1
|
Xiong J, Zhang ZH, Li Z, Zheng P, Li J, Zhang X, Gao Z, Wei Z, Zheng G, Wang SP, Liu HC. Perovskite single-pixel detector for dual-color metasurface imaging recognition in complex environment. LIGHT, SCIENCE & APPLICATIONS 2023; 12:286. [PMID: 38008796 PMCID: PMC10679139 DOI: 10.1038/s41377-023-01311-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 11/28/2023]
Abstract
Highly efficient multi-dimensional data storage and extraction are two primary ends for the design and fabrication of emerging optical materials. Although metasurfaces show great potential in information storage due to their modulation for different degrees of freedom of light, a compact and efficient detector for relevant multi-dimensional data retrieval is still a challenge, especially in complex environments. Here, we demonstrate a multi-dimensional image storage and retrieval process by using a dual-color metasurface and a double-layer integrated perovskite single-pixel detector (DIP-SPD). Benefitting from the photoelectric response characteristics of the FAPbBr2.4I0.6 and FAPbI3 films and their stacked structure, our filter-free DIP-SPD can accurately reconstruct different colorful images stored in a metasurface within a single-round measurement, even in complex environments with scattering media or strong background noise. Our work not only provides a compact, filter-free, and noise-robust detector for colorful image extraction in a metasurface, but also paves the way for color imaging application of perovskite-like bandgap tunable materials.
Collapse
Affiliation(s)
- Jiahao Xiong
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, China
| | - Zhi-Hong Zhang
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, China
- State Key Laboratory of High Power Semiconductor Lasers, Changchun University of Science and Technology, Changchun, China
| | - Zile Li
- Electronic Information School, and School of Microelectronics, Wuhan University, Wuhan, China
- Peng Cheng Laboratory, Shenzhen, China
| | - Peixia Zheng
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, China
| | - Jiaxin Li
- Electronic Information School, and School of Microelectronics, Wuhan University, Wuhan, China
| | - Xuan Zhang
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, China
| | - Zihan Gao
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, China
| | - Zhipeng Wei
- State Key Laboratory of High Power Semiconductor Lasers, Changchun University of Science and Technology, Changchun, China
| | - Guoxing Zheng
- Electronic Information School, and School of Microelectronics, Wuhan University, Wuhan, China.
- Peng Cheng Laboratory, Shenzhen, China.
| | - Shuang-Peng Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, China.
| | - Hong-Chao Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, China.
| |
Collapse
|
2
|
Guan J, Park JE, Deng S, Tan MJH, Hu J, Odom TW. Light-Matter Interactions in Hybrid Material Metasurfaces. Chem Rev 2022; 122:15177-15203. [PMID: 35762982 DOI: 10.1021/acs.chemrev.2c00011] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This Review focuses on the integration of plasmonic and dielectric metasurfaces with emissive or stimuli-responsive materials for manipulating light-matter interactions at the nanoscale. Metasurfaces, engineered planar structures with rationally designed building blocks, can change the local phase and intensity of electromagnetic waves at the subwavelength unit level and offers more degrees of freedom to control the flow of light. A combination of metasurfaces and nanoscale emitters facilitates access to weak and strong coupling regimes for enhanced photoluminescence, nanoscale lasing, controlled quantum emission, and formation of exciton-polaritons. In addition to emissive materials, functional materials that respond to external stimuli can be combined with metasurfaces to engineer tunable nanophotonic devices. Emerging metasurface designs including surface-functionalized, chemically tunable, and multilayer hybrid metasurfaces open prospects for diverse applications, including photocatalysis, sensing, displays, and quantum information.
Collapse
|
3
|
Abstract
Recent years have witnessed promising artificial intelligence (AI) applications in many disciplines, including optics, engineering, medicine, economics, and education. In particular, the synergy of AI and meta-optics has greatly benefited both fields. Meta-optics are advanced flat optics with novel functions and light-manipulation abilities. The optical properties can be engineered with a unique design to meet various optical demands. This review offers comprehensive coverage of meta-optics and artificial intelligence in synergy. After providing an overview of AI and meta-optics, we categorize and discuss the recent developments integrated by these two topics, namely AI for meta-optics and meta-optics for AI. The former describes how to apply AI to the research of meta-optics for design, simulation, optical information analysis, and application. The latter reports the development of the optical Al system and computation via meta-optics. This review will also provide an in-depth discussion of the challenges of this interdisciplinary field and indicate future directions. We expect that this review will inspire researchers in these fields and benefit the next generation of intelligent optical device design.
Collapse
Affiliation(s)
- Mu Ku Chen
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077.,Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong 999077.,The State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, Hong Kong 999077
| | - Xiaoyuan Liu
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077
| | - Yanni Sun
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077
| | - Din Ping Tsai
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077.,Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong 999077.,The State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, Hong Kong 999077
| |
Collapse
|
4
|
Li JS, Chen JZ. Simultaneous and independent regulation of circularly polarized terahertz wave based on metasurface. OPTICS EXPRESS 2022; 30:20298-20310. [PMID: 36224779 DOI: 10.1364/oe.458810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/12/2022] [Indexed: 06/16/2023]
Abstract
A single metasurface-based device possessing multiple functionalities is highly desirable for terahertz technology system. In this paper, we design a reflective metasurface to generate switchable vortex beams carrying orbital angular momentum (OAM), focusing beams, focusing beams with arbitrary positions, and vortex beams with arbitrary topological charges in the terahertz region. By combining the spin decoupling principle and the phase addition theorem, the superposition states of OAM and focusing beams with arbitrary positions can be independent manipulated under right-handed and left-handed circularly polarized (LCP/RCP) waves illumination. Such a diversified functionalities device provides a promising application in the field of terahertz communication and terahertz super-resolution imaging.
Collapse
|
5
|
Wang H, Wang H, Ruan Q, Tan YS, Qiu CW, Yang JKW. Optical Fireworks Based on Multifocal Three-Dimensional Color Prints. ACS NANO 2021; 15:10185-10193. [PMID: 34019388 DOI: 10.1021/acsnano.1c02131] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Colorful three-dimensional (3D) prints are promising as practical anticounterfeiting labels with easily recognizable and striking visual effects. However, existing colorful 3D displays either require specific illumination conditions with multiple coherent lasers, hence suffer from speckles, or are unsuitable as passive labels. Here, we report a concept of a virtual 3D color object consisting of colorful focal spots in free space. The colors and corresponding "floating heights" of these spots are independently controlled via the design of 3D printed microlens profiles and heights of nanopillars that act as structural-color filters. Despite the unremarkable appearance of the printed substrate under both optical and electron microscopy, illumination with incoherent white light reveals information in the form of bright colorful spots appearing at designated heights above the plane of the substrate. The term "optical fireworks" refers to the way these spots appear and disappear under an optical microscope as one continuously shifts the focal plane. Our 3D printed optical fireworks security labels introduce applications for optical elements integrated with nanostructures in 3D colorful displays and anticounterfeiting labels.
Collapse
Affiliation(s)
- Hongtao Wang
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Hao Wang
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Qifeng Ruan
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - You Sin Tan
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Joel K W Yang
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
- Institute of Materials Research and Engineering, Singapore 138634, Singapore
| |
Collapse
|
6
|
Ji R, Jin C, Song K, Wang SW, Zhao X. Design of Multifunctional Janus Metasurface Based on Subwavelength Grating. NANOMATERIALS 2021; 11:nano11041034. [PMID: 33921569 PMCID: PMC8073647 DOI: 10.3390/nano11041034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 11/21/2022]
Abstract
In this paper, a Janus metasurface is designed by breaking the structural symmetry based on the polarization selection property of subwavelength grating. The structure comprises three layers: a top layer having a metallic nanostructure, a dielectric spacer, and a bottom layer having subwavelength grating. For a forward incidence, the metal-insulator-metal (MIM) structure operates as a gap plasmonic cavity if the linearly polarized (LP) component is parallel to the grating wires. It also acts as a high-efficiency dual-layer grating polarizer for the orthogonal LP component. For the backward incidence, the high reflectance of the grating blocks the function of the gap plasmonic cavity, leading to its pure functioning as a polarizer. A bifunctional Janus metasurface for 45 degrees beam deflector and polarizer, with a transmission of 0.87 and extinction ratio of 3840, is designed at 1.55 μm and is investigated to prove the validity of the proposed strategy. Moreover, the proposed metasurface can be cascaded to achieve more flexible functions since these functions are independent in terms of operational mechanism and structural parameters. A trifunctional Janus metasurface that acts as a focusing lens, as a reflector, and as a polarizer is designed based on this strategy. The proposed metasurface and the design strategy provide convenience and flexibility in the design of multifunctional, miniaturized, and integrated optical components for polarization-related analysis and for detection systems.
Collapse
Affiliation(s)
- Ruonan Ji
- Smart Materials Lab, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China; (K.S.); (X.Z.)
- Correspondence: (R.J.); (S.-W.W.)
| | - Chuan Jin
- State Key laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics of CAS, Xi’an 710119, China;
| | - Kun Song
- Smart Materials Lab, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China; (K.S.); (X.Z.)
| | - Shao-Wei Wang
- State Key Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
- Correspondence: (R.J.); (S.-W.W.)
| | - Xiaopeng Zhao
- Smart Materials Lab, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China; (K.S.); (X.Z.)
| |
Collapse
|