a Si substrate and Raman mapping was performed. The Raman images of 12CO and 13CO were completely different, indicating that a very small number of molecules at the single-molecule level were observed. We also confirmed the characteristic blinking phenomenon when single-molecule detection was performed. The very large enhancement effect of Raman scattering can be attributed to the {001}CS structure of the tungsten oxide nanorods. It was confirmed from the DFT calculation results that the {001}CS structure exhibits two-dimensional electrical conduction properties.
Collapse
Affiliation(s)
- Yoshitaka Shingaya
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan.
| | - Hirokazu Takaki
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Nobuhiko Kobayashi
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Masakazu Aono
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan.
| | - Tomonobu Nakayama
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan.
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
4
|
Karawdeniya BI, Damry AM, Murugappan K, Manjunath S, Bandara YMNDY, Jackson CJ, Tricoli A, Neshev D. Surface Functionalization and Texturing of Optical Metasurfaces for Sensing Applications. Chem Rev 2022; 122:14990-15030. [PMID: 35536016 DOI: 10.1021/acs.chemrev.1c00990] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Optical metasurfaces are planar metamaterials that can mediate highly precise light-matter interactions. Because of their unique optical properties, both plasmonic and dielectric metasurfaces have found common use in sensing applications, enabling label-free, nondestructive, and miniaturized sensors with ultralow limits of detection. However, because bare metasurfaces inherently lack target specificity, their applications have driven the development of surface modification techniques that provide selectivity. Both chemical functionalization and physical texturing methodologies can modify and enhance metasurface properties by selectively capturing analytes at the surface and altering the transduction of light-matter interactions into optical signals. This review summarizes recent advances in material-specific surface functionalization and texturing as applied to representative optical metasurfaces. We also present an overview of the underlying chemistry driving functionalization and texturing processes, including detailed directions for their broad implementation. Overall, this review provides a concise and centralized guide for the modification of metasurfaces with a focus toward sensing applications.
Collapse
Affiliation(s)
- Buddini I Karawdeniya
- ARC Centre of Excellence for Transformative Meta Optical Systems (TMOS), Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2600, Australia
| | - Adam M Damry
- Research School of Chemistry, College of Science, The Australian National University, Canberra, ACT 2601, Australia
| | - Krishnan Murugappan
- Research School of Chemistry, College of Science, The Australian National University, Canberra, ACT 2601, Australia
| | - Shridhar Manjunath
- ARC Centre of Excellence for Transformative Meta Optical Systems (TMOS), Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2600, Australia
| | - Y M Nuwan D Y Bandara
- ARC Centre of Excellence for Transformative Meta Optical Systems (TMOS), Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2600, Australia
| | - Colin J Jackson
- Research School of Chemistry, College of Science, The Australian National University, Canberra, ACT 2601, Australia
| | - Antonio Tricoli
- Research School of Chemistry, College of Science, The Australian National University, Canberra, ACT 2601, Australia
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Dragomir Neshev
- ARC Centre of Excellence for Transformative Meta Optical Systems (TMOS), Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2600, Australia
| |
Collapse
|
5
|
Qin J, Jiang S, Wang Z, Cheng X, Li B, Shi Y, Tsai DP, Liu AQ, Huang W, Zhu W. Metasurface Micro/Nano-Optical Sensors: Principles and Applications. ACS NANO 2022; 16:11598-11618. [PMID: 35960685 DOI: 10.1021/acsnano.2c03310] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Metasurfaces are 2D artificial materials consisting of arrays of metamolecules, which are exquisitely designed to manipulate light in terms of amplitude, phase, and polarization state with spatial resolutions at the subwavelength scale. Traditional micro/nano-optical sensors (MNOSs) pursue high sensitivity through strongly localized optical fields based on diffractive and refractive optics, microcavities, and interferometers. Although detections of ultra-low concentrations of analytes have already been demonstrated, the label-free sensing and recognition of complex and unknown samples remain challenging, requiring multiple readouts from sensors, e.g., refractive index, absorption/emission spectrum, chirality, etc. Additionally, the reliability of detecting large, inhomogeneous biosamples may be compromised by the limited near-field sensing area from the localization of light. Here, we review recent advances in metasurface-based MNOSs and compare them with counterparts using micro-optics from aspects of physics, working principles, and applications. By virtue of underlying the physics and design flexibilities of metasurfaces, MNOSs have now been endowed with superb performances and advanced functionalities, leading toward highly integrated smart sensing platforms.
Collapse
Affiliation(s)
- Jin Qin
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Shibin Jiang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhanshan Wang
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Xinbin Cheng
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Baojun Li
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Yuzhi Shi
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Din Ping Tsai
- Department of Electrical Engineering, City University of Hong Kong Tat Chee Avenue, Kowloon 999077, Hong Kong, China
| | - Ai Qun Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Wei Huang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences(CAS), Suzhou 215123, China
| | - Weiming Zhu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
6
|
Li Z, Fan L, Zhao H, Yan Y, Gao J. Optical properties and application potential of a hybrid cavity compound grating structure. OPTICS EXPRESS 2022; 30:7737-7749. [PMID: 35299529 DOI: 10.1364/oe.451445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
In this paper, we propose a new type of metal-insulator-metal (MIM) hybrid cavity compound grating micro-structure array, which can achieve dual narrowband super-absorption in the near-infrared window. The thin plasmonic microstructure effectively modulates coupling and hybridization effects between surface plasmon polaritons of different transmission resonance cavities to form designable dual narrowband resonance states to achieve near-infrared operation proving manipulation of the optical characteristics in the near-infrared light field. Furthermore, we conduct an in-depth theoretical exploration of the structure's unique properties, such as its high-quality factor, low noise, super-absorption, precise control, and the physical mechanism of its excellent performance in ambient refractive index sensing and detection. This study provides developmental insights for the miniaturization, easy modulation, and multi-function development of surface plasmon superabsorbers while broadening their application in near-infrared environment refractive index detection. The proposed microstructure is also suitable for integration with optical elements.
Collapse
|
7
|
Carnemolla EG, Jaffray W, Clerici M, Caspani L, Faccio D, Biancalana F, Devault C, Shalaev VM, Boltasseva A, Ferrera M. Visible photon generation via four-wave mixing in near-infrared near-zero-index thin films. OPTICS LETTERS 2021; 46:5433-5436. [PMID: 34724494 DOI: 10.1364/ol.433834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Optical nonlinearities can be strongly enhanced by operating in the so-called near-zero-index (NZI) regime, where the real part of the refractive index of the system under investigation approaches zero. Here we experimentally demonstrate semi-degenerate four-wave mixing (FWM) in aluminum zinc oxide thin films generating radiation tunable in the visible spectral region, where the material is highly transparent. To this end, we employed an intense pump (787 nm) and a seed tunable in the NIR window (1100-1500 nm) to generate a visible idler wave (530-620 nm). Experiments show enhancement of the frequency conversion efficiency with a maximum of 2% and a signal-to-pump detuning of 360 nm. Effective idler wavelength tuning has also been demonstrated by operating on the temporal delay between the pump and signal.
Collapse
|
8
|
Bhardwaj A, Sridurai V, Bhat SA, Yelamaggad CV, Nair GG. Photo-tunable epsilon-near-zero behavior in a self-assembled liquid crystal - nanoparticle hybrid material. NANOSCALE ADVANCES 2021; 3:2508-2515. [PMID: 36134163 PMCID: PMC9416799 DOI: 10.1039/d0na01039a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/10/2021] [Indexed: 05/27/2023]
Abstract
Dynamic tuning of electromagnetic response is an important parameter to realize exotic applications of optical metamaterials. Self-assembly achieved via the incorporation of soft materials is an attractive approach to achieve tunable optical properties. Among the soft materials, liquid crystals are highly sought after due to the inherent soft-stimuli responsiveness. This article reports experimental evidence of tunable epsilon-near-zero (ENZ) behavior brought about by an optical field in a self-assembled liquid crystal - nanoparticle system. The material consists of Au nanoparticles capped with a photo-active chiral liquid crystal ligand. In the liquid crystalline state, the system self-assembles into a helical lamellar superstructure, confirmed by polarizing optical microscopy, HRTEM, XRD, and circular dichroism studies. Upon irradiation with UV light, the localized surface plasmon resonance peak of Au red-shifts by ∼10 nm and gets restored with white light illumination. The effective permittivity of the system obtained from ellipsometry indicates ENZ behavior in the visible spectrum with a bandwidth of ∼45 nm which gets enhanced by a factor of 1.6 on UV illumination. Theoretical calculations, carried out using the effective medium approach, support the experimental findings, making the system an efficient ENZ metamaterial in the optical regime.
Collapse
Affiliation(s)
- Amit Bhardwaj
- Centre for Nano and Soft Matter Sciences Bengaluru-560013 India
- Manipal Academy of Higher Education Manipal Karnataka 576104 India
| | - Vimala Sridurai
- Centre for Nano and Soft Matter Sciences Bengaluru-560013 India
| | - Sachin A Bhat
- Centre for Nano and Soft Matter Sciences Bengaluru-560013 India
| | | | - Geetha G Nair
- Centre for Nano and Soft Matter Sciences Bengaluru-560013 India
| |
Collapse
|
9
|
Metamaterials-Enabled Sensing for Human-Machine Interfacing. SENSORS 2020; 21:s21010161. [PMID: 33383751 PMCID: PMC7795397 DOI: 10.3390/s21010161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 02/08/2023]
Abstract
Our modern lives have been radically revolutionized by mechanical or electric machines that redefine and recreate the way we work, communicate, entertain, and travel. Whether being perceived or not, human-machine interfacing (HMI) technologies have been extensively employed in our daily lives, and only when the machines can sense the ambient through various signals, they can respond to human commands for finishing desired tasks. Metamaterials have offered a great platform to develop the sensing materials and devices from different disciplines with very high accuracy, thus enabling the great potential for HMI applications. For this regard, significant progresses have been achieved in the recent decade, but haven’t been reviewed systematically yet. In the Review, we introduce the working principle, state-of-the-art sensing metamaterials, and the corresponding enabled HMI applications. For practical HMI applications, four kinds of signals are usually used, i.e., light, heat, sound, and force, and therefore the progresses in these four aspects are discussed in particular. Finally, the future directions for the metamaterials-based HMI applications are outlined and discussed.
Collapse
|
10
|
Fusco Z, Rahmani M, Tran-Phu T, Ricci C, Kiy A, Kluth P, Della Gaspera E, Motta N, Neshev D, Tricoli A. Photonic Fractal Metamaterials: A Metal-Semiconductor Platform with Enhanced Volatile-Compound Sensing Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002471. [PMID: 33089556 DOI: 10.1002/adma.202002471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Advance of photonics media is restrained by the lack of structuring techniques for the 3D fabrication of active materials with long-range periodicity. A methodology is reported for the engineering of tunable resonant photonic media with thickness exceeding the plasmonic near-field enhancement region by more than two orders of magnitude. The media architecture consists of a stochastically ordered distribution of plasmonic nanocrystals in a fractal scaffold of high-index semiconductors. This plasmonic-semiconductor fractal media supports the propagation of surface plasmons with drastically enhanced intensity over multiple length scales, overcoming the 2D limitations of established metasurface technologies. The fractal media are used for the fabrication of plasmonic optical gas sensors, achieving a limit of detection of 0.01 vol% at room temperature and sensitivity up to 1.9 nm vol%-1 , demonstrating almost a fivefold increase with respect to an optimized planar geometry. Beneficially to their implementation, the self-assembly mechanism of this fractal architecture allows fabrication of micrometer-thick media over surfaces of several square centimeters in a few seconds. The designable optical features and intrinsic scalability of these photonic fractal metamaterials provide ample opportunities for applications, bridging across transformation optics, sensing, and light harvesting.
Collapse
Affiliation(s)
- Zelio Fusco
- Nanotechnology Research Laboratory, College of Engineering and Computer Science, The Australian National University, Canberra, ACT, 2601, Australia
| | - Mohsen Rahmani
- Advanced Optics and Photonics Laboratory, Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Thanh Tran-Phu
- Nanotechnology Research Laboratory, College of Engineering and Computer Science, The Australian National University, Canberra, ACT, 2601, Australia
| | - Chiara Ricci
- Nanotechnology Research Laboratory, College of Engineering and Computer Science, The Australian National University, Canberra, ACT, 2601, Australia
| | - Alexander Kiy
- Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT, 2601, Australia
| | - Patrick Kluth
- Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT, 2601, Australia
| | | | - Nunzio Motta
- Institute for Future Environments and School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Dragomir Neshev
- ARC Centre of Excellence for Transformative Meta-Optical Systems, Research School of Physics, Australian National University, Canberra, ACT, 2601, Australia
| | - Antonio Tricoli
- Nanotechnology Research Laboratory, College of Engineering and Computer Science, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|