1
|
Coleman E, Kelly A, Gabbett C, Doolan L, Liu S, Yadav N, Vij JK, Coleman JN. Extracting the Temperature Dependence of Both Nanowire Resistivity and Junction Resistance from Electrical Measurements on Printed Silver Nanowire Networks. ACS APPLIED ELECTRONIC MATERIALS 2025; 7:806-815. [PMID: 39897075 PMCID: PMC11780743 DOI: 10.1021/acsaelm.4c01965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 02/04/2025]
Abstract
Printed networks of nanoparticles (e.g., nanodots, nanowires, nanosheets) are important for a range of electronic, sensing and energy storage applications. Characterizing the temperature dependence of both the nanoparticle resistivity (ρNW) and interparticle junction resistance (R J) in such networks is crucial for understanding the conduction mechanism and so for optimizing network properties. However, it is challenging to extract both ρNW and R J from standard electrical measurements. Here, using silver nanowires (AgNWs) as a model system, we describe a broadly applicable method to extract both parameters from resistivity measurements on nanowire networks. We achieve this by combining a simple theoretical model with temperature-dependent resistivity measurements on sets of networks fabricated from nanowires of different lengths. As expected, our results demonstrate that R J is the predominant bottleneck for charge transport within these networks, with R NW/R J in the range 0.03-0.7. We demonstrate that the temperature dependence of ρNW exhibits characteristic Bloch-Grüneisen behavior, yielding a Debye temperature between 133-181 K, which aligns with reported values for individual nanowires. Likewise, our findings for residual resistivity and electron-phonon coupling constants closely match published values measured on individual nanowires. The junction resistance also follows Bloch-Grüneisen behavior with similar parameters, indicating the junctions consist of metallic silver. These findings confirm the validity of our method and provide a deeper insight into the conduction mechanisms in AgNW networks. They also pave the way toward simultaneous measurement of ρNW and R J in other important systems, notably carbon nanotube networks.
Collapse
Affiliation(s)
- Emmet Coleman
- School
of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Adam Kelly
- School
of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Cian Gabbett
- School
of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Luke Doolan
- School
of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Shixin Liu
- School
of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Neelam Yadav
- Department
of Electronic & Electrical Engineering, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Jagdish K. Vij
- Department
of Electronic & Electrical Engineering, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Jonathan N. Coleman
- School
of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin D02 PN40, Ireland
| |
Collapse
|
2
|
Talwar DN, Becla P. Impact of Acoustic and Optical Phonons on the Anisotropic Heat Conduction in Novel C-Based Superlattices. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4894. [PMID: 39410465 PMCID: PMC11478081 DOI: 10.3390/ma17194894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024]
Abstract
C-based XC binary materials and their (XC)m/(YC)n (X, Y ≡ Si, Ge and Sn) superlattices (SLs) have recently gained considerable interest as valuable alternatives to Si for designing and/or exploiting nanostructured electronic devices (NEDs) in the growing high-power application needs. In commercial NEDs, heat dissipation and thermal management have been and still are crucial issues. The concept of phonon engineering is important for manipulating thermal transport in low-dimensional heterostructures to study their lattice dynamical features. By adopting a realistic rigid-ion-model, we reported results of phonon dispersions ωjSLk→ of novel short-period XCm/(YC)n001 SLs, for m, n = 2, 3, 4 by varying phonon wavevectors k→SL along the growth k|| ([001]), and in-plane k⟂ ([100], [010]) directions. The SL phonon dispersions displayed flattening of modes, especially at high-symmetry critical points Γ, Z and M. Miniband formation and anti-crossings in ωjSLk→ lead to the reduction in phonon conductivity κz along the growth direction by an order of magnitude relative to the bulk materials. Due to zone-folding effects, the in-plane phonons in SLs exhibited a strong mixture of XC-like and YC-like low-energy ωTA, ωLA modes with the emergence of stop bands at certain k→SL. For thermal transport applications, the results demonstrate modifications in thermal conductivities via changes in group velocities, specific heat, and density of states.
Collapse
Affiliation(s)
- Devki N. Talwar
- Department of Physics, University of North Florida, 1 UNF Drive, Jacksonville, FL 32224, USA
- Department of Physics, Indiana University of Pennsylvania, 975 Oakland Avenue, 56 Weyandt Hall, Indiana, PA 15705, USA
| | - Piotr Becla
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| |
Collapse
|
3
|
Liu Y, Li B, Wang F, Li Q, Jia S, Liu X, Li M. Quantitative Analysis of Resistance to Deformation of the DNA Origami Framework Supported by Struts. ACS APPLIED BIO MATERIALS 2024; 7:1311-1316. [PMID: 38303492 DOI: 10.1021/acsabm.3c01270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Nanostructures with controlled shapes are of particular interest due to their consistent physical and chemical properties and their potential for assembly into complex superstructures. The use of supporting struts has proven to be effective in the construction of precise DNA polyhedra. However, the influence of struts on the structure of DNA origami frameworks on the nanoscale remains unclear. In this study, we developed a flexible square DNA origami (SDO) framework and enhanced its structural stability by incorporating interarm supporting struts (SDO-s). Comparing the framework with and without such struts, we found that SDO-s demonstrated a significantly improved resistance to deformation. We assessed the deformability of these two DNA origami structures through the statistical analysis of interior angles of polygons based on atomic force microscopy and transmission electron microscopy data. Our results showed that SDO-s exhibited more centralized interior angle distributions compared to SDO, reducing from 30-150° to 60-120°. Furthermore, molecular dynamics simulations indicated that supporting struts significantly decreased the thermodynamic fluctuations of the SDO-s, as described by the root-mean-square fluctuation parameter. Finally, we experimentally demonstrated that the 2D arrays assembled from SDO-s exhibited significantly higher quality than those assembled from SDO. These quantitative analyses provide an understanding of how supporting struts can enhance the structural integrity of DNA origami frameworks.
Collapse
Affiliation(s)
- Yongjun Liu
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bochen Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fei Wang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sisi Jia
- Zhangjiang Laboratory, Shanghai 201210, China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingqiang Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Pan Z, Lu G, Li X, McBride JR, Juneja R, Long M, Lindsay L, Caldwell JD, Li D. Remarkable heat conduction mediated by non-equilibrium phonon polaritons. Nature 2023; 623:307-312. [PMID: 37880364 DOI: 10.1038/s41586-023-06598-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 08/31/2023] [Indexed: 10/27/2023]
Abstract
Surface waves can lead to intriguing transport phenomena. In particular, surface phonon polaritons (SPhPs), which result from coupling between infrared light and optical phonons, have been predicted to contribute to heat conduction along polar thin films and nanowires1. However, experimental efforts so far suggest only very limited SPhP contributions2-5. Through systematic measurements of thermal transport along the same 3C-SiC nanowires with and without a gold coating on the end(s) that serves to launch SPhPs, here we show that thermally excited SPhPs can substantially enhance the thermal conductivity of the uncoated portion of these wires. The extracted pre-decay SPhP thermal conductance is more than two orders of magnitude higher than the Landauer limit predicted on the basis of equilibrium Bose-Einstein distributions. We attribute the notable SPhP conductance to the efficient launching of non-equilibrium SPhPs from the gold-coated portion into the uncoated SiC nanowires, which is strongly supported by the observation that the SPhP-mediated thermal conductivity is proportional to the length of the gold coating(s). The reported discoveries open the door for modulating energy transport in solids by introducing SPhPs, which can effectively counteract the classical size effect in many technologically important films and improve the design of solid-state devices.
Collapse
Affiliation(s)
- Zhiliang Pan
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Guanyu Lu
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Xun Li
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - James R McBride
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, USA
| | - Rinkle Juneja
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Mackey Long
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, USA
| | - Lucas Lindsay
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Joshua D Caldwell
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Deyu Li
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
5
|
Liu C, Wu C, Tan XY, Tao Y, Zhang Y, Li D, Yang J, Yan Q, Chen Y. Unexpected doping effects on phonon transport in quasi-one-dimensional van der Waals crystal TiS 3 nanoribbons. Nat Commun 2023; 14:5597. [PMID: 37699879 PMCID: PMC10497542 DOI: 10.1038/s41467-023-41425-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
Doping usually reduces lattice thermal conductivity because of enhanced phonon-impurity scattering. Here, we report unexpected doping effects on the lattice thermal conductivity of quasi-one-dimensional (quasi-1D) van der Waals (vdW) TiS3 nanoribbons. As the nanoribbon thickness reduces from ~80 to ~19 nm, the concentration of oxygen atoms has a monotonic increase along with a 7.4-fold enhancement in the thermal conductivity at room temperature. Through material characterizations and atomistic modellings, we find oxygen atoms diffuse more readily into thinner nanoribbons and more sulfur atoms are substituted. The doped oxygen atoms induce significant lattice contraction and coupling strength enhancement along the molecular chain direction while have little effect on vdW interactions, different from that doping atoms induce potential and structural distortions along all three-dimensional directions in 3D materials. With the enhancement of coupling strength, Young's modulus is enhanced while phonon-impurity scattering strength is suppressed, significantly improving the phonon thermal transport.
Collapse
Affiliation(s)
- Chenhan Liu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211100, P. R. China
- Micro- and Nano-scale Thermal Measurement and Thermal Management Laboratory, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210046, P. R. China
| | - Chao Wu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211100, P. R. China
| | - Xian Yi Tan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Republic of Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore, Republic of Singapore
| | - Yi Tao
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211100, P. R. China
| | - Yin Zhang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211100, P. R. China
| | - Deyu Li
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, 37235-1592, USA
| | - Juekuan Yang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211100, P. R. China.
| | - Qingyu Yan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Republic of Singapore.
| | - Yunfei Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211100, P. R. China.
| |
Collapse
|
6
|
Yu K, He T. Silver-Nanowire-Based Elastic Conductors: Preparation Processes and Substrate Adhesion. Polymers (Basel) 2023; 15:polym15061545. [PMID: 36987325 PMCID: PMC10058989 DOI: 10.3390/polym15061545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
The production of flexible electronic systems includes stretchable electrical interconnections and flexible electronic components, promoting the research and development of flexible conductors and stretchable conductive materials with large bending deformation or torsion resistance. Silver nanowires have the advantages of high conductivity, good transparency and flexibility in the development of flexible electronic products. In order to further prepare system-level flexible systems (such as autonomous full-software robots, etc.), it is necessary to focus on the conductivity of the system's composite conductor and the robustness of the system at the physical level. In terms of conductor preparation processes and substrate adhesion strategies, the more commonly used solutions are selected. Four kinds of elastic preparation processes (pretensioned/geometrically topological matrix, conductive fiber, aerogel composite, mixed percolation dopant) and five kinds of processes (coating, embedding, changing surface energy, chemical bond and force, adjusting tension and diffusion) to enhance the adhesion of composite conductors using silver nanowires as current-carrying channel substrates were reviewed. It is recommended to use the preparation process of mixed percolation doping and the adhesion mode of embedding/chemical bonding under non-special conditions. Developments in 3D printing and soft robots are also discussed.
Collapse
Affiliation(s)
- Kai Yu
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Tian He
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|
7
|
Tarasevich YY, Eserkepov AV. Electrical conductance of two-dimensional random percolating networks based on mixtures of nanowires and nanorings: A mean-field approach along with computer simulation. Phys Rev E 2023; 107:034105. [PMID: 37073027 DOI: 10.1103/physreve.107.034105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/17/2023] [Indexed: 04/20/2023]
Abstract
We have studied the electrical conductance of two-dimensional (2D) random percolating networks of zero-width metallic nanowires (a mixture of rings and sticks). We took into account the nanowire resistance per unit length and the junction (nanowire-nanowire contact) resistance. Using a mean-field approximation (MFA) approach, we derived the total electrical conductance of these nanowire-based networks as a function of their geometrical and physical parameters. The MFA predictions have been confirmed by our Monte Carlo (MC) numerical simulations. The MC simulations were focused on the case when the circumferences of the rings and the lengths of the wires were equal. In this case, the electrical conductance of the network was found to be almost insensitive to the relative proportions of the rings and sticks, provided that the wire resistance and the junction resistance were equal. When the junction resistance dominated over the wire resistance, a linear dependency of the electrical conductance of the network on the proportions of the rings and sticks was observed.
Collapse
Affiliation(s)
- Yuri Yu Tarasevich
- Laboratory of Mathematical Modeling, Astrakhan State University, Astrakhan 414056, Russia
| | - Andrei V Eserkepov
- Laboratory of Mathematical Modeling, Astrakhan State University, Astrakhan 414056, Russia
| |
Collapse
|
8
|
Vogl LM, Kalancha V, Schweizer P, Denninger P, Wu M, Brabec C, Forberich K, Spiecker E. Influence of tin oxide decoration on the junction conductivity of silver nanowires. NANOTECHNOLOGY 2023; 34:175706. [PMID: 36649645 DOI: 10.1088/1361-6528/acb3ca] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Flexible electrodes using nanowires (NWs) suffer from challenges of long-term stability and high junction resistance which limit their fields of applications. Welding via thermal annealing is a common strategy to enhance the conductivity of percolated NW networks, however, it affects the structural and mechanical integrity of the NWs. In this study we show that the decoration of NWs with an ultrathin metal oxide is a potential alternative procedure which not only enhances the thermal and chemical stability but, moreover, provides a totally different mechanism to reduce the junction resistance upon heat treatment. Here, we analyze the effect of SnOxdecoration on the conductance of silver NWs and NW junctions by using a four-probe measurement setup inside a scanning electron microscope. Dedicated transmission electron microscopy analysis in plan-view and cross-section geometry are carried out to characterize the nanowires and the microstructure of the junctions. Upon heat treatment the junction resistance of both plain silver NWs and SnOx-decorated NWs is reduced by around 80%. While plain silver NWs show characteristic junction welding during annealing, the SnOx-decoration reduces junction resistance by a solder-like process which does not affect the mechanical integrity of the NW junction and is therefore expected to be superior for applications.
Collapse
Affiliation(s)
- Lilian Maria Vogl
- Institute of Micro-and Nanostructure Research (IMN), Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Violetta Kalancha
- Institute Materials for Electronics and Energy Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Peter Schweizer
- Institute of Micro-and Nanostructure Research (IMN), Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Peter Denninger
- Institute of Micro-and Nanostructure Research (IMN), Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Mingjian Wu
- Institute of Micro-and Nanostructure Research (IMN), Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Christoph Brabec
- Institute Materials for Electronics and Energy Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Karen Forberich
- Institute Materials for Electronics and Energy Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Erlangen, Germany
| | - Erdmann Spiecker
- Institute of Micro-and Nanostructure Research (IMN), Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| |
Collapse
|
9
|
Zhang C, Wang M, Lin X, Tao S, Wang X, Chen Y, Liu H, Wang Y, Qi H. Holocellulose nanofibrils assisted exfoliation of boron nitride nanosheets for thermal management nanocomposite films. Carbohydr Polym 2022; 291:119578. [DOI: 10.1016/j.carbpol.2022.119578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 11/02/2022]
|
10
|
Lim C, Park C, Sunwoo SH, Kim YG, Lee S, Han SI, Kim D, Kim JH, Kim DH, Hyeon T. Facile and Scalable Synthesis of Whiskered Gold Nanosheets for Stretchable, Conductive, and Biocompatible Nanocomposites. ACS NANO 2022; 16:10431-10442. [PMID: 35766461 DOI: 10.1021/acsnano.2c00880] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Noble metal nanomaterials have been studied as conductive fillers for stretchable, conductive, and biocompatible nanocomposites. However, their performance as conductive filler materials is far from ideal because of their high percolation threshold and low intrinsic conductivity. Moreover, the difficulty in large-scale production is another critical hurdle in their practical applications. Here we report a method for the facile and scalable synthesis of whiskered gold nanosheets (W-AuNSs) for stretchable, conductive, and biocompatible nanocomposites and their application to stretchable bioelectrodes. W-AuNSs show a lower percolation threshold (1.56 vol %) than those of gold nanoparticles (5.02 vol %) and gold nanosheets (2.74 vol %), which enables the fabrication of W-AuNS-based stretchable nanocomposites with superior conductivity and high stretchability. Addition of platinum-coated W-AuNSs (W-AuNSs@Pt) to the prepared nanocomposite significantly reduces the impedance and improved charge storage capacity. Such enhanced performance of the stretchable nanocomposite enables us to fabricate stretchable bioelectrodes whose performance is demonstrated through animal experiments including electrophysiological recording and electrical stimulation in vivo.
Collapse
Affiliation(s)
- Chaehong Lim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Chansul Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Geon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seunghwan Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Ihn Han
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dokyoon Kim
- Department of Bionano Engineering and Bionanotechnology, Hanyang Univeristy, Ansan 15588, Republic of Korea
| | - Jeong Hyun Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
11
|
Razeghi M, Üstünçelik M, Shabani F, Demir HV, Kasırga TS. Plasmon-enhanced photoresponse of single silver nanowires and their network devices. NANOSCALE HORIZONS 2022; 7:396-402. [PMID: 35196367 DOI: 10.1039/d1nh00629k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The photo-bolometric effect is critically important in optoelectronic structures and devices employing metallic electrodes with nanoscale features due to heating caused by the plasmonic field enhancement. One peculiar case is individual silver nanowires (Ag NWs) and their networks. Ag NW-networks exhibit excellent thermal, electrical, and mechanical properties, providing a simple yet reliable alternative to common flexible transparent electrode materials used in optoelectronic devices. To date, there have been no reports on the photoresponse of Ag NWs. In this study, we show that single Ag NWs and networks of such Ag NWs possess a significant, intrinsic photoresponse, thanks to the photo-bolometric effect, as directly observed and measured using scanning photocurrent microscopy. Surface plasmon polaritons (SPPs) created at the contact metals or plasmons created at the nanowire-metal structures cause heating at the junctions where a plasmonic field enhancement is possible. The local heating of the Ag NWs results in negative photoconductance due to the bolometric effect. Here an open-circuit response due to the plasmon-enhanced Seebeck effect was recorded at the NW-metal contact junctions. The SPP-assisted bolometric effect is found to be further enhanced by decorating the Ag NWs with Ag nanoparticles. These observations are relevant to the use of metallic nanowires in plasmonic applications in particular and in optoelectronics in general. Our findings may pave the path for plasmonics-enabled sensing without spectroscopic detection.
Collapse
Affiliation(s)
- Mohammadali Razeghi
- Institute of Materials Science and Nanotechnology - UNAM, Bilkent University, Ankara 06800, Turkey.
| | - Merve Üstünçelik
- Institute of Materials Science and Nanotechnology - UNAM, Bilkent University, Ankara 06800, Turkey.
| | - Farzan Shabani
- Institute of Materials Science and Nanotechnology - UNAM, Bilkent University, Ankara 06800, Turkey.
| | - Hilmi Volkan Demir
- Institute of Materials Science and Nanotechnology - UNAM, Bilkent University, Ankara 06800, Turkey.
- Department of Physics, Bilkent University, Ankara 06800, Turkey
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800, Turkey
- LUMINOUS! Centre of Excellence for Semiconductor Lighting and Displays, The Photonics Institute, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering Nanyang Technological University, Singapore 639798, Singapore
| | - T Serkan Kasırga
- Institute of Materials Science and Nanotechnology - UNAM, Bilkent University, Ankara 06800, Turkey.
- Department of Physics, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
12
|
Patil JJ, Reese ML, Lee E, Grossman JC. Oxynitride-Encapsulated Silver Nanowire Transparent Electrode with Enhanced Thermal, Electrical, and Chemical Stability. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4423-4433. [PMID: 35029366 DOI: 10.1021/acsami.1c20521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Silver nanowire (AgNW) networks have been explored as a promising technology for transparent electrodes due to their solution-processability, low-cost implementation, and excellent trade-off between sheet resistance and transparency. However, their large-scale implementation in applications such as solar cells, transparent heaters, and display applications has been hindered by their poor thermal, electrical, and chemical stability. In this work, we present reactive sputtering as a method for fast deposition of metal oxynitrides as an encapsulant layer on AgNWs. Because O2 cannot be used as a reactive gas in the presence of oxidation-sensitive materials such as Ag, N2 is used under moderate sputtering base pressures to leverage residual H2O on the sample and chamber to deposit Al, Ti, and Zr oxynitrides (AlOxNy, TiOxNy, and ZrOxNy) on Ag nanowires on glass and polymer substrates. All encapsulants improve AgNW networks' electrical, thermal, and chemical stability. In particular, AlOxNy-encapsulated networks present exceptional chemical stability (negligible increase in resistance over 7 days at 80% relative humidity and 80 °C) and transparency (96% for 20 nm films on AgNWs), while TiOxNy demonstrates exceptional thermal and electrical stability (stability up to over temperatures 100 °C more than that of bare AgNW networks, with a maximum areal power density of 1.72 W/cm2, and no resistance divergence at up to 20 V), and ZrOxNy presents intermediate properties in all metrics. In summary, a novel method of oxynitride deposition, leveraging moderate base pressure reactive sputtering, is demonstrated for AgNW encapsulant deposition, which is compatible with roll-to-roll processes that are operated at commercial scales, and this technique can be extended to arbitrary, vacuum-compatible substrates and device architectures.
Collapse
Affiliation(s)
- Jatin J Patil
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Maya L Reese
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Eric Lee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeffrey C Grossman
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
13
|
Lin CX, Tang WR, Tseng LT, Valinton JAA, Tsai CH, Kurniawan A, Chiou K, Chen CH. Enhanced Thermal Conducting Behavior of Pressurized Graphene-Silver Flake Composites. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:727-734. [PMID: 34979082 DOI: 10.1021/acs.langmuir.1c02631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Modern electronics continue to shrink down the sizes while becoming more and more powerful. To improve heat dissipation of electronics, fillers used in the semiconductor packaging process need to possess both high electrical and thermal conductivity. Graphene is known to improve thermal conductivity but suffers from van der Waals interactions and thus poor processibility. In this study, we wrapped silver microflakes with graphene sheets, which can enable intercoupling of phonon- and electron-based thermal transport, to improve the thermal conductivity. Using just 1.55 wt % graphene for wrapping can achieve a 2.64-times greater thermal diffusivity (equivalent to 254.196 ± 10.123 W/m·K) over pristine silver flakes. Graphene-wrapped silver flakes minimize the increase of electrical resistivity, which is one-order higher (1.4 × 10-3 Ω·cm) than the pristine flakes (5.7 × 10-4 Ω·cm). Trace contents of wrapped graphene (<1.55 wt %) were found to be enough to bridge the void between Ag flakes, and this enhances the thermal conductivity. Graphene loading at 3.76 wt % (beyond the threshold of 1.55 wt %) results in the significant graphene aggregation that decreases thermal diffusivity to as low as 16% of the pristine Ag filler. This work recognizes that suitable amounts of graphene wrapping can enhance heat dissipation, but too much graphene results in unwanted aggregation that hinders thermal conducting performance.
Collapse
Affiliation(s)
- Chiao-Xian Lin
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung 80424, Taiwan
| | - Wei-Renn Tang
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung 80424, Taiwan
| | - Li-Ting Tseng
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung 80424, Taiwan
- Ample Electronic Co. No. 32, Dayou 3rd St., Daliao Dist., Kaohsiung City 831, Taiwan
| | - Joey Andrew A Valinton
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung 80424, Taiwan
| | - Cheng-Han Tsai
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung 80424, Taiwan
| | - Alfin Kurniawan
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung 80424, Taiwan
| | - Kevin Chiou
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung 80424, Taiwan
| | - Chun-Hu Chen
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung 80424, Taiwan
| |
Collapse
|
14
|
Yu S, Shen X, Kim JK. Beyond homogeneous dispersion: oriented conductive fillers for high κ nanocomposites. MATERIALS HORIZONS 2021; 8:3009-3042. [PMID: 34623368 DOI: 10.1039/d1mh00907a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rational design of structures for regulating the thermal conductivities (κ) of materials is critical to many components and products employed in electrical, electronic, energy, construction, aerospace, and medical applications. As such, considerable efforts have been devoted to developing polymer composites with tailored conducting filler architectures and thermal conduits for highly improved κ. This paper is dedicated to overviewing recent advances in this area to offer perspectives for the next level of future development. The limitations of conventional particulate-filled composites and the issue of percolation are discussed. In view of different directions of heat dissipation in polymer composites for different end applications, various approaches for designing the micro- and macroscopic structures of thermally conductive networks in the polymer matrix are highlighted. Methodological approaches devised to significantly ameliorate thermal conduction are categorized with respect to the pathways of heat dissipation. Future prospects for the development of thermally conductive polymer composites with modulated thermal conduction pathways are highlighted.
Collapse
Affiliation(s)
- Seunggun Yu
- Insulation Materials Research Center, Korea Electrotechnology Research Institute (KERI), Changwon 51543, Korea.
| | - Xi Shen
- Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jang-Kyo Kim
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
15
|
Pan Z, Tao Y, Zhao Y, Fitzgerald ML, McBride JR, Zhu L, Li D. Bidirectional Modulation of Contact Thermal Resistance between Boron Nitride Nanotubes from a Polymer Interlayer. NANO LETTERS 2021; 21:7317-7324. [PMID: 34415746 DOI: 10.1021/acs.nanolett.1c02504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Enhancing the thermal conductivity of polymer composites could improve their performance in applications requiring fast heat dissipation. While significant progress has been made, a long-standing issue is the contact thermal resistance between the nanofillers, which could play a critical role in the composite thermal properties. Through systematic studies of contact thermal resistance between individual boron nitride nanotubes (BNNTs) of different diameters, with and without a poly(vinylpyrrolidone) (PVP) interlayer, we show that the contact thermal resistance between bare BNNTs is largely determined by reflection of ballistic phonons. Interestingly, it is found that a PVP interlayer can either enhance or reduce the contact thermal resistance, as a result of converting the ballistic phonon dominated transport into diffusion through the PVP layer. These results disclose a previously unrecognized physical picture of thermal transport at the contact between BNNTs, which provides insights into the design of high thermal conductivity BNNT-polymer composites.
Collapse
Affiliation(s)
- Zhiliang Pan
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Yi Tao
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- School of Mechanical Engineering and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 210096, P. R. China
| | - Yang Zhao
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Matthew L Fitzgerald
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - James R McBride
- Department of Chemistry, The Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Lei Zhu
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Deyu Li
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
16
|
Zhang L, Song T, Shi L, Wen N, Wu Z, Sun C, Jiang D, Guo Z. Recent progress for silver nanowires conducting film for flexible electronics. JOURNAL OF NANOSTRUCTURE IN CHEMISTRY 2021; 11:323-341. [PMID: 34367531 PMCID: PMC8325546 DOI: 10.1007/s40097-021-00436-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/24/2021] [Indexed: 05/26/2023]
Abstract
Silver nanowires (AgNWs), as one-dimensional nanometallic materials, have attracted wide attention due to the excellent electrical conductivity, transparency and flexibility, especially in flexible and stretchable electronics. However, the microscopic discontinuities require AgNWs be attached to some carrier for practical applications. Relative to the preparation method, how to integrate AgNWs into the flexible matrix is particularly important. In recent years, plenty of papers have been published on the preparation of conductors based on AgNWs, including printing techniques, coating techniques, vacuum filtration techniques, template-assisted assembly techniques, electrospinning techniques and gelating techniques. The aim of this review is to discuss different assembly method of AgNW-based conducting film and their advantages. GRAPHIC ABSTRACT Conducting films based on silver nanowires (AgNWs) have been reviewed with a focus on their assembly and their advantages.
Collapse
Affiliation(s)
- Lu Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Tingting Song
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Lianxu Shi
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Nan Wen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin, 150040 China
- Dept Chem Engn, Integrated Composites Lab ICL, University of Tennessee System University of Tennessee Knoxville Univ Tennessee, Knoxville, TN 37996 USA
| | - Zijian Wu
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin, 150040 China
| | - Caiying Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Dawei Jiang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Zhanhu Guo
- Dept Chem Engn, Integrated Composites Lab ICL, University of Tennessee System University of Tennessee Knoxville Univ Tennessee, Knoxville, TN 37996 USA
| |
Collapse
|
17
|
Fitzgerald ML, Zhao Y, Pan Z, Yang L, Lin S, Sauti G, Li D. Contact Thermal Resistance between Silver Nanowires with Poly(vinylpyrrolidone) Interlayers. NANO LETTERS 2021; 21:4388-4393. [PMID: 33955762 DOI: 10.1021/acs.nanolett.1c01034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Various nanofillers have been adopted to enhance the thermal conductivity of polymer nanocomposites. While it is widely believed that the contact thermal resistance between adjacent nanofillers can play an important role in limiting thermal conductivity enhancement of composite materials, lack of direct experimental data poses a significant challenge to perceiving the effects of these contacts. This study reports on direct measurements of thermal transport through contacts between silver nanowires (AgNWs) with a poly(vinylpyrrolidone) (PVP) interlayer. The results indicate that a PVP layer as thin as 4 nm can increase the total thermal resistance of the contact by up to an order of magnitude, when compared to bare AgNWs, even with a larger contact area. On the other hand, the thermal boundary resistance for PVP/silver interfaces could be significantly lower than that between polymer-carbon nanotubes (CNTs). Analyses based on these understandings further show why AgNWs could be more effective nanofillers than CNTs.
Collapse
Affiliation(s)
- Matthew L Fitzgerald
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Yang Zhao
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Zhiliang Pan
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Lin Yang
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Shihong Lin
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Godfrey Sauti
- NASA Langley Research Center, Hampton, Virginia 23681-2199, United States
| | - Deyu Li
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
18
|
Wang J, Chen L, Wang C, Mao C, Yu H, Cui Z. Thermal and electrical transport at nanosized metallic contacts: In the diffusive-ballistic region at room temperature. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:015121. [PMID: 33514238 DOI: 10.1063/5.0028330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
The Wiedemann-Franz law has been proved at the quantized metallic contacts but has never been verified at the nanosized contacts when the electrons travel in the diffusive-ballistic region. Herein, by developing a home-made inelastic tunneling spectroscope, the electrical and thermal resistances of the nanosized metallic contacts are investigated. The contact is established by pressing two wires crosswise against each other under the Lorentz force in the magnetic field. The nonmetallic surface layer is in situ removed by the resistive heating under high vacuum. The temperature dependence of the electrical contact resistance is used to separate the contributions from the diffusive and the ballistic transports. The thermal contact resistance is found to increase linearly with the electrical counterpart, indicating the validity of the Wiedemann-Franz law at the clean metallic contacts.
Collapse
Affiliation(s)
- Jianli Wang
- School of Mechanical Engineering and Jiangsu Key Laboratory for Design and Manufacture of Micro/Nano Biomedical Instruments, Southeast University, Nanjing 210096, China
| | - Lu Chen
- School of Mechanical Engineering and Jiangsu Key Laboratory for Design and Manufacture of Micro/Nano Biomedical Instruments, Southeast University, Nanjing 210096, China
| | - Cong Wang
- School of Mechanical Engineering and Jiangsu Key Laboratory for Design and Manufacture of Micro/Nano Biomedical Instruments, Southeast University, Nanjing 210096, China
| | - Chengkun Mao
- School of Mechanical Engineering and Jiangsu Key Laboratory for Design and Manufacture of Micro/Nano Biomedical Instruments, Southeast University, Nanjing 210096, China
| | - Hongmei Yu
- School of Mechanical Engineering and Jiangsu Key Laboratory for Design and Manufacture of Micro/Nano Biomedical Instruments, Southeast University, Nanjing 210096, China
| | - Zhenyu Cui
- School of Mechanical Engineering and Jiangsu Key Laboratory for Design and Manufacture of Micro/Nano Biomedical Instruments, Southeast University, Nanjing 210096, China
| |
Collapse
|
19
|
Xiong Y, Zhao Y, Tao Y, Yao F, Li D, Xu D. Effective Lorenz Number of the Point Contact between Silver Nanowires. NANO LETTERS 2020; 20:8576-8583. [PMID: 33197194 DOI: 10.1021/acs.nanolett.0c03163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electrical and thermal transport through metal point contacts, a key issue in the design and operation of various engineering devices, is of great recent interest. The effective Lorenz number (L), which relates the thermal to electrical conductance of point contacts, could provide valuable information on the relative contribution of electrons and phonons to thermal transport. Through measuring electrical and thermal transport across point contacts between silver nanowires, we report that L significantly deviates from the Sommerfeld value by up to 5.2 times and exhibits nonmonotonic variation with temperature. Analyses show that these observations are due to the more important phonon contribution to the thermal conductance of the point contact as Sharvin resistance greatly hinders electron transport, which is further confirmed by the size dependence of L with a higher value for a smaller contact size. These results provide critical insights into engineering designs involving point contacts between metal nanostructures.
Collapse
Affiliation(s)
- Yucheng Xiong
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Yang Zhao
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Yi Tao
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- School of Mechanical Engineering and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 210096, China
| | - Fengju Yao
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Deyu Li
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Dongyan Xu
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| |
Collapse
|